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Abstract
A fast and precise method for ellipse detection is proposed in this paper. The method aims at clearly removing the lines and
curves which are not ellipse edges to improve the ellipse fitting. In arc extraction, the arcs are divided into four categories
according to the gradient, and the size constraint is exploited to remove the interference lines. Then, the arc relative position
constraints and the tangent lines constraint are employed to exactly group the arcs that belong to the same ellipse into a set.
Finally, a post-processing approach is developed to remove the invalid ellipses. Due to the effective removal of the interference
edges and the designed geometric multi-constraint, the computational costs of arc grouping and parameter estimation are
dramatically reduced, and the fitting results are finely agreeable to the actual ellipse contours. The performance is evaluated
with 3600 synthetic images and 1517 real images, and the experimental results demonstrate that the proposed method runs
much faster than the current speed leading methods with the comparable or higher F-measure.

Keywords Ellipse detection · Tangent lines constraint · Real time

1 Introduction

Circular structure is one of the fundamental structures in
industrial parts and tools. Since the circular structure often
appears as an ellipse in the image, ellipse detection has
become an important task in the field of machine vision
applications. For instance, ellipse detection has been widely
used in cameral calibration [1, 2], relative pose and posi-
tion measurement [3, 4], 3D reconstruction [5] and object
segmentation [6]. Therefore, it has become more and more
important to detect ellipses precisely and efficiently for some
visual measurement or recognition tasks, especially in the
complex environments.

Generally, the ellipse detection methods can be divided
into four categories, including the Hough transform-based
methods, the least square fitting-based methods, the edge
following-based methods and the line segment-based meth-
ods.

Hough transform (HT) was firstly introduced in [7] to
detect lines and curves in images and then was further devel-
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oped for ellipse detection. In the Hough transform-based
ellipse detection, the image is first transformed into the para-
metric space and then, the ellipse parameters are estimated
by finding the peaks in the parametric space. Analogously,
the Radon transform [8] is used to transform the image into
the parameter space and obtain the prominent features in the
projection direction. To improve the flexibility, HT was gen-
eralized to detect the arbitrary non-analytic shapes byBallard
[9]. However, due to the high-dimensional parameter space
and the long voting procedure on the edge pixel plenty, low
computational efficiency andhugememory demandoccurred
in this kind of methods, which limits their application. To
speed up the HT-based ellipse detection, the randomized
Hough transform (RHT) [10], the probabilistic Hough trans-
form (PHT) [11, 12] and the iterative randomized Hough
transform (IRHT) [13] were proposed. RHT and PHT use
the sampled pixels to vote on the parameters of ellipses for
improving the computational efficiency. IRHT further accel-
erates the RHT by focusing on the region of interest which
is determined from the latest estimation of ellipse param-
eters. Although these methods reduce the number of edge
points for estimating ellipse parameters, the running time is
still difficult to satisfy many real-time detection applications.
Besides, since it is difficult to identify the true peaks in the
parametric space, the detection accuracy decreases rapidly
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with the increasing of the ellipse number in an image [14,
15]. Recently, Chen et al. [16] proposed an edge following-
basedmethod to extract themajority of an ellipse.The regions
which may contain a missed ellipse are extracted by cluster-
ing analysis, and then, a HT-based method is performed to
extract the missed ellipse. However, this method requires to
predefine the target size and the length of the horizontal view.
In addition, it cannot ensure themeasurement accuracy, if the
ellipses in an image have a big difference in size.

The least square fitting methods are mainly based on the
work of Fitzgibbon et al. [17]. The algebraic equation of
general conics is used to define an error minimization prob-
lem, and the additional numeric constraints are introduced to
restrict the solutions of the elliptic curves. The constrained
minimization problem is solved by using generalized eigen-
value decomposition. This method provides a least square
elliptical fitting solution to any set of edge pixels. Prasad et al.
[18] split the mathematical problem of ellipse fitting into two
operators, such that the overall algorithm was non-iterative
and did not involve constrained optimization. Liang et al.
[19] introduced the maximum correntropy criterion into the
constrained least square ellipse fittingmethod and applied the
half-quadratic optimization algorithm to solve the nonlinear
and nonconvex problem in an alternate manner. Mulleti and
Seelamantula [20] proposed a method based on the finite-
rate-of-innovation signal property of the ellipse parametric
functions. Lowpass filtering technique was used to estimate
the uniform samples for reducing the effect of noise. A mod-
ified annihilating filter with linear least square was used to
estimate the ellipse parameters. Liu et al. [21, 22] detected the
candidate circles based on ameasure of top-down least square
fitting analysis, where “top-down” means that the sub-chains
of a given edge segment were verified from the longer ones to
the shorter ones. However, most least square fitting methods
focus on how to fit an ellipse from the scattering points; thus,
it is unable to recognize outliers caused by noise. If the inter-
ference of the non-elliptical arcs and the arcs belonging to
different ellipse are removed, the accuracy of the least square
fitting-based methods will be greatly improved.

