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Abstract
As the network structure of convolutional neural network (CNN) becomes deeper and wider, network optimization, such as
pruning, has received ever-increasing research focus. This paper propose a new pruning strategy based on Feature Extraction
Ability Measurement (FEAM), which is a novel index of the feature extraction ability from both theoretical analysis and
practical operation. Firstly, FEAM is computed as the product of the the kernel sparsity and feature dispersion. Kernel sparsity
describes the ability of feature extraction in theory, and feature dispersion represents the feature extraction ability in practical
operation. Secondly, FEAMs of all filters in the network are normalized so that the pruning operation can be applied to
cross-layer filters. Finally, filters with weak FEAM are pruned to obtain a compact CNN model. In addition, fine-tuning is
adopted to restore the generalization ability. Experiments on CAFAR-10 and CUB-200-2011 demonstrate the effectiveness
of our method.

Keywords Pruning · Kernel sparsity · Feature dispersion · Feature extraction ability

1 Introduction

It is well known that the convolutional neural network (CNN)
has achieved a great success in various computer vision
tasks [1], including object detection [2–4], object classifi-
cation [5,6], semantic segmentation [7,8], and many others.
However, with the deepening and widening of CNN con-
volution layer, higher computational overhead and larger
memory are required, so it is difficult to deploy CNN model
to resource-limited devices [9]. For instance, AlexNet [10]
network contains about 6×106 parameters,while somebetter
networks likeVGG [11] contain about 1.38×108 parameters.
For less complex tasks, such as simple image recognition,
the VGG network still require more than 500MB memory
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and 1.56× 1010 Float Point Operations (FLOPs). The over-
parameterization of deep learning is a major obstacle to the
application of CNN [12] .

Thus, network compression has drawn a significant
amount of interests from both academia and industry. In
recent years, numerous efficient compression methods have
been proposed, including low-rank approximation [12,13],
parameter quantization [14,15] and binarization [16].Among
them, network pruning [17–20] has excellent performance
in reducing redundancy of CNNs, and it has better model
deployment ability compared with other methods. Network
pruning resorts to removing unimportant connections from
a well-trained network with negligible impact on network
performance.

In this paper, a new pruning strategy based on Feature
ExtractionAbilityMeasurement (FEAM) is proposed. Based
on this fact that the quality of output features is the criterion
to judge the importance of a filter [21], we develop FEAM to
measure the feature extraction ability from both theoretical
analysis and practical operation, and use FEAM to guide the
pruning process. As shown in Fig. 1b, FEAM is computed
as the product of kernel sparsity and feature dispersion. Ker-
nel sparsity is based on the given network structure without
considering input data, which means it is an index from the-
oretical analysis. On the contrary, feature dispersion is based
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(a) (b)

(d) (c)

Fig. 1 The framework of the proposed method. Based on the original
convolutional layer (a), the sparsity of filters is computedwith L1-norm,
the dispersion of feature maps is computed as standard deviation, and

the FEAM is the product of sparsity and dispersion (b). FEAMs of all
filters are computed and normalized (c), and finally filters with weak
FEAM are pruned to generate a more compact network (d)

on the output of filters. That is to say, it is data-driven and rel-
evant to practical applications. Therefore, as the combination
of kernel sparsity and feature dispersion, FEAM provides a
comprehensive description of the feature extraction ability.
Furthermore, we normalize the FEAMs of all filters, so that
the pruning operation can be applied to cross-layer filters,
thus avoiding layer-by-layer threshold sensitivity analysis.
Finally, filters with weak FEAMs are pruned to generate a
compact CNN model with only a slight performance degra-
dation. In addition, fine-tuning is employed to restore the
generalization capabilities.

