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Abstract
Despite the significant improvement in the performance ofmonocular pose estimation approaches and their ability to generalize
to unseen environments, multi-view approaches are often lagging behind in terms of accuracy and are specific to certain
datasets. This is mainly due to the fact that (1) contrary to real-world single-view datasets, multi-view datasets are often
captured in controlled environments to collect precise 3D annotations, which do not cover all real-world challenges, and (2)
the model parameters are learned for specific camera setups. To alleviate these problems, we propose a two-stage approach to
detect and estimate 3D human poses, which separates single-view pose detection from multi-view 3D pose estimation. This
separation enables us to utilize each dataset for the right task, i.e. single-view datasets for constructing robust pose detection
models and multi-view datasets for constructing precise multi-view 3D regression models. In addition, our 3D regression
approach only requires 3D pose data and its projections to the views for building the model, hence removing the need for
collecting annotated data from the test setup. Our approach can therefore be easily generalized to a new environment by
simply projecting 3D poses into 2D during training according to the camera setup used at test time. As 2D poses are collected
at test time using a single-view pose detector, which might generate inaccurate detections, we model its characteristics and
incorporate this information during training. We demonstrate that incorporating the detector’s characteristics is important to
build a robust 3D regression model and that the resulting regression model generalizes well to new multi-view environments.
Our evaluation results show that our approach achieves competitive results on the Human3.6M dataset and significantly
improves results on a multi-view clinical dataset that is the first multi-view dataset generated from live surgery recordings.

Keywords Multi-view human pose estimation · 3D pose regression · Neural networks · Generalizability

1 Introduction

Single-view human detection and body pose estimation have
enjoyed a great deal of attention over the last decades in the
field of computer vision because of their importance for vari-
ous applications, ranging from activity recognition to human
computer interaction. More recently, the emergence of deep
learning has pushed the boundaries in many fields, including
computer vision. The combination of deep learning with the
availability of large datasets, such as MPII Pose [4] and MS
COCO [27], has spawned many promising approaches for
single-view human detection and pose estimation [10,35,50].
But the presence of clutter and occlusions degrades their per-
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formance. Capturing an environment from complementary
views permits to reduce the risk of occlusions, especially in
busy environments, as shown in Fig. 1. In addition, the avail-
ability of calibrated multi-view data greatly facilitates the
process of lifting 2D scenes into 3D, which is important for
many applications such as augmented reality.

Despite the inherent benefits of capturing an environ-
ment from multiple views, multi-view approaches have
not achieved the same level of maturity as compared to
single-view approaches, mostly due to two reasons: firstly,
multi-viewdatasets are generally recorded in controlled envi-
ronments in order to use motion capture systems to acquire
precise 3D ground truth location data. This removes the
need for the tedious and error-prone manual annotation of
the abundant number of frames coming from all views for
generating ground truth 3D poses. Even though there are
large multi-view datasets such as Human3.6.M [23] and
HumanEva [40], the simple backgrounds and tight clothes
required by motion capture systems make these datasets
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Fig. 1 A set of images captured by a multi-view camera system at the same time step. Even though some body parts are occluded in one view due
to self- or object-occlusion, they might appear in other complementary views

trivial for 2D pose estimation methods. Monocular pose
estimation approaches report low 2D body part localization
errors even without finetuning [11,31]. For these reasons,
single- and multi-view pose estimation models trained on
datasets captured in such controlled laboratory environments
do not generalize well to real-world data, which is often visu-
ally much more complex due to occlusions, clutter and the
presence of multiple persons in the scene. Secondly, current
multi-view approaches [13,37,41] learn model parameters
that are specific to each multi-view camera setup. In other
words, to apply these approaches on a new multi-view sce-
nario, it is required to collect new annotated data that includes
both multi-view images and their corresponding 3D ground
truth poses for the same camera setup. On the one hand, gen-
erating synthetic datasets for these approaches would require
not only the generation of 3D body poses, but also of photo-
realistic rendering of humans with different shapes, textures
and backgrounds to allow generalization to the real world,
which is not a trivial task. On the other hand, generating such
training data using either motion capture systems or man-
ual annotations, especially in the case of data-hungry deep
learningmethods, is not always feasible in uncontrolled envi-
ronments andvery tedious.We therefore propose an approach
that benefits from existing multi-view datasets to perform
multi-view 3D pose estimation in new multi-view setups.

Our approach formulates the problem of multi-view 3D
pose estimation in a two-step framework: (1) single-view
pose detections and (2) multi-view 3D pose regression. We
separate these two steps for two reasons. First, we can bet-
ter exploit available single-view and multi-view datasets for
the right task. Single-view datasets, such as MPII Pose [4]
andMS COCO [27], include diverse and challenging frames
from everyday activities or movies originating from ama-
teur to professional recordings. Therefore, models trained
on these datasets can better cope with real-world challenges
and generalize to new environments. But, these single-view
datasets are lacking 3D annotations, contrary to multi-view
datasets, which often come with accurate 3D body poses. As
these are, however, much simpler for the task of 2D pose esti-

mation [11,31], researchers have proposedmethods to jointly
use both single- and multi-view datasets in order to construct
more robust 3D pose estimation models from multiple views
[3,7]. Changes in camera setups, however, require the retrain-
ing of themodel on training data from the same camera setup.
This strictly limits the deployment of the models to environ-
ments where such training data exists. The second reason for
our two steps approach is that we can better generalize to
new multi-view environments by assuming that lifting 2D
body poses into 3D is independent of the images given the
2D pose detections. This assumption implies that we do not
need to collect 2D image data for training the 3D regression
function and that any set of plausible 3D body poses can be
used instead by computing body pose projections into 2D.