Lately, some researchers have tried edge following tech-
niques to detect ellipse. Prasad et al. [23] used the edge cur-
vature and convexity to determine whether the edge contours
can be grouped together and performed two-dimensional
Hough transform to get ellipse parameters. Fornaciari et al.
[24] selected the candidate arcs according to the relationship
of the ellipse chord and its center and estimated the param-
eters via the decomposed parameter space. Jia et al. [25]
improved the Fornaciari’s method by applying line pruning
progress before parameters estimation. The algorithm lever-
ages a projective invariant to prune the undesired candidates.
Jin et al. [26] added the distance constraint to the arc group-
ing step of Jia’s method [25] to improve the grouping results.
Dong et al. [27] reduced the arc number of each group from

three to two. The recall of ellipse detection increases, while
the false detection also increases, and the detection becomes
slower. These methods are hard to recognize the true ellipse
edge, if two arc segments are with the similar position and
curvature. Therefore, in some cases, the false edge is left after
the clustering progress.

Ellipse and line segment detector (ELSD) [28, 29] is
a non-iterative ellipse fitting method. It merges the alge-
braic distance by the gradient orientation. The polygonal
approximation of the curve is obtained through a recursive
scheme following the rules of convexity and smoothness. Liu
et al. [30] used linear segmentation to extract the straight-
line segments from the edge contours and implemented a
graph model to segment each line contour into elliptical arcs.
The least square algorithm was used to estimate the elliptic
parameters.

Both the edge following methods and the line segment
methods can detect the edge curves which are similar to the
elliptic arcs. However, due to the lack of strong geometry
constraints, some non-elliptical shadows and arcs also par-
ticipate in the fitting. This kind ofmethods ismore concerned
with the number of the detected ellipses than the accuracy.

In fact, for the images with complex background, it is a
key issue to effectively recognize the edges belonging to the
same ellipse for fast ellipse detection.

In this paper, a real-time ellipse detector with high detec-
tion accuracy is proposed. As shown in Fig. 1, the overall
procedure of the proposed method mainly includes three
steps, arc extraction, arc grouping and parameter estimation
and post-processing. The specific contributions of the pro-
posed method are summarized as follows.

(1) The gradient-based edge classification method is pro-
posed for fast arc extraction. In the proposed method,
the edge classification depends on only the edge gradi-
ent and is independent of bounding box and convexity;
therefore, the computation cost is greatly reduced.

(2) The specific size constraint is defined to remove the
interference edges, such as the edges containing a small
number of pixels and the edges containing mostly
collinear points.

(3) A new arc grouping method is proposed to fast group
the edges belonging to the same ellipse, which largely
improves the grouping efficiency.

(4) A reliability discriminant indicator is developed for val-
idation. By the definition of two validation index, score
and reliability, the false detected ellipses can be clearly
removed.

123



A real-time and precise ellipse detector via edge screening and aggregation Page 3 of 23 64

Fig. 1 The flowchart of the proposed method

2 Arc extraction

Canny edge detector [31] with automatic thresholding is
employed to detect edges. The thresholds of Canny detector
are adaptively determined by the cumulative distribution of
intensity gradients. The edges are divided into four categories
according to the gradient afterward. Then, size constraint is
leveraged to remove interference edges.