The proposed pruning method is tested within four
commonly used CNN structures: VGG-16 [22], Resnet-
110 [23], the lightweight models MobileNet_V1 [29] and
MobileNet_V2 [28]. Two representative datasets, CIFAR10
and CUB_200_2011, are used as benchmark. For CIFAR10,
our method achieves 4.9× compression and reduces FLOPs
by 89.4% on VGG-16 with about 0.3% top-1 accuracy
drop, and achieves 2.4× compression on Resnet-110 with
0.9% top-1 accuracy drop. For CUB_ 200_2011, our method
reducesFLOPsby78.7%onVGG-16with roughly 0.6% top-

1 accuracy drop, reduces FLOPs by 55.9%onMobileNet_V1
with about 0.4% top-1 accuracy drop, and reduces FLOPs by
17.5% on MobileNet_V2 with about 0.7% top-1 accuracy
drop. This is better than most similar pruning methods.

2 Related work

In this section, we briefly review some popular network
pruning methods, which can be divided into two classes,
unstructured pruning and structured pruning.

Unstructured pruning is to zero the weight values below
a certain threshold. Among them, what is impressive is that
Han et al. [17] proposed to prune the weights having small
magnitudes on AlexNet and VGG, then retrained without
affecting the overall accuracy but effectively reduced the
number of parameters. However, this pruning operation gen-
erates an unstructured sparse model that requires sparse
BLAS libraries or even specialized hardware for achieving
acceleration.
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Structured pruning reduces computational complexity and
memory overhead bydirectly removing structured parts, such
as kernels, filters, or layers. It is well supported by a variety
of off-the-shelf deep learning platforms. For instance, One
pruning criterion is sparsity activated by non-linear ReLu
mappings. Hu et al. [18] proposed a data-driven neuron prun-
ing approach to remove unimportant neurons. They argued
that if most of these activated feature maps are zero, it is
not important for neurons to have a high probability. The
criterion measures the importance of neurons by calculating
the average percentage of zeros (APoZ) in the activated fea-
ture map. However, the APoZ pruning criterion requires the
introduction of different threshold parameters for each con-
volutional layer, which are difficult to accurately determine.
Li et al. [24] proposed to remove unimportant filters based
on the L1-norm. Molchanov et al. [19] calculated the influ-
ence of filters on the loss function based on Taylor expansion.
According to the criterion, if the filter has little influence on
the loss function, the filter can be safely removed. So they
use Taylor expansion to approximate the change in loss. He
et al. [25] proposed a channel selection method based on
LASSO (Least absolute shrinkage and selection operator)
regression, which uses least squares reconstruction to elim-
inate redundant filters. Similar to our study, Luo et al. [20]
proposed a method to calculate entropy of filters to measure
the information richness of the convolution kernel. However,
the method only consider the information richness of the
filter, and the strategy can only compare the entropy value
among the same convolutional layers. Most of these meth-
ods need to accurately obtain the pruning threshold of each
convolutional layer, but this is difficult to achieve. If fixed
compression rate is used for pruning, it may lead to irrepara-
ble accuracy reduction.

Except for the network pruningmethods, some other CNN
compression methods are developed, such as designing a
more compact architecture. For example, it is known that
most parameters of the CNN model exist in the fully con-
nected layers, so the global average pooling is proposed to
replace the full connection layer in the Network-In-Network
[26]. Son et al. [27] reconstructed the network by unified
representation of similar convolutions to achieve effective
compression of the network. However, this method has some
limitations. It is only effective for 3× 3 convolution kernels.
Sandler et al. [28] proposed the use of depthwise separable
convolution to build a lightweight network, which has also
been widely used in mobile devices.

3 Proposedmethod

Figure 1 illustrates the framework of the proposed method.
In original convolution operation (Fig. 1a), output feature
maps are obtained after filtering the input feataps with ker-

nels. In our method, a new pruning strategy is embedded
into the original convolution operation. First, the kernel spar-
sity of each filter kernel and the dispersion of output feature
maps are computed and combined to get FEAM (Fig. 1b).
Then all FEAMs are normalized for cross-layer operation
(Fig. 1c). Finally, filters with weak FEAMS are removed
from the network to get a compact model (Fig. 1d). In addi-
tion, the network is fine-tuned to restore its generalization
performance. Next each component are described in detail.