To learn a multi-view 3D regression function, we propose
a method that relies on a multi-stage neural network. The
input of this network is a set of corresponding multi-view
2D detections for each individual person. At test time, they
are collected using a state-of-the-art single-view detector.
We assume that the camera system is fully calibrated and
can therefore use epipolar geometry to establish the multi-
view correspondences per person. This process also allows
us to detect the number of persons per multi-view frame.1

This is in contrast to current multi-view RGB approaches,
which tackle either single-person scenarios [18,20] or multi-
person scenarios where the number of persons is known a
priori [6,28].

The proposed network consists of a series of blocks of
fully connected layers with intermediate supervision at each
block. The input to each block is the raw network input,
i.e. the concatenated 2D poses, and the output from previ-
ous block if it exists. The network can therefore build a high
dimensional function and refine the output of the previous
block to achieve a more reliable regression function. In order
to generalize to newmulti-view setups, we do not use images
during training but construct training data solely by project-

1 We define a multi-view frame as the set of all images captured from
all views at the same time step.
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ing Human3.6M’s 3D poses. We use Human3.6M because
it is the largest publicly available multi-view dataset and it
includesmen andwomen of different sizes. The projected 2D
poses are generated according to the camera parameters used
at test time. In practice, 2D poses are detected at test time
using a 2D pose detector that may be noisy and inaccurate. In
order to cope with these inaccuracies, we propose to perturb
during training the 2D locations of the body joints by random
noise that is generated based on the characteristics of the 2D
detector. We also propose to incorporate a detection confi-
dence for each body joint, computed based on the amount of
noise added during training. This provides a representation
for the detection confidence generated by the detector at test
time. Therefore, the approach can take into account not only
joint locations, but also detection precision to build a robust
regression function.

Weuse twodatasets to performquantitative andqualitative
evaluations and comparewith state-of-the-art results on these
datasets. We first report results on the Human3.6M dataset
[23] to characterize the properties and the performance of our
approach. This dataset includes recordings of several actions
performed by professional actors of different genders. This
dataset has been recorded by a fully calibrated four-view
camera system and amotion capture system to collect ground
truth 3D positions of the body joints. We also evaluate our
approach on a challengingmulti-viewdataset [26,43] to show
the generalization ability of our approach. This dataset is
generated from real surgery recordings obtained in an oper-
ating room (OR) using a three-view camera system and hence
is called Multi-view OR (MVOR) in the following.2 Our
approach improves 3Dbodypart localization onHuman3.6M
and significantly reduces the localization error on the multi-
view OR dataset without using any training data from this
dataset.

The main contributions of the paper are twofold. First, we
present a simple and yet accurate multi-view 3D pose esti-
mation approach that can generalize well to new multi-view
environments. In contrast to current state-of-the-art meth-
ods, the approach exploits an existing multi-view dataset to
build models for new multi-view environments without any
need for new annotation. Second, this is the first multi-view
RGB approach that has been quantitatively evaluated on data
captured in an unconstrained environment. Related work is
discussed in Sect. 2. The proposed approach is described in
Sect. 3. Section 4 presents experimental results and discus-
sion. Finally, we conclude in Sect. 5. The list of abbreviations
used in paper is presented in Table 1.

2 The MVOR dataset is publicly available at http://camma.u-strasbg.
fr/datasets.

Table 1 List of abbreviations

FC: Fully Connected Layer

GT: Ground Truth

MPII: MPII Human Pose Dataset [4]

MS COCO: Microsoft Common Objects in Context Dataset [27]

MV: Multi-view

MVOR: Multi-view Operating Room Dataset [43]

OR: Operating Room

RGB: Red Green Blue

2 Related work

Multi-view segmentation-based 3D pose estimation. Hof-
mann and Gavrila [20] use foreground segmentation to
estimate body silhouettes per view. Then, 3D pose candidates
are obtained by matching a library of exemplars. Texture
information and shape similarity across all views combined
with temporal information are used to compute the final 3D
poses. Similarly, Gall et al. [18] propose a two-layer frame-
work that iteratively improves foreground segmentation and
retrieved body poses by incorporating both multi-view and
temporal information. Other approaches have deployed opti-
cal flow estimation [12], 2D as well as 3D motion cues [45]
and low-rankmulti-view feature fusion combinedwith sparse
spectral embedding [51] to estimate 3D poses. In contrast to
our work, these approaches are only evaluated on single-
person datasets. More importantly, it is not always possible
to compute foreground in cluttered environments, such as
in operating rooms. Therefore, these approaches can only
be evaluated on data recorded in environments with simple
backgrounds.