2.1 Edge classification

Given an edge point ei � (xi , yi , dxi , dyi ) obtained by
Canny edge detector, where’ (xi , yi ) is the position coor-
dinate and (dxi , dyi ) is the Sobel derivative in X and Y
orientations, respectively, the slope at this point is obtained
by

tan ϕi � −dxi
dyi

(1)

where ϕi is the angle between the tangent line at this point
and the positive direction of the horizontal axis. The pixels
are discarded if tan ϕi is exactly equal to zero. Define S+ as
the set of the edge points with positive, and S− as the set of
the left edge points. An arc is formed by link each edge point
with the other points in its eight neighborhoods in the same
set.

As shown in Fig. 2, by comparing the values of slope in
left (tan ϕleft) and right (tan ϕright) ends, an arc α is classified
into one of the four categories according to the following
equation.

α ∈

⎧
⎪⎪⎨

⎪⎪⎩

αI if anϕ > 0 ∧ tan ϕleft < tan ϕright

αII if tan ϕ < 0 ∧ tan ϕleft < tan ϕright

αIII if tan ϕ > 0 ∧ tan ϕleft > tan ϕright

αIV if tan ϕ < 0 ∧ tan ϕleft > tan ϕright

. (2)

2.2 Size constraint

After classification, some arcs, denoted by αk , are not salient
enough to characterize an ellipse, such as the arcs contain-
ing a small number of pixels and the arcs containing mostly

Fig. 2 Classify the arcs into four categories

collinear points. These arcs need to be removed since they
may cause false detection.

Define ORIk as the oriented minimum area rectangle [32]
enclosing all edge points ei ∈ αk . For clarity, the oriented
minimum area rectangle is the minimum area rectangle con-
taining the curve. The arcs which meet one of the following
conditions will be removed:

(1) The number of points in the arc is smaller than the
defined threshold (Nk < Thlength).

(2) The length of the short side (shk) of ORIk is smaller than
the defined threshold (shk < Thshort).

(3) The ratio (RAk .) of the long side length and the short
side length is larger than the defined threshold (RAk >

Thratio).

In this work, the values of Thlength and Thshort are set as
16 and 3, respectively. The value of Thratio is determined
through experiments. Relying on the Sobel derivatives, the
arcs are classified into four categories and the invalid edges
are removed.
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3 Arc grouping and parameter estimation

After edge classification and invalid edge removal, the arcs
belonging to the same ellipse are grouped, and then the
parameters of the ellipses are estimated. The relative posi-
tion constraint and the tangent lines constraint are defined for
arc grouping. For each group of arcs, the direct least square
fitting is used to estimate ellipse parameters.

3.1 Relative position constraint

The relative position relation is designed to ensure that the
four arcs (αI

i , α
II
j , α

III
k , αIV

m ) from four categories are possi-
ble to form an ellipse. Here, a mark of validity γ is defined
to determine whether the arcs satisfy the relative position
constraint as follows.

(3)

γ
(
αI
j , α

II
j , α

III
j , αIV

j

)

�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

false if RII
j · x > L I

i · x + Thposition
false if L II

j · y > L III
k · y + Thposition

false if RIII
k · x > L IV

m · x + Thposition
false if RI

i · y > RIV
m · y + Thposition

true otherwise

where L I
i ·x denotes the x coordinate of the leftmost extrema

of αI
i and RI

i · y denotes the y coordinate of the rightmost
extrema of αI

i . The remaining arcs are labeled similarly. In
practical application, the value of Thposition is set to 1.

(b)(a)

Fig. 3 The schematic of the tangent lines constraint. The left image
a is the schematic diagram of the tangent lines constraint, and the
right image b shows the tangent lines constraint as image noise exists.
P1P2, P2P3, P3P4 and P1P4 are four tangent lines with tangent points
Mi , Mj , Mk , Mm

3.2 Tangent lines constraint

Acorollary ofBrianchon’s theoremstates as follows. In every
tetragram circumscribed about a conic section, the two diag-
onals and the two tangency chords of the opposite sides pass
through one point [33]. In this paper, this corollary is called
the tangent lines constraint. As shown in Fig. 3a, ideally,
four dashed lines would intersect at one point. However, the
image always has weak distortion, and there are errors from
edge extraction. Thus, these four dashed lineswill not exactly
intersect at one point, as shown in Fig. 3b. If the target is an
ellipse, the distance between C1 and C2 in Fig. 3b should
be within a threshold. The proposed method employs this
property of ellipse to combine elliptical arcs.