First we give some notations used in this paper. Each con-
volution layer has a total number of J 3D filters (kernels),
and WjεR

C1×C2×C3 is the weight matrix of the j th filter,
where C1, C2 and C3 represent the dimension, height and
width of kernels, respectively.

3.1 Kernel sparsity

Kernel sparsity is based on the kernelweightswithout consid-
ering applications and training data.We compute the sparsity
of a filter kernel with the simple L1-norm, which is the sum
of the absolute values of all kernel weights:

k j =
C1∑

u=1

C2∑

v=1

C3∑

w=1

|C j (u, v, w)|,

j = 1, 2, . . . , J (1)

Theoretically speaking, if most weights in a kernel are
close to zero and the absolute values of nonzero weights are
small, this kernel should be sparse and does little contribu-
tion to the network, and it can be removed from network
structure. This case can be reflected by Eq. (1), and hence it
is a reasonable definition for kernel sparsity. However, since
the practical application varies greatly, there are sometimes
exceptions like that an important kernel outputs significant
feature maps but has a small kernel sparsity under a spe-
cific application scenario. This case can be figured out by the
following feature dispersion.

3.2 Feature dispersion

Feature dispersion measures the feature validity of the out-
puts of a filter, which means it is data-driven and it varies
with different training data. We develop feature dispersion
to compensate the defect of kernel disparity, the ignorance
of the influence of real applications on the feature extraction
ability.

Feature dispersion is based on Global Average Pooling
(GAP) [26]. As shown in Fig. 2, given a training sample, the
output feature of a convolution layer is a J × Hout × Wout

tensor, where J is the number of filters in this layer. Then
this tensor is converted to a J -dimensional transverse vector
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Fig. 2 Illustration of global
average pooling

S = [s1, s2, . . . , sJ ] by GAP, where s j corresponds to the
j th filter. It can be seen that this vector S after GAP will vary
with training samples, and hence it is indeed data-driven.
Then we repeat this operation shown in Fig. 2 with different
training samples, e.g. B number of samples, and we will get
a feature matrix M = S1;S2; ...;SB , where Sb corresponds
to the GAP output of the bth training sample. Sometimes, we
omit the superscript or subscript of S in case of no confusion.

The featurematrixM is the basis of feature dispersion.We
have known that each transverse vector ofM corresponds to
a training sample. On the contrary, each column vector ofM
corresponds to a filter, e.g., M:, j represents the output GAP
values of the j th filter. Let μ j be the mean value ofM:, j , the
feature dispersion of the j th filter is defined as follows:

d j =
{
0, μ j = 0√∑B

i=0(Mi, j−μ j )
2

B , otherwise
(2)

The above formula shows that in fact the feature disper-
sion is the standard deviation, which reflects the fluctuation
of samples around the mean value. For a filter, if its feature
dispersion is small, which means the output of this filter can-
not highlight the difference of input samples, this filter should
be judged as a weak filter with poor feature extraction ability.
On the contrary, a filter with large feature dispersion means
it is able to extract distinguishable features, and hence, it is
more likely to be retained.

3.3 FEAM

As shown in above sections, the computation of kernel spar-
sity is based on kernel weights, and the feature dispersion is
based on the output feature maps without considering kernel
parameters. That’s to say, kernel sparsity is such an index
from theoretical analysis, while feature dispersion is from
real operation. Whichever indicator is used alone will not
give a complete evaluation of the feature extraction ability.
As a result, we integrate the two indicators into a new one,

FEAM, to comprehensively measure the feature extraction
ability of the j th filter:

FE AMj = k j × d j (3)

The above equation shows that, the FEAMvalue is small if
both kernel sparsity and feature dispersion are small, and it is
large if both kernel sparsity and feature dispersion are large.
When one is large and the other is small, the two indicators
will competitively measure the feature extraction ability in
FEAM.