Multi-view part-based 3D pose estimation Several multi-
view3Dpose estimation approaches [2,3,5,7,9,26] have been
proposed that rely on a part-based framework [16]. This part-
based framework provides an elegant formalism to optimize
over different potential functions for incorporating image
features, multi-view cues, temporal information and body
physical constraints. Burenius et al. [9] propose an approach
that extends pictorial structures [15,17] to multi-view and to
perform exact 3D inference by using simple binary pairwise
potential functions. Instead, Amin et al. [2,3] use 2D infer-
encewithmore complex pairwise potentials, multi-view cues
and triangulation to estimate 3D poses. Huang et al. [21]
have proposed to fuse both multi-view images and body-
worn inertia measurement unit data to estimate 3D body
poses using deep neural networks. In [42], multi-view color
and depth videos are used to estimate 3D poses. Belagian-
nis et al. [5] have also deployed different pairwise potentials
for incorporating both body physical constraints and multi-
view features. This approach allows to perform approximate
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3D inference by selecting a limited number of hypotheses
per individual. This approach has further been extended to
incorporate temporal information [6] and to use a deep neu-
ral network-based body part detector [7]. Recently, Pavlakos
et al. [37] have used deep neural network to predict body part
score maps across all views and then estimated body poses
by using a 3D pictorial structures approach.

In contrast to our work, all these approaches have only
been evaluated on datasets recorded in constrained labora-
tory environments and also require the number of person to be
known a priori.MVDeep3DPS presented in [26] is an excep-
tion, but this approach relies on multi-view RGB-D input to
estimate 3D body poses. Additionally, all these approaches
need in general to learn model parameters on data from the
same camera setup.Moreover, optimizing these energy func-
tions is demanding, especially in 3D, which makes these
approaches not suitable for real-time applications. In our
work, we do not require images with pose annotations from
the camera setup used at test time and learn model param-
eters by using existing datasets. Furthermore, our approach
performs both human detection and pose estimation. As our
regression function uses a multi-layer neural network, it runs
in super real-time on a single consumer GPU card.

Single-view 3D pose estimation. Recently, many deep lear-
ning-based approaches have been proposed to directly
regress body poses in 3D from a monocular image or an
image sequence. Pavlakos et al. [36] use a stack of a fully con-
volutional network [34] to iteratively compute 3D heatmaps
per body parts. Tekin et al. [47] propose to learn an auto-
encoder that maps 3D body joints into a high-dimension
latent space for discovering joint dependencies and then to
learn a convolutional network that maps an image into this
high-dimensional pose space. In [46], motion compensation
is used to align several consecutive frames and construct
a rectified spatiotemporal volume that is then fed into a
3D regression function. Most recently, Luvizon et al. [29]
tackled both human pose estimation and activity recogni-
tion jointly over video clips. Other approaches have built
deep pose grammar representations [14], sparse representa-
tion [25], skeletonmap [49] andmultitask objectives [30,39]
to enforce more constraints and obtain a more accurate 3D
regression function. These approaches are trained on images
with accurate 3D ground truth poses. The main issue is that
to generate such accurate 3D annotations, motion capture
systems are used in controlled laboratory environments with
simple backgrounds. Models trained on such image data do
not generalize well to real-world scenes.

Another line of work relies on two-stage methods, where
2D body parts are first predicted using 2D pose detectors
[10,34,50] and then 3D body part locations are computed
by relying on these predictions [11,31,32]. In comparison
with direct 3D regression approaches, these approaches ben-

efit from the diverse, challenging and real-world datasets, e.g.
MS COCO [27] andMPII Pose [4], to train reliable 2D pose
detector models that generalize well. To compute 3D body
locations, exemplar-based approaches are used by matching
lower and upper body parts separately [24] and by match-
ing the whole skeleton [11]. More recently, [32] proposed
to regress from 2D Euclidean distance matrices (EDM) to
3D EDM instead of using traditional 2D-to-3D regression in
the Cartesian coordinate system [23,38]. The regression is
performed using a fully convolutional network and 3D poses
are recovered via a multidimensional scaling algorithm [8].
Martinez et al. [31] showed that a simple fully connected net-
work to regress from 2D to 3D outperforms [32] and achieves
state-of-the-art results on Human3.6M.We also adopt a two-
stage framework in our multi-view approach and use a fully
connected network as a 2D-to-3D regression function. The
single-view model in [31] was, however, trained on the out-
put of the 2D detector used during test time. In contrast,
our approach relies solely on ground truth during training
and instead generates training samples that comply with the
behavior of the 2D detector used at test time. This is an inter-
esting property of our approach, which enables us to train our
network on Human3.6M and test on a completely different
multi-view dataset.

3 Methodology

In this section, we present our proposed approach for
multi-view 3D pose estimation. We assume that we have
a calibrated multi-view system recording an environment
from a set of complementary views. Our objective is to
detect and predict human body poses in 3D given images
captured from all views. In a probabilistic formulation, we
want to compute p(Y ,X, I), the joint distribution over the
following three random variables: (1) the 3D body poses
Y = (y1, y2 . . . , yP ), where P is the number of body joints
and yi ∈ R3 is a body joint location in 3D; (2) the 2D body
poses X = (X1, X2, . . . , XV ), where V is the number of
viewpoints and X j is the tuple of pixel coordinates indicat-
ing the body joints of a 2D pose in view j ; and (3) all 2D
images I = (I1, I2, . . . , IV ), where I j is the image taken
from the j th viewpoint. Such a formulation makes no limit-
ing assumption and indicates that a 3D body pose is jointly
dependent on its appearance in all individual views. How-
ever, learning such a model requires collecting training data
from the same multi-view setup that we want to apply the
model to.