Given an arc αi � (ei1, ei2, . . . , eiN ), where
ei1, ei2, . . . , eiN are continuous points, define Mi ≡ e[i N/2]

as the middle point of αi . Then, Prasad’s method [34] is used
to calculate the slope k̃i of the tangent line P1P4 at point Mi ,
since it s a definite upper bound error for continuous con-
ics. In this way, the equation of the tangent line P1P4 can be
expressed as

y − Mi · y � k̃i (x − Mi · x) (4)

Then, the coordinates of intersection points can be calcu-
lated by solving the linear equations with two unknowns. For
instance, the coordinates of P1 are calculated as follows.
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{
P1 · y − Mi · y � k̃i (P1 · x − Mi · x)
P1 · y − Mj · y � k̃ j

(
P1 · x − Mj · x) (5)

The coordinates of P2, P3 and P4 are calculated similarly.
So far, the coordinates of the eight endpoints of the four
dashed lines in Fig. 3b are obtained. And then the equations
of the four dashed lines can be derived. For instance, line
MiMk is calculated as follows.

⎧
⎪⎨

⎪⎩

y−Mk ·y
Mi ·y−Mk ·y � x−Mk ·x

Mi ·x−Mk ·x , if Mi · y �� Mk · y ∧ Mi · x �� Mk · x
y − Mk · y, if Mi · y � Mk · y
y − Mk · x, if Mi · x � Mk · x

(6)

Denote C1 as the intersection point of P1P3 and P2P4,
and C2 as the intersection point of MiMk and MjMm . The
coordinates of C1 and C2 are readily calculated through the
expressions of dashed lines. According to the tangent lines
constraint, the following discriminant is utilized to judge
whether the four arcs belong to the same ellipse.

μ �
{
true, if d(C1,C2) < ThBrianchon

flase, otherwise
(7)

Fig. 4 An example of forming an arcs group. a The current arc α to
be matched is the red arc. b Remove the arcs from the same category
as α. c Constraints on endpoints position. d Constraints on geometric
property

where d(C1,C2) is the geometric distance between C1 and
C2.

3.3 Arc grouping

Take one arc from each of the four categories of arcs
(αI

i , α
II
j , α

III
k , αIV

m ), and the four arcs form an arc group. Then,
determine whether the four arcs meet the relative position
constraint by Eq. (3). If the validity mark γ in Eq. (3) is
true, determine whether the four arcs meet the tangent lines
constraint by employing Eq. (7). Otherwise, disband the arc
group. If μ in Eq. (7) is true, keep the arc group. Otherwise,
disband the arc group.

The algorithm of the tangent lines constraint is shown
in Algorithm 1, and the algorithm of grouping is shown in
Algorithm 2. Figure 4 gives an example to show how the
constraints work.

3.4 Parameter estimation

For the arc groups satisfying the tangent lines constraint, a
direct least square fitting method [17] is utilized to estimate
ellipse parameters. Thismethod canmake full use of the edge
points to fit ellipse and coincide well with the actual target.
The estimated ellipse parameters include themajor semi-axis
a, the minor semi-axis b, the center point C and the rotation
angle θ .
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4 Post-processing

Although the arcs used for parameters estimation satisfy
the three constraint conditions, there are still some ellipses
wrongly fitted. The main reason is that the size constraint,
position constraint and tangent lines constraint are three nec-
essary in-sufficient conditions for constructing an ellipse.
Therefore, a validate step is necessary to remove false detec-
tion. Moreover, a quarter arc may be divided into multiple
small arcs due to occlusion and repeated detection. Thus, a
clustering step is implemented to remove the repeated detec-
tion.

4.1 Validation

The validation part of the proposed method consists of two
steps. Firstly, the ellipse quality is evaluated by the proportion
of the edge points satisfying the ellipse equation to those used
for fitting. This proportion is called the score of the ellipse.
A modified method of [24] is used for calculating the score
of a fitted ellipse.