FEAM is defined as the product of kernel sparsity and
feature dispersion in Eq. (3). In this paper, k j is the quan-
titative index of kernel sparsity, and d j is the quantitative
index of feature dispersion. We believe that k j and d j are
relatively robust pruning indexes, and the combination of
them can remedy for the defect of single index. Therefore,
in the design process of the algorithm, we tried a variety of
different combinations, including product and weight sum.
According to the experimental results, the product of the two
is chosen as the combination method, which is more robust
and sensitive. Similarly, we also tried the method of weight
sum, and the formula is as follows:

FE AMj =
√

αk j + d j (4)

Since the value of k j is much larger than the value of
d j , we have added a weight α to scale k j . α can control
the proportion of kernel sparsity and feature dispersion in
FEAM, and the value ofα is 0.25 in the experiment. InTable 2
and Table 4, we added the experimental results (in red font)
of FEAM using weight sum method, and we can see that the
experimental results of this method are slightly worse than
those using productmethod. Themain reason for our analysis
is that the value of a affects the final results of FEAM.We also
tried a variety of values of α in the experiment and found that
it will be a little bit troublesome to get a better weight value.
So we think that the product method is relatively robust.
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Table 1 Overall performance of the proposed method

Layer Feature map size FLOPs Parameters

Original Pruned Percentage (%) Original Pruned Percentage (%)

Conv1-1 128× 128 29.36M 21.56M 73.4 1.79K 1.32K 73.5

Conv1-2 128× 128 605.02M 305.65M 50.5 36.92K 18.65K 46.7

Conv2-1 64× 64 302.51M 37.4M 12.4 73.85K 9.13K 12.4

Conv2-2 64× 64 604.50M 18.74M 3.1 147.58K 4.58K 3.1

Conv3-1 32× 32 302.25M 5.91M 2.0 295.16K 5.77K 1.9

Conv3-2 32× 32 604.24M 9.39M 1.5 590.08K 9.17K 1.6

Conv3-3 32× 32 604.24M 16.83M 2.8 590.08K 16.43K 2.8

Conv4-1 16× 16 302.12M 10.69M 3.5 1.18M 41.74K 3.5

Conv4-2 16× 16 604.11M 24.84M 4.1 2.36M 97.04K 4.1

Conv4-3 16× 16 604.11M 32.37M 5.3 2.36M 126.44K 5.4

Conv5-1 8× 8 151.02M 9.63M 6.4 2.36M 150.48K 6.4

Conv5-2 8× 8 151.02M 16.68M 6.9 2.36M 260.69K 11.1

Conv5-3 8× 8 151.02M 20.62M 13.6 2.36M 322.18K 13.7

FC1 1 8.39M 2.92M 34.8 8.39M 2.92M 34.8

FC2 1 1.05M 1.05M 100.0 1.05M 1.05M 100.0

FC3 1 10.24K 10.24K 100.0 10.24K 10.24K 100.0

Total - 5.02B 534.29M 10.6 24.17M 5.03M 20.9

This experiment is based on the VGG-16 model and CIFAR10 dataset

3.4 Normalization

One of the innovations of this paper is that the proposed
pruning method based on FEAM can compare the feature
extraction ability of different layers of convolution filters
after normalization. The advantage of this method is that
it does not need to set the pruning rate of each convolution
layer separately, only need to set the overall pruning rate of
the model. In this way, it can avoid the permanent decrease
of model accuracy caused by the inaccurate pruning rate of
a certain layer. As shown in Fig. 7 of the paper.

For each convolution layer, we compute the FEAM of
all filters and get a vector � = [FE AM1, . . . , FE AMJ ].
Most previous pruning methods are realized by compare the
elements in such a vector like �. However, the scale incon-
sistency problem may occur when this strategy is applied to
the cross-layers. In our method, we normalize the � of each
layer to the same range [0, 1], and then the pruning operation
can be applied to cross-layers. Normalization is defined as:

�̂ = �√∑J
j=0(FE AMj )2

(5)

where �̂ is the normalized vector of �. After the normaliza-
tion of each layer, we can prune and tune the network.