Without loss of generality, we can rewrite the joint prob-
ability distribution as:

p(Y ,X, I) = p(Y |X, I) · p(X|I).p(I). (1)
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To build a multi-view pose estimation approach that can
generalize to new environments, we make two conditionally
independence assumptions. Firstly, the 3D poseY is assumed
conditionally independent of images I given 2D poses X.
Obviously, this is not always correct, as one can find dif-
ferent 3D skeletons that have similar 2D projections due to
the 3D-2D perspective effect. The likelihood of such cases,
however, degrades dramatically in a multi-view setup, where
a working volume has been captured from complementary
views. Secondly, we assume that given an image observa-
tion for a view j , 2D poses in this view are conditionally
independent of detections in the other views and other image
observations. One can see that this assumption does not hold
in case of occlusions. But, we believe that this assumption is
reasonable for these three reasons: (1) there exist challenging
single-view datasets, e.g. MS COCO and MPII Pose, which
can be used to train robust single-view pose detection mod-
els; (2) recent deep neural network-based approaches have
achieved very promising results on unseen data and reliably
discriminate occluded joints from visible ones [10,34,35];
and (3) it yields an interesting modeling that allows us to
train a 2D pose detector independently. Considering these
two assumptions, we can rewrite the joint probability as:

p(Y ,X, I) = p(Y |X) ·
V∏

j=1

(
p(X j |I j ) · p(I j )

)
. (2)

This equation indicates that a 2D pose detector is applied
in each view independently and that the 3D pose regression
function is solely dependent upon 2D pose detections. We
model the first term using a multi-view 3D regression func-
tion, described in Sect. 3.4. The input for this function is
provided by concatenating 2D detections for each individual
person across all views, which is presented in Sect. 3.2. The
second term is the single-view pose detector explained next.

3.1 Single-view 2D pose detector

The relaxation assumption mentioned above allows us to use
arbitrary complex models to detect and localize 2D body
poses given single-view images. We therefore use the deep
convolutional network of [10] as single-view pose detector.
This approach is currently the state-of-the-art approach for
multi-person 2D pose estimation. In addition to its reliable
multi-person pose estimation performance, the approach runs
in nearly real time. Given an image, the model generates a set
of 2Dposes,where each body pose is specified by a collection
of 18 body parts. For each body part, the model provides its
pixel coordinate and a detection confidence. The confidence
values are in range [0, 1], where zero indicates undetected
body parts.

Fig. 2 Person matching using epipolar geometry. A set of points and
their corresponding epipolar lines are shown for a pair of images cap-
tured from two different viewpoints at the same time step. (Best seen
in color)

3.2 Concatenating detections across all views

Given the detected poses per view, we need to find corre-
spondences across the views. As we assume that the camera
system is fully calibrated (i.e. both camera intrinsic and
extrinsic parameters are available), we use epipolar geome-
try to find correspondences [19]. Let us assume that for each
pair of cameras (C,C ′) the camera parameters are givenwith
respect to the first one:

C = K [I |0] and C ′ = K ′[R|t], (3)

where K and K ′ are camera intrinsic parameters and [A|b]
indicates extrinsic parameters. We can compute the funda-
mental matrix F by:

F = K
′−T RK T [K RT t]×, (4)

where [b]× is the skew matrix operator. The fundamental
matrix encapsulates all cameras parameters and allows us to
compute the corresponding epipolar line for a point in the
other view, as illustrated in Fig. 2.

Here, we use the fundamental matrix to compute average
distances between detected skeletons for all pairs of views.
This distance is computed for each possible pair of detections
from two distinct views as the average distance between a
subset of body joints detected in both skeletons. We collect
2D skeletons for each person across two views by computing
the average distances between detected skeletons in one view
and the corresponding epipolar lines of skeletons from the
other view and by then finding disjoint pairs of skeletonswith
the lowest average distance. We exclude pairs for which the
average distance is bigger than 20 pixels.3 We then use the
matched skeletons to establish multi-view correspondences
per individual person. If the distances between all skeletons
in two pairs are less than 20 pixels, we join the pairs. In
cases where a skeleton is shared among two pairs and dis-
tance between other skeletons in the pairs are larger than the

3 The image size is 480 × 640 pixels.
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threshold, we only accept the pair with the smaller distance
and ignore the other pair. One should note that despite the
availability of the correspondences, we cannot use triangu-
lation because inaccurate detections lead to high error in 3D
and, more importantly, joints might be detected in less than
two views, especially in cluttered environments. We there-
fore use a regression function to compute the 3D positions
of the body joints.

To prepare the input for the regression function, we con-
catenate skeletons across all views. If a person is not detected
in a view, we fill the corresponding entry with zeros. Each
body part is represented by three channels: two channels
indicating pixel location and the third channel indicating the
detection confidence.

3.3 Training data generation

As mentioned in the introduction, we generate training sam-
ples by projecting 3D skeletons into 2D. The model can
therefore be trained on data generated from existing datasets
or any set of valid 3D poses. The projected 2D skeletons are
computed based on the camera setup used at test time. Since
the single-view 2D pose detector used at test time can pro-
vide noisy detections, themodel needs to be trainedon similar
noisy detection data to be able to generalize. We therefore
evaluate our 2D pose detector on the Human3.6M dataset,
which contains both images and ground truth 2D poses, to
characterize its performance. We use these evaluation results
to design a normally distributed noise model for each body
joint. This noise is used to perturb training data. We then
compute the confidence for the joint as:

con f = max
(
1 − w

λ.σ
, 0

)
, (5)

where w is the amount of additive noise, which is sampled
from a normal distributionwith zeromean and standard devi-
ation σ , and λ is a coefficient. We use this coefficient to
set the confidence of a joint to zero, i.e. undetected, based
on the relative amount of added noise with respect to the
standard deviation. We use the evaluation results of [10] on
Human3.6M, presented in Sect. 4.3, to set these parame-
ters. As shown by the experiments, perturbing trained data
and incorporating the confidence value are important for the
method to generalize well to unseen data.