Given a general elliptic equation for the candidate ellipse
εk , we have

F(ek, xi ) � 0 (8)

where ek � [Ak, Bk,Ck, Dk, Ek, Fk]T is the parametric vec-
tor of the kth ellipse εk , and xi � (xi , yi ) is the i th point
on the ellipse. It is worth to note that the constant term
Fk . of Eq. (8) is set to 1 in this work, in order to obtain
the unique parameters for an ellipse. Define the set ω �
{(xi , yi ) : |F(ek, xi )| < 0.1} contains the points close with
the εk . The score δ ∈ [0, 1] indicates how much the points
fit the elliptic equation and is calculated by

δ � |ω|
∣
∣αI

i

∣
∣ +

∣
∣
∣αII

j

∣
∣
∣ +

∣
∣αIII

k

∣
∣ +

∣
∣αIV

m

∣
∣

(9)

where |∗| represents the number of points in the set. A can-
didate ellipse εk with δ > Thscore is considered to be valid
and is moved to the next evaluation procedure; otherwise, it
is regarded as a false detection (Fig. 5a).

Even if the score is high, the arcs can cover only a small
amount of the estimated ellipses. Thus, in the second step,
the reliability indicator is proposed to further evaluate the
quality of ellipse. Define the reliability index ρ as another
validity indicator of an ellipse. Denote that L I

i and RI
i are

the leftmost and rightmost extrema of αI
i , respectively. Then,

construct the new coordinate system where the origin is the
center of ellipse, the horizontal axis is the major axis and the
vertical axis is the minor axis of the ellipse. Denote that L̃ I

i

Fig. 5 Ellipses extracted from different arcs. a Low score ellipse. bLow
reliability ellipse. c Ellipse with high score and reliability

and R̃I
i are coordinates of L I

i and RI
i in the new coordinate

system. Then, L̃ I
i and R̃ I

i are calculated as follows.

{
L̃ I
i · x � L I

i · x cos θ − L I
i · y sin θ

L̃ I
i · y � L I

i · x sin θ + L I
i · y cos θ

(10)

{
R̃I
i · x � RI

i · x cos θ − RI
i · y sin θ

R̃I
i · y � RI

i · x sin θ + RI
i · y cos θ

(11)

Denote majIi as the projection length of αI
i on the major

axis of ellipse, and minIi as the projection length of αI
i on the

minor axis of ellipse. Then, the projection lengths majIi and
minIi are calculated as follows.

majIi �
∣
∣
∣L̃ I

i · x − R̃I
i · x

∣
∣
∣ (12)

minIi �
∣
∣
∣L̃ I

i · y − R̃I
i · y

∣
∣
∣ (13)

The projection lengths of αII
j , α

III
k and αIV

m are calculated
similarly. Finally, the value of reliability ρ is obtained by

ρ �
∑

(n,s)∈{(I,i),(II, j),(III,k),(IV,m)}
(
majns + minns

)

4(a + b)
(14)

Larger ρ indicate higher reliability. Similarly, a candidate
ellipse εk withρ > Threliability is considered as a valid ellipse.
Otherwise, the ellipse is discarded (Fig. 5b).

4.2 Clustering

The fracture of the ellipse contour causes multiple detections
on the same ellipse. To unify the ellipse parameters, we adopt
the method [31] to cluster the similar ellipses that possibly
belong to the same object.

Given two ellipses, define (DC ·x , DC ·y), Da , Db and Dθ

are the distances between the centers, major semi-axises,
minor semi-axises and rotation angles, respectively. Then,
the similarity indicator D is a Boolean variable as follows

D � AND
{
(DC ·x < 0.1),

(
DC ·y < 0.1

)
, (Da < 0.1),

(Db < 0.1), (Dθ < 0.1)} (15)
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where D � 1 means that there are similar ellipses needed
clustering. The ellipse with the highest score is considered
as the center of a given cluster.

5 Experiments

Both the synthetic dataset and a number of real image datasets
are used for investigation. All the experiments are imple-
mented on a desktop with Intel(R) Core (TM) i5-7500 CPU
and 8 GB RAM by C++ with OpenCV 2.4.9.

5.1 Evaluationmetrics

To evaluate the performance of ellipse of ellipse detection
methods, the precision, recall and F-measure are used in
experiments, which are defined as follows.