3.5 Pruning and fine-tuning

The implementation details of pruning and tuning vary with
network structures. In this paper, we consider VGG, Resnet
and MobileNet, which are typical representatives of tra-
ditional convolution and fully connected architectures. As
shown in Table 1,more than 39%parameters exist in the fully
connected layers of VGG-16. Some papers, e.g. [20], use
global average pooling instead of the full connection layer.
Although this method greatly reduce the number of param-
eters, it also reduces the convergence speed of the model,
and make it difficult to train the model back to the original
accuracy. Therefore, we consider pruning the filter of the last
convolution layer to reduce parameters.

For ResNet, there are two kinds of residual modules. One
is that two convolution layers with 3×3 kernels are grouped
as one residual module, and the other is three convolutional
layers with 1×1, 3×3, 1×1 kernels respectively are grouped
as a residual module. Our pruning method for the two resid-
ual modules are shown in Fig. 3. Please note that there is a
restriction in the pruning process of ResNet, identity shortcut
connection, which requires that the number of output chan-
nels in the same group is consistent. We can see that our
pruning method in Fig. 3 meets this requirement.

Our pruning method for MobileNet is shown in Fig. 4.
For MobileNet V1 [29], there is not shortcut connection in
the simple superimposed block. Because each input channel
of the depth-wise convolution layer corresponds to a filter
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(a) (b)

Fig. 3 Our pruning strategy for ResNet. The previous layer of the last layer is pruned

(a) (b)

Fig. 4 Our pruning strategy for MobileNet V1 and V2. For each block, we only prune the deep-wise convolution layer of 3× 3

separately, the input channel will be pruned at the same time
whenwe prune the filters of the depth-wise convolution layer,
thus indirectly prune the 1×1 convolution layer. The pruning
method for MobileNet V2 [28] is similar to that for Resnet.

The final problem is how to use fine-tuning during the
pruning process. We find that most methods prune and tune
the network sequentially, e.g., tuning the network after the
pruning is completely finished. There is a problem for this
strategy: the network structure may have been damaged
before tuning, e.g., the pruning rate is too high. This prob-
lem will become more apparent for more complex networks.
Based on this fact, we consider pruning and tuning the net-
work iteratively. In such cases, the advantages of fine-tuning
can be better played, and the destruction of the network struc-
ture may also be avoided.

First, we preset a pruning ratio α for the whole network,
assuming that α is equal to 0.3. There are altogether L filters
in the whole network, if L is equal to 3968, then 3968× 0.3
filters need to be pruned eventually. Instead of pruning all
3968×0.3 filters at once, we pruned them in batches. In each
pruning, we prune β filters, e.g. 256 filters, from the network,
which selected the filters with bottom β FEAM scores. After
pruning we conduct fine-tuning a few epochs to recover the
performance slightly. Then the pruning followed by tuning

operation is repeated again and again. The total number of
this iteration is (L × α)/β times.

4 Experiments

This section consists of two parts: quantitative analysis and
qualitative analysis. In quantitative analysis, we verify the
effectiveness of FEAM by visualizing feature maps. In qual-
itative analysis, we test the proposed method on two popular
datasets.

4.1 Quantitative analysis

To quantitatively evaluate the proposed method, we visually
observe the output feature maps and corresponding FEAM
values. Generally speaking, if a visually significant feature
map is accompanied by a large FEAM, the method is valid.