3.4 Multi-view 3D regression function

Asmentioned earlier, the regression function relies solely on
the detections provided by the single-view 2D pose detector.
In contrast to [14,30,47], we do not need to model a complex
function to directlymap image pixel intensities into body part
locations in 3D. Similar to [31], we model the 3D regression

Fig. 3 Regression network architecture. The network consists of sev-
eral stages. Each stage includes four fully connected (FC) layers and
intermediate supervision is provided by computing an L2 loss at the last
FC layer in each stage. The network takes as input a vector of 2D poses
concatenated across all views for each individual person, as presented
in Sect. 3.2

function using a simple multi-stage multilayer neural net-
work.

The illustration of the network architecture is shown in
Fig. 3. The network consists of several stages, where each
stage is made of four fully connected (FC) layers. The first
stage takes the multi-view 2D detections as input, described
in Sect. 3.2. Every stage in this network is trained to regress
for the desired output. This provides intermediate supervi-
sion at each stage and automatically alleviates the problem
of vanishing gradient that happens when there are many
intermediate layers between the network input and output
layers [10]. We can therefore build deep neural networks by
stacking several stages. The stage-wise supervision is pro-
vided by computing the L2 loss between the output of the
last layer in each stage and the desired output (y∗):

Ls = 1

N

N∑

n=1

||ysn − y∗
n ||22, (6)

where Ls is the average loss computed over all N training
samples used in this iteration and ysn is the output of the last
layer at stage s for sample n. The network is optimized by
computing the overall network loss as a sum of the losses
from all S stages that is defined as:

L =
S∑

s=1

Ls . (7)

Since we need to retrain the model for new multi-view
setups, we use batch normalization in order to reduce sen-
sitivity to network initialization and learning rate [22]. We
have also used dropout to avoid overfitting [44] and rectified
linear units to achieve non-linearity [33].

4 Experiments

In this section, we present the evaluation on two multi-view
datasets and compare with state-of-the-art results.
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4.1 Implementation details

We implement our approach using TensorFlow [1]. In each
stage of the network, the size of the first and last layers are set
based on the input and output dimensions and the size of the
intermediate layers are set to 1024. Our network is trained
using the Adam optimizer. We set the starting learning rate
to 0.001 and use exponential decay. The batch size is set to
512 and we train our network for 200 epochs. We observe
that the performance of the network reaches a plateau when
more than three stages are used.We therefore use three-stage
networks throughout our experiments. A forward pass takes
less than 1ms on a 1080Ti GPU. We can therefore say that
the computation time of our multi-view regression model is
almost negligible compared to the use of the 2D detector.

4.2 Datasets

Human3.6M. Human3.6M is currently the largest multi-
view human pose estimation dataset. The dataset includes
around 3.6 million images collected from 15 actions per-
formed by seven professional actors in a laboratory environ-
ment [23]. The actions have been recorded by a four-view
RGB camera system and camera parameters, including both
intrinsic and extrinsic parameters, are available. Full-body
3D ground truth annotations are generated using a motion
capture system. Following the standard evaluation proto-
col used in the literature, five subjects (S1, S5, S6, S7, S8)
are used for training and two subjects (S9, S11) for test-
ing [11,31,36]. Mean per joint position error (MPJPE) in
millimeter is used as evaluation metric and test results are
collected per action.

Multi-view OR. The multi-view OR (MVOR) dataset is,
to the best of our knowledge, the first multi-view pose
estimation dataset that is generated from recordings in an
uncontrolled environment. All activities in an operating room
have been recorded for four days using a three-view camera
system [26]. We have selected every 1500 multi-view frames
if there is at least one persons in one of the views. The dataset
has been manually annotated to provide both 2D and 3D
upper-body poses. The dataset includes around 700 multi-
view frames and 1100 persons. The presence of multiple
persons and clutter make this dataset much more challeng-
ing than Human3.6M as can be seen in Fig. 1. To report 2D
body part localization on this dataset, we use the probability
of correct keypoints (PCK) metric that is commonly used for
evaluating multi-person pose estimation [10,26]. MPJPE is
used to report 3D body part localization.

4.3 2D detection results

In this section, we evaluate the 2D detectionmodel of [10] on
both datasets to assess its performance on such unseen data.

Table 2 2D MPJPE results of the 2D detector [10] on the train set
of Human3.6M. For each body part, the average MPJPE in pixels is
computed across all actions in Human3.6M per camera

Camera ID Hip Knee Foot Shoulder Elbow Wrist Avg

54138969 16 15 14 7 11 16 13

55011271 13 8 10 6 8 10 9

58860488 15 13 12 7 11 18 13

60457274 16 9 10 7 10 11 11

Avg 15 11 11 7 10 14 11

Table 3 PCK results on MVOR. Body part detection results are
reported for both Deep3DPS [26] and Cao et al. [10] using the PCK
metric. Note that Deep3DPS has been finetuned on another dataset cap-
tured in the same OR and relies on both color and depth images

Head Shoulder Elbow Wrist Hip Avg

Deep3DPS [26] 93.4 77.0 71.5 73.7 69.1 76.9

Cao et al. [10] 92.8 90.1 75.6 75.9 58.9 78.6

In addition, we use the results on Human3.6M to model the
characteristics of the 2D detector, which are required by our
data generation model presented in Sect. 3.3.