Precision � number of true positive elliptic hypotheses

total number of elliptic hypotheses
(16)

Recall � number of true positive elliptic hypotheses

number of actual ellipses
(17)

F - measure � 2 × Precision × Recall

Precision + Recall
(18)

In the synthetic dataset, the ellipses were generated ran-
domly. For the real image datasets, the ellipse objects in the
image were markedmanually. A number of points located on
boundary of the ellipse objectwere used for fitting the ellipse.
As the elliptic hypothesis has large overlap with the actual
ellipse, we consider it as a true positive elliptic hypothesis.
The overlap ratio is an adaptation of the Jaccard index [35]
and is expressed as

J (ε1, ε2) � Size(And(ε1, ε2))

Size(OR(ε1, ε2))
(19)

where And(ε1, ε2) gives the pixels within both ε1 and ε2.
OR(ε1, ε2) gives the pixels within ε1. or ε2. Size(∗) gives
the number of pixels involved. If the overlap ratio of the
elliptic hypothesis and the actual ellipse is bigger than 0.8,
we consider it as a true positive elliptic hypothesis.

5.2 Datasets

5.2.1 Synthetic image datasets

In the first synthetic dataset, the image is in size of 500×500
with τ ellipses, τ ∈ {3, 4, 5, 6, 7, 8}. The parameters of the
ellipses obey the uniform random distribution, and center
points are random located within the image. The lengths
of semi-major and semi-minor axes are set randomly in the
range [50, 100], and the orientations of ellipses are assigned

randomly in the range [0◦, 90◦]. For each τ , 100 images con-
taining edge contours of ellipses were generated. Ultimately,
we generated 600 different synthetic images for the synthetic
dataset # 1.

The second synthetic dataset (synthetic dataset #2) con-
tains 1000 images in size of 400×400, and only one ellipse is
generated in each image. The ellipse center is set at the image
center. The value of the axes ratio is sequentially taken as 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The value of major
semi-axes is sequentially taken as 10, 20, 30, 40, 50, 60, 70,
80, 90, 100. The value of rotation angle is sequentially taken
as 0, 10, 20, 30, 40, 50, 60, 70, 80, 90.

Then, the imageswith no ellipses, called line dataset, were
generated to evaluate the filtering ability of the proposed
method for interference lines. In this experiment, a set of
400×400 synthetic images corrupted by 4% salt-and-pepper
noise were generated, and each image contains J line seg-
ments,J ∈ {4, 8, 12, 16, 20, 24}. One hundred images were
generated per J value.

Moreover, an occluded ellipse dataset was constructed to
evaluate the effect of the proposed method on the incomplete
ellipse. The image size is 400×400 andwas draw g occluded
ellipses on it, g ∈ {4, 8, 12, 16, 20}.for each ellipse, at least
50% of the boundary pixels is visible. One hundred images
were generated for each value of g.

In order to evaluate the detection effect of the
proposed method on different image sizes, the
square images in size of ξ × ξ are generated, ξ ∈
{100, 200, 400, 800, 1200, 1600, 2000, 3000, 4000}. The
coordinates of center points are random within the image,
the lengths of semi-major and semi-minor axes are set
randomly in the range [0.1ξ, 0.2ξ ], and the orientations of
ellipses are assigned randomly in the range [0◦, 90◦]. For
each value of ξ , 100 images containing edge contours of
ellipses were generated. Ultimately, 900 synthetic images in
different size were generated.

In total, the five synthetic image datasets contain 3600
images for evaluation.

5.2.2 Real image datasets

Real test images are from the Dataset Prasad et al. [23], the
Dataset Fornaciari #1 [24], the Dataset Fornaciari #2 [24]
and our Dataset. The Dataset Prasad contains 198 images
with the same number of small ellipses. The Dataset For-
naciari #1 is composed of 400 real images collected from
MIRFlickr and LableMe repositories. The Dataset Forna-
ciari #2 involves 629 frames of several videos taken by a
cell phone. The number and parameters of the ellipses are
provided by the original authors of datasets.