Given a single training sample (No. 1 Sample), Fig. 3
shows output feature maps and their FEAM values. Each
feature map in Fig. 3 corresponds to a filter in the second
convolution layer of VGG16 network. We can see that the
proposed FEAM is indeed valid: the more significant the
output feature map, the larger the FEAM value. However,
there are also anomalous examples, such as the feature map
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Fig. 5 The feature maps and
corresponding FEAM values of
the second convolution layer of
VGG16 network

marked with red rectangle in Fig. 3. This feature map is rel-
atively significant, but the FEAM value is small (Fig. 5).

For the filter corresponding to the red rectangle in Fig. 3,
the output feature maps of ten training samples are shown
in Fig. 6. We can see that the output feature maps of most
samples are not as significant as that of No. 1 Sample, which
reflects this filter is over-fitted, and it is not a good filter. This
case is reflected in GAP values and finally reflected in FEAM
value. All GAP values in Fig. 6 are in a small range [0, 0.11],
and hence the feature dispersion is small. Accordingly, the
FEAMvalue of this filter is discounted by feature dispersion,
as shown in in Fig. 3.

4.2 Qualitative analysis

The performance of the proposed method is evaluated within
four typical CNN models: VGG-16, ResNet-50, MobileNet
V1 and MobileNet V2. Two public datasets, CIFAR-10 and
CUB_ 200_2011, are used as benchmark. The CIFAR-10
dataset consists of 10 categories, and each category includes
6000 images. The image resolution of this dataset is 32×32.
Considering that the deceleration is not obvious for such
small resolution due to pruning, we convert the resolution of
CIFAR-10 to 128×128 before training. The Cub_200_2011

is a bird dataset for classification task, which contains 11788
images of 200 different bird species. All samples in this
dataset are resized to 320 × 320 before training. After each
round of pruning, we fine-tune thewhole network in 8 epochs
with learning rate varying from 10−3 to 10−5. During the last
pruning, the network is fine-tuned in 20 epochs with learning
rate varying from 10−3 to 10−8. All experiments are con-
ducted on a computer equipped with Nvidia GTX 1080Ti
GPU.

4.2.1 VGG-16 pruning

The detailed distribution of FLOPs and parameters in each
layer of VGG-16 is shown in Table 1. As we have seen, con-
volutional layer from the 2nd to 12th contains 90% FLOPs.
Andwe can see that our pruningmethod is alsomainly aimed
at layer 3–12. For the first two layers of convolutional layer,
there is no large-scale pruning.We think that the first two lay-
ers of filters contain rich feature information, so they have
stronger Feature Abstraction Capability than other filters in
the layer. The side proves that our method has a certain
degree of interpretability. The pruning rate we set is 80%,
that is, 80% of the filters in the model are pruned off. Finally,
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Fig. 6 For the filter
corresponding to the red
rectangle in Fig. 5, the output
feature maps of ten training
samples and corresponding
GAP values

Table 2 Comparison of
different model compression
methods for VGG-16 network
on CIFAR10

Method Top-1 Acc FLOPs (%) Params (%) Compression

Original 0.916 5.02B 24.17M 1.0×
APoZ-50% 0.912 1.27B (25.3%) 8.39M (34.7%) 2.7×
APoZ-80% 0.803 0.19B (3.8%) 3.34M (13.8%) 5.4×
Taylor-50% 0.922 1.42B (28.2%) 6.94M (28.71%) 3.8×
Taylor-80% 0.908 0.56B (11.2%) 1.03M (4.3%) 6.1×
Entropy_GAP 0.868 1.56B (31.1%) 4.22M (17.5%) 4.8×
FEAM-50% (product) 0.925 1.26B (25.1%) 11.09M (45.9%) 2.0×
FEAM-80% (product) 0.913 0.53B (10.6%) 5.03M (20.8%) 4.9×
FEAM-50% (sum) 0.918 1.46B (29.2%) 9.98M (41.3%) 2.8×
FEAM-80% (sum) 0.904 0.67B (13.4%) 4.21M (17.4%) 5.1×

we compare our method with the following baselines on the
VGG-16 model:

Taylor expansion [19]: The effect of the filter on the
network loss function is calculated based on the Taylor
expansion method. According to this criterion, if the filter
has little effect on the loss function, the filter can be safely
removed.