In Table 2, we present the results of the single-view 2D
pose detector [10] on the Human3.6M train set. We should
note that the detector has not seen any data from this dataset
during training. We use MPJPE in pixel to compute body
part localization errors. The results for each body parts are
reported per camera. The results for head and neck localiza-
tions are not presented as the annotation for these body parts
are different between Human3.6M and MS COCO [27] that
is used to train the detector. Note that the detector is applied
on the whole image, i.e. no bounding box is provided, in
contrast to previous work that relies either on ground truth
[23,31,32] or on person detectors [46] to obtain bounding
boxes. In total, 3% of the joints are not detected and the
detector achieves the averageMPJPE of 11 pixels. It is worth
mentioning that the detector performs similarly on the test
set. Table 3 presents the results of the 2D detector on the
MVOR dataset. The model attains an average PCK of 78.9%
on this dataset. We have also reported the performance of
Deep3DPS [26], which is the state-of-the-art model on this
dataset. In contrast to [10], which is trained on the RGB
images of MS COCO, the Deep3DPS model uses both color
and depth images and has been trained onMPI Pose and then
finetuned on a single-view OR dataset. The 2D pose detector
of [10] outperforms Deep3DPS. These results show that the
detector achieves fairly promising results on both datasets
even without finetuning. Comparing the performance of the
2D detector on these two datasets also indicates that the
MVOR dataset is much more complex, as the number of
undetected joints is much higher (21% vs. 3%).
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For generating the training data, the evaluation results on
the train set of Human3.6M, which are reported in Table
2, are used to set the parameters of the noise model. The
train set from Human3.6M is chosen to avoid any overlap
between train and test sets. The coefficient λ in (5) is set to
two.As a result, 5%of the jointswill be labeled as undetected,
which is on par with the percentage of undetected joints in
Human3.6M.

4.4 3D localization results

Human3.6M. As Human3.6M is a fairly new dataset and
state-of-the-art results are mainly reported using single-view
models, we compare our approach with recent state-of-the-
art single- and multi-view models for 3D pose estimation on
Human3.6M. For the sake of comparison, we have therefore
trained a variant of our proposed regression function that
relies solely on single-view input. Table 4 reports evaluation
results of our approach with different configurations. Models
that are relying on single-view input are denoted by SV and
multi-view ones by MV. These models are trained either on
ground truth (GT) 2D poses, NoisyGT 2Dposes as described
in Sect. 3.3 or on 2Ddetections provided by either [34] or [10]
for comparison. Even though Human3.6M is a single-person
dataset, note that in [36,46] the input images are cropped
using bounding boxes around the persons and that the 2D
pose detector models of [34] and [50] used in [11] and [31]
are applied on bounding boxes around the persons obtained
from ground truth.

Our single-view 3D pose regression model trained on 2D
detection provided by [34] achieves the average localiza-
tion error of 67.2 mm. We should note that our results for
this model improve slightly over the results reported by [31]
on the same experimental setup (67.5), where the same 2D
pose detector trained on MPII Pose is used without any fine-
tuning on Human3.6M. [31] showed that the results can be
improved by finetuning the model on Human3.6M (62.9 vs.
67.5), which is in line with the results reported in [11]. How-
ever, in order to easily generalize to new environments, we do
not finetune 2D pose detectors as this would require anno-
tated data. Except the model <SV, [34]>, which uses the
same 2Dpose detector during both training and testing for the
sake of fair comparison with [31], all our models have used
2D detections provided by [10] during testing.4 We should
note that even though our single-view 3D regression model
trained on the 2D detections provided by [34] performs better
than other variants of our single-view model, we decide to
use the model of [10] instead, as it is not restricted to bound-
ing boxes and allows us to detect and estimate 2D body poses
in multi-person scenarios, e.g. the MVOR dataset.

4 Please note that at test time 2D poses are detected using [10] even in
case of models trained on GT poses, which is different from [31]. Ta
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The evaluation results show that our single-view model
trained on ground truth 2D poses and the model of [11] per-
formsimilarly.This indicates that our regression function that
is trained on perfect GT data will eventually work similarly
to the lookup table used in [11]. One can therefore conclude
that if perfect 2D detections are obtained, a 2D-to-3D regres-
sion function or a lookup table would work similarly. But,
the 2D detections are not perfect in practice. Therefore, by
incorporating detection noise during training as described in
Sect. 3.3, we have constructed a model <SV, Noisy GT>

that could cope better with noisy detection (81.8 vs. 119.6).
We observe that if we train the model on 2D detections from
the same 2D detector used during testing, i.e. [10], average
MPJPE is improved by only four millimeters. These results
indicate that our data generation model presented in Sect. 3.3
has properly incorporated the detector’s characteristics and
our approach generalizes well to test data.