In addition, we constructed our own dataset to investigate
the effect of the proposed method. In the dataset, the shapes
of the objects are in more standard ellipse, and there are no
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Fig. 6 Effects of the threshold Thratio ranging from 8 to 22 with the step
2. To show the execution time in each process clearly, the execution time
in different processes is represented by different colors. The standard
deviation is represented by the error bars in the diagram

ambiguous ellipse objects, such as the objects resembling
ellipses. Our own dataset includes two parts. One has 90
images in size of 300×250 taken by the CMOS industrial
camera and is named CMOS dataset. The other one has 200
images in size of 300×400 taken by iphone 5 s and is named
phone dataset.

5.3 Parameter selection

There are four major parameters, Thratio, Thscore, Threliability
and ThBrianchon in the proposedmethod. Specially, Thratio is a
constraint on the inherent property of elliptical arcs and can
be set the same value for all the datasets. Thus, the Phone
dataset is used to determine that. Figure 6 shows the results
of F-measure, precision, recall and execution time in each
stage with the variation of Thratio. The error lines in the dia-
gram present the standard deviation. In order to balance the
accuracy and time of the detection, Thratio is set as 12 accord-
ing to the experiment results.

The other three parameters, Thscore, Threliability and
ThBrianchon, are dataset depended, due to the difference of
signal-to-noise ratio and background complexity. We per-
formed all the tests on all the five real image datasets, and
the F-measure results are presented in Fig. 7. For the conve-
nience of display, the execution time in each stage of CMOS
dataset and phone dataset is presented in Fig. 8.

The results by the variation of the parameter Thscore
are shown in Figs. 7a and 8a. The execution time changes
slightly, and the impact to F-measure is different for differ-
ent datasets. In general, when Thscore is set below 0.08, the
proposed method performs a good detection in each dataset
withF-measure above 0.51. If Thscore is greater than 0.13,F-
measure shows downward trend with the increase of Thscore.
In most cases, Thscore is recommended to be set as 0.08.

Figure 8b shows that the impact of Threliability on the exe-
cution time is negligible. However, as depicted in Fig. 7b,

along with Threliability increasing to 0.45, the F-measures of
all 5 datasets also gradually increase. Then, the F-measure
of each dataset begins to decrease. As a result, we set 0.45
as the default value of Threliability.

As shown in Figs. 7c and 8c, when ThBrianchon is greater
than 6, there is no significant improvement for the detection,
but the execution time increases because more arc combina-
tions are considered as valid groups. Thus, set ThBrianchon �
6 to guarantee the detection performance with fast execution.

5.4 Experimental results

5.4.1 Synthetic images

(1) Arc Classification We generated 300 synthetic images
which are corrupted by 0–4%salt-and-pepper noise, and
three arcs of each quadrant randomly distribute in each
image. The accuracy of arc classification using Eq. (2)
is shown in Table 1.

The edges are classified well by Eq. (2) when the noise
is not applied. Misclassification occurs in the areas where
multiple edges intersect, which is mainly caused by the poor
edge extraction in these areas. As the noise increases, the
edges gradually turn irregular, which results in the decrease
in the classification accuracy. Some examples of arc classi-
fication results are shown in Fig. 9. From the results, it can
be concluded that Eq. (2) works well for classification of the
edges if there is no edge cross and overlap.

(2) Relative Position Constraint The mathematical expres-
sion of relative position constraint is expressed by
Eq. (3). Relative position constraint is designed to
reduce the number of invalid arc groups. However, it
is necessary to ensure that Eq. (3) does not remove
the appropriate arc groups. We generate 100 synthetic
images which are corrupted by 0–4% salt-and-pepper
noise, and there are 5 ellipses randomly distributed in
each image. Some examples of the position relation
between the arcs in different quadrant are shown in
Fig. 10. The probability, called satisfaction rate, of the
four quadrant arcs which satisfy Eq. (3) is presented in
Table 2.