APoZ [18]: The criterion measures the importance of fil-
ters by calculating the average percentage of zeros(APoZ) in
the activated feature map.

Entropy [20]: The method calculates entropy of filters to
measure the information richness of the convolution kernel.

As shown in Tables 2 and 3, we used different algo-
rithms for pruning VGG-16 networks in CIFAR10 and
CUB_200_2011 datasets, among which the APOZ method
pruned the filter of each layer with a fixed prune rate. We can
see that when the pruning rate reaches 80%, the accuracy
of the model drops very seriously. In the Entropy method,
Luo et al. used GAP instead of the fully connected layer,

which greatly reduced the parameters of the model, but had
a greater impact on the prediction accuracy of the model
(which greatly increased the difficulty of convergence of the
model). The Taylor method uses a pruning strategy similar to
ours. It can be seen that the Taylor criterion has better perfor-
mance on model size compression, but at the same pruning
rate, our method has less precision loss and more excellent
acceleration performance.

In the design process of the algorithm, we tried a vari-
ety of different combinations, including product and weight
sum. According to the experimental results, the product of
the two is chosen as the combination method, which is more
robust and sensitive.As can be seen from the two tables, the
larger the size of the input image, the greater the clipping
acceleration. In the CUB_200_2011 dataset, the size of the
input image is 320×320.Ourmethod can achieve about 4.7×
reduction in FLOPs and parameters with only 0.006 decrease
in accuracy. When the pruning rate is 50%, the accuracy of
the pruned model is even higher than the original model, and
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Table 3 Comparison of different model compression methods for VGG-16 network on CUB_200_2011

Method Top-1 Acc Top-5 Acc FLOPs (%) Params (%) Compression

Original 0.764 0.939 31.64B 304.1M 1.0×
APoZ-50% 0.756 0.932 12.49B (39.5%) 104.3M (30.3%) 5.7×
APoZ-80% 0.556 0.833 1.40B (4.4%) 80.6M (26.5%) 7.2×
Taylor-50% 0.772 0.948 13.96B (44.1%) 91.8M (30.2%) 6.2×
Taylor-80% 0.744 0.921 7.47B (23.6%) 55.7M (18.4%) 11.3×
Entropy-50% 0.728 0.932 9.42B (29.8%) 64.6M (21.2%) 9.1×
FEAM-50% (product) 0.786 0.950 11.62B (36.7%) 122.6M (40.3%) 2.9×
FEAM-80% (product) 0.758 0.937 6.74B (21.3%) 66.6M (21.9%) 8.6×
FEAM-50% (sum) 0.763 0.941 12.38B (39.1%) 109.3M (35.9%) 3.1×
FEAM-80% (sum) 0.735 0.928 7.64B (24.2%) 64.1M (21.1%) 9.0×

Table 4 The pruned model for
ResNet-110 on CIFAR-10 with
different pruning rate

Model Top-1 Acc Speed-up Compression

#FLOPs FLOPs% #Para. Para. %

ResNet110 0.937 2.53× 108 – 1.72× 106 –

FEAM-20% (product) 0.933 1.46× 108 57.7 1.02× 106 59.3

FEAM-30% (product) 0.928 1.02× 108 40.3 0.72× 106 41.9

FEAM-20% (sum) 0.926 1.67× 108 66.0 0.84× 106 48.8

FEAM-30% (sum) 0.901 1.24× 108 49.1 0.68× 106 39.6

Table 5 The pruned model for
MobileNet V1 and V2 on
CUB_200_2011 with different
pruning rate

Method Top-1 Acc Top-5 Acc FLOPs (%) Params (%)

MobileNet V1 0.736 0.915 1.26B (100%) 3.40M (100%)

FEAM-30% 0.771 0.926 0.804B (63.8%) 2.51M (73.82%)

FEAM-50% 0.732 0.910 0.555B (44.1%) 1.21M (35.59%)

FEAM-60% 0.688 0.878 0.492B (39.04%) 0.76M (28.23%)

MobileNet V2 0.743 0.939 1.07B (100%) 5.73M (100%)

FEAM-30% 0.736 0.833 0.883B (82.5%) 5.20M (90.75%)

FEAM-50% 0.649 0.948 0.796B (74.4%) 4.52M (78.89%)

higher than other pruning methods. Through these compar-
isons, we can see that our FAC-based pruning method has
better overall performance.