We have also presented the evaluation results of our multi-
view regression function in Table 4. Training the model
<MV, [10]> on 2D pose detections by the same detector
model as the one used at test time achieves the average
MPJPE of 49 millimeters, which outperforms [37]. This is
the lower limit for MPJPE on Human3.6M, which can be
obtained by our MV regression model using this single-view
pose detector. During our experiments, we observe that even
though ourmulti-view regressionmodels have generally con-
verged to lower training losses compared to single-viewones,
both single-view and multi-view models trained on ground
truth poses achieve similar performance (119.6 vs. 118.5).
We believe that as the multi-view model is only trained on
perfect ground truth 2D poses, it always expects the exact
projections of a 3D pose in all views. But, since the 2D pose
detector provides noisy detections, this is not always possible
at test time. The last row shows the results of our multi-view
regression model trained using 2D poses generated from 3D
ground truth by incorporating the 2D detector’s characteris-
tics.We should note that even without finetuning the detector
on Human3.6M this model performs similarly to [37], which
has been trained on Human3.6M. This model also reduces
the error by more than 50% compared to the same model
trained on ground truth data only. Furthermore, the model
has also improved the localization results by ∼ 30% com-
pared to the single-view model <SV, Noisy GT> indicating
that this model has properly incorporated 2D body part loca-
tions across all views to regress for their 3D positions. These
results also confirm our hypothesis that incorporating the
characteristics of the detector during training enables devel-
oping models that are robust to the inaccuracies and failures
of the detector at test time.

Multi-viewOR In order to assess the ability of our approach to
generalize to new multi-view environments, we evaluate the
performance of our approach on the multi-view OR dataset.

We use the 3D poses from Human3.6M, the camera cali-
bration parameters of MVOR and the data generation model
described in Sect. 3.2 to train a multi-view 3D regression
model. The evaluation results of this model on MVOR are
presented inTable 5.Weuse 3DMPJPE in centimeter as eval-
uation metric. Following the convention in MVDeep3DPS
[26], MPJPE is computed for the same set of body parts
and is reported per number of supporting views. Our model
has achieved the average MJPJPE of 17 cm on this dataset.
The results show a significant improvement in the localiza-
tion of the body parts as the number of supporting view
increases. The average MPJPE is improved by 12 cm for
persons who are detected in three views compared to those
who are only detected in one view. This clearly indicates
the benefit of observing an environment from multiple com-
plementary views and the ability of our regression model to
leverage such data for predicting 3D body poses even when
some body parts are invisible.

Table 5 also compares the performance of our model
with the MVDeep3DPS model [26]. We should note that
MVDeep3DPS requires both color and depth images in con-
trast to our approach that relies solely on color images. Our
approach, which only uses Human3.6M data, improves the
results over MVDeep3DPS, even though MVDeep3DPS is
trained on an annotated dataset recorded in the same OR
as the one used to capture MVOR. This evaluation results
demonstrate that our approach can exploit existing datasets
to easily generalize to new multi-view setups without any
need for new annotations.

4.5 Qualitative results

In Figs. 4 and 5, we show qualitative results on both
Human3.6M and MVOR.5 Each row shows a multi-view
frame. The predicted 3D poses are shown in the last col-
umn and the overlaid 2D poses are obtained by projecting
the 3D poses into the views. Figure 4 demonstrates the high-
quality of the predicted 3D body poses. For example, the
frame presented in the last row shows that our approach can
successfully incorporate evidence across all views to localize
the occluded body parts.

We also show some frames from the multi-view OR
dataset in Fig. 5. As can be seen in this figure, this dataset
is much more complex due to the similar appearance of the
objects aswell as the people and the presence ofmany objects
and multiple persons in the scenes. Our approach predicts
fairly accurate 3D body poses and always correctly detects
the left and right side labels even though it has not seen any

5 Please note that for generating the qualitative images, the predicted
3D poses are transferred to the room reference frame using an offset
computed as the relative difference between the neck location in the
ground truth and the neck location in the predicted skeleton.
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Table 5 MPJPE in centimeter
on MVOR. Quantitative results
of our approach are compared
with MVDeep3DPS [26]. We
follow the same convention as in
MVDeep3DPS and report the
results per number of supporting
viewpoints for the same set of
body parts

Part name One view Two views Three views

MVDeep3DPS Ours MVDeep3DPS Ours MVDeep3DPS Ours

Shoulder 19 13 15 8 10 5

Hip 27 20 23 15 17 11

Elbow 27 25 23 19 16 12

Wrist 32 34 25 28 18 16

Average 26 23 22 18 15 11

Fig. 4 Qualitative results on theHuman3.6Mdataset. The last column shows the 3D poses and the other columns show the correspondingmulti-view
frames where the projected 2D poses are superimposed. The body parts from the right side of the body are drawn in red. (Best seen in color)
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Fig. 5 Qualitative results on the multi-view OR dataset. The first three
columns in each row showamulti-view frame and the last column shows
the corresponding 3D poses for that frame. The overlaid 2D skeletons

are computed by projecting 3D poses to the views. The body parts on
the right side of the body are drawn in red. The blue arrow in the last row
indicates a physically implausible body pose. (Best viewed in color)

data from this dataset or any other data collected in such an
OR environment at the training stage.6

The complexity of this dataset also allows us to iden-
tify some of the limitations of the proposed approach. For
example, we observe that the elbow and the wrist localiza-
tion are less accurate compared to other body parts, which is
in line with results presented in Tables 2 and 3. We envision
that enforcing appearance consistencies among the projec-

6 More qualitative results generated by our model on both datasets are
available at https://youtu.be/Cx_kTRzqqzA.

tions of a body part across all views can be used to update
and improve the 2D body joint detections. The improved 2D
detections could then be fed into our multi-view regression
model to obtain a more accurate localizations of the body
parts in 3D. In the last row of Fig. 5, we have highlighted
a 3D body pose, where the right arm configuration is infea-
sible because of body physical constraints. We believe that
since our training data generation model described in Sect.
3.2 perturbs 3D poses randomly and does not take the body
constraints into account, it may have generated such a train-
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Table 6 Evaluation results on Human3.6M under noise. Ground truth
data is used to both train and test the performance of a variant of our
model that relies on single-view input. Similar to EDM [32] and Simp-
Base [31], we add noise to the test data and gradually increase the
amount of noise, where N (0, σ ) indicates a normal distribution with
mean zero and standard deviation σ in pixel

EDM SimpBase Ours

GT 62.2 37.1 47.2

GT+N (0, 5) 67.1 46.7 48.4

GT+N (0, 10) 79.1 52.8 50.8

GT+N (0, 15) 96.1 60.0 56.4

GT+N (0, 20) 115.6 70.2 65.7

Fig. 6 Data augmentation. The results of our multi-view model on
MVOR are reported as a function of the number of random rotations of
3D body poses

ing sample. Therefore, it would be interesting to combine
our data generation model with a model like the one used
in [48] to enforce and verify the physical plausibility of the
generated 3D poses.

4.6 Ablation study

We performed several experiments on Human3.6M to study
the impact of each of the components of our approach. We
first observe that by removing the stage-wise supervision,
the performance always drops. For example, averageMPJPE
changes from 57.9 to 77.2 for our <MV, Noisy GT> model.
Removing batch normalization leads to a substantial increase
in the error (from 57.9 to 175). We also observe that the use
of dropout during the training of single-view models and
multi-view models on perfect ground truth data is impor-
tant to obtain more robust models, as it reduces the errors
by 20 − 50 mm. However, deactivating dropout for our
multi-view models trained on [10]’s detections or Noisy GT
decreases localization errors by 2 and 9mm, respectively.We
believe that this is due to the fact that 2D detection inputs are
constructed from single-view poses that have been indepen-

dently affected by noise in each view by either the detector
inaccuracy or by our data generation model. This indepen-
dent noise can therefore work as a regularizer to enforce
neurons to detect the most relevant information across all
views, thereby removing the need for dropout.

Following [32] and [31], we perform a series of exper-
iments to evaluate the performance of our approach under
different levels of noise at test time. For a fair comparison,
we evaluate our single-view model trained on Noisy GT and
add different levels of Gaussian noise to ground truth 2D
poses at test time. The evaluation results are presented in
Table 6 and are comparedwithEDM[32] andSimpBase [31].
Even though the average localization error of SimpBase is
lower than our model’s error by one centimeter when tested
on perfect ground truth 2D poses, our model achieves lower
localization errors as the noise increases. This indicates that
incorporating the detector’s characteristics during training
allows our model to better cope with the noise at test time.

In a multi-view setup, a 3D body pose can have com-
pletely different projections to the views depending on the
orientation of the person with respect to the reference coor-
dinate system.We therefore need to construct our multi-view
regression model in a way that is robust to these changes in
the orientation of the person, as ourmodel only relies on these
2Dprojections to compute 3Dbodyposes. For this reason,we
propose to augment the training data by rotating each 3Dpose
in Human3.6Mw.r.t. the reference frame. Figure 6 shows the
effect of this data augmentation. We report the results of our
multi-view model <MV, Noisy GT> on the MVOR dataset
as a function of the number of rotations applied to each 3D
poses in Human3.6M. The results show that applying up to
three random rotations decrease the error but applying more
random rotation does not lead to any improvement. Apart
from the evaluation results reported in Fig. 6, for all the other
evaluation on MVOR we always use our multi-view model
trained on the train set of Human3.6M, which is augmented
by applying three random rotations to each 3D pose.

5 Conclusions

We have presented an easily generalizable approach for
estimating 3D body poses using multi-view data. We have
proposed a two-step framework to tackle this problem,
which separates single-view pose detection from multi-
view 3D pose regression. The proposed approach permits
to effectively exploit existing datasets to generalize to new
multi-view environments. We have used a multi-stage neu-
ral network as regression function to estimate 3D poses.
Our model has been trained on data generated from a set
of valid 3D poses by projecting the 3D poses using the cam-
era parameters used at the test time and by incorporating the
characteristics of the single-view pose detector. Our evalua-
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tion results have indicated the effectiveness and importance
of incorporating the detector’s characteristics during train-
ing, as it significantly reduced the localization error and
achieved results on par with models trained on the output of
the detector.We have also evaluated the generalization of our
approach on the multi-person MVOR dataset by using only
the camera configuration parameters from this dataset during
training, but no image data. Our approach yielded fairly accu-
rate results and outperforms the state-of-the-art model on this
dataset. The results also showed that the localization error
dramatically decreases as the number of supporting views
increases. This highlights the benefit of our approach in lever-
aging multi-view data to obtain a reliable model for crowded
and cluttered environments. To the best of our knowledge,
this is also the first multi-view RGB approach that has been
quantitatively evaluated on a real-world dataset for the task
of 3D body part localization.

Future work will focus on improving the training data
generation approach by taking human body kinematic con-
straints into account and on extending the 3D regressormodel
to enforce appearance similarity among different views.
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