4.2.2 ResNet-110 pruning

For the network structure of ResNet-110, it is divided into
three hierarchies by the residual block, and the size of its
corresponding feature maps are 32× 32, 16× 16, and 8× 8,
respectively.According to the process of pruning forResNets
in Sect. 3.4, the pruned model for ResNet-110 was obtained
on CIFAR-10. During the training process, the images are
randomly cropped to 32× 32.

The overall performance of our method on pruning
ResNet-110 is shown in Table 4, We prune this model with
2 different pruning rates (pruning 20%, 30% filters respec-
tively). The best pruned model achieves 2.48× reduction in

FLOPs and parameters with only 0.007 decrease in accuracy.
Unlike traditional CNN architectures, ResNet is more com-
pact. There is less redundancy than the VGG-16 model, so it
seems more difficult to delete a large number of filters. How-
ever, when small pruning rate is adopted, our method can
improve the performance of ResNet-110 to the maximum
extent.

4.2.3 MobileNet pruning

As shown in Table 5, our pruning strategy still works well
in MobileNet V1 and V2 lightweight networks. When the
pruning rate is 30% for MobileNet V1, the Top1 accuracy
of the network after pruning increases by 0.025, the FLOPs
decreases by 35.2%, and the number of parameters decreases
by 38.7%. When the pruning rate is 50%, the Top1 accuracy
of pruning network is decreased by 0.004, while the FLOPs

123



20 Page 10 of 11 H. Wu et al.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Conv1
Conv3
Conv5
Conv6
Conv10
Conv11
Conv12
Conv13

Pruning rate of whole network(%)

P
ru

ni
ng

 ra
te

 o
f e

ac
h 

la
ye

r(
%

)
VGG-16,CUB_200_2011,FEAM

Fig. 7 The pruning rate curve of each convolutional layer under differ-
ent overall network pruning rates

is decreased by 56.3%, and the parameters are decreased by
73.1%.

4.2.4 Comparison

Figure 7 shows the pruning rate curve of some convolu-
tion layer under different overall pruning rates. We can see
that under the same overall pruning rate, the pruning rate
increases roughly with the network deepening. This is in line
with common sense: the deeper layers are based on shal-
lower layers in the whole network. In such cases, pruning in
deeper layers has less impact on the network than pruning in
shallower layers. The same phenomenon is also observed in
Table 1.

Figure 8 compares the network accuracy of different prun-
ing methods. When the pruning rate is low, the performance
of the proposed method is roughly equivalent to Taylor, but
when the pruning rate is high, the proposedmethod is slightly
better than Taylor. At all pruning rates, the proposed method
performs better than APoZ and Entropy.

5 Conclusion

A new pruning method based on FEAM is introduced in
this work. FEAM is a novel index that measures the feature
extraction ability of filters in deep neural networks. FEAM
includes two components, kernel sparsity and feature dis-
persion, which evaluate the feature extraction ability from
theoretical analysis and practical operation, respectively, and
then competitively decide the final feature extraction ability
of filters. Filters with weak FEAM values are pruned from
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Fig. 8 The curve between pruning rate and network accuracy of differ-
ent pruning methods on CUB_200_2011

the network. Experiments show that the proposed pruning
method is effective for multiple networks. Future research
direction is considering the proposed pruning method under
specific application scenarios, e.g., segmentation.
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