In the absence of noise, the ellipses satisfy the constraint
of Eq. (3) well. Several ellipses affect the determination of
Eq. (3) due to the misclassification of arcs. As the noise grad-
ually increases, the number of interference edges and the
classification error also increase, which leads to the decrease
in the satisfaction rate by Eq. (3); however, it is still above
90%. Ultimately, Eq. (3) is feasible for the position con-
straint.
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Fig. 7 The influences of a Thscore, b Threliability and c ThBrianchon on
F-measure. We use the proposed method to detect images in 5 real
image datasets and show the results in different colors. The selection of

threshold range is based on the result of pretest, and the measurement
results will be worse if the threshold is beyond the range

Fig. 8 The influences of aThscore,bThreliability and cThBrianchon on exe-
cution time. We use the proposed method to detect images in CMOS
dataset (left column) and phone dataset (right column). The execution

time in different processes is represented by different colors, and the
standard deviation is represented by the error bars in the diagram
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Table 1 Classification accuracy
Percentage of salt-and-pepper noise 0 1 2 3 4

The accuracy of arc classification (%) 99.22 98.03 96.72 95.20 92.31

Fig. 9 Examples of arc classification results. The first row is the test image, and the noise density is indicated in the bottom right corner of the
image. The second row is classification results, in which 4 colors represent 4 different categories

Fig. 10 Examples of the position relation between arcs in different quadrants. The first row is the test image with the noise density shown in the
bottom right corner of the image. The second row is classification results, in which 4 colors represent 4 different categories

(3) Detection Results of Each StageUnder Salt-and-Pepper
Noise To demonstrate the role of each step in the pro-
posed ellipse detector, we analyzed the results of each
stage. As shown in Fig. 11, when 4% salt-and-pepper
noise is applied to the image, a large number of interfer-
ence edges appear after edge detection.After classifying
the edges that contain enough pixels, there are still some
interference edges (Fig. 11c) which can be removed by
the proposed size constraint (Fig. 11d). Then, ellipse

grouping is carried out according to the arc position
constraint, and ellipse fitting is performed for the groups
which satisfy the tangent lines constraint. It is evident
in Fig. 11e that even a series of strict constraints is used,
there are still many false detections. Score validation
can effectively suppress the false detection (Fig. 11f),
and the false detected ellipses are further removed by
reliability validation (Fig. 11g).
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Table 2 Satisfaction rate
Percentage of salt-and-pepper noise 0 1 2 3 4

Satisfaction rate (%) 99.20 98.40 96.20 95.40 93.60

Fig. 11 Detection result of each stage under 4% salt-and-pepper noise.
a Origin image. b Canny edge map. c Classification result of the
edges containing enough pixels. d Edges satisfying size constraint.
e Ellipses satisfying relative position constraint and tangent lines con-

straint. f Ellipses passing score validation. g Ellipses passing reliability
validation. Since there are no ellipses with similar parameters, no clus-
tering is performed here

Table 3 The effect of reliability
validation Overlapping ellipses 3 4 5 6 7 8

F-measure without using reliability validation (%) 62.16 58.66 56.13 51.73 48.81 43.92

F-measure using reliability validation (%) 81.74 76.98 70.73 67.43 63.97 62.21

To further evaluate Eq. (14), the F-measures with and
without reliability validation are shown in Table 3, respec-
tively. It is obvious that the F-measure is improved by
implementing reliability validation.

(4) Overlapping Ellipses Without Noise The comparison
results by synthetic dataset #1 are presented in Fig. 12. It
is clearly evident that the proposedmethod has the high-
est measure index in the detection of synthetic image.
As the number of ellipses increases, there will be a lot
of cross and overlap at the edge of the ellipse, which
would gradually deteriorate the detection result. The
precision and recall of the proposed method are basi-
cally between the twomethods used for comparison and
decrease slowly with the increase in the ellipse number.

The number and execution time of ellipse fitting are shown
in Fig. 13. By conducting a more rigorous screening opera-
tion in advance, the proposed method effectively reduced the
number of ellipses fitting and computation load.

As the number of ellipses increases, the execution time of
the three methods shows a gradual upward trend. The rea-
son is that the random generated ellipses cross with each
other and is divided into many short arcs, which will increase
the computation of geometric constraint process and lead to
the increase in execution time. Compared with Jia’s method
[25], the average execution time is reducedby10.50–33.27%.
Some results by the synthetic dataset #1 are depicted in
Fig. 14.

(5) Overlapping Ellipses Under Salt-and-Pepper NoiseWe
added � salt-and-pepper noise to 100 images each
of which contains eight overlapping ellipses, � ∈
{4%, 8%, 12%, 16%, 20%, 24%}. Figure 15a shows
some examples of the test images in different noise level.
The F-measure and execution time at each noise level
are shown in Fig. 15b, c, respectively. It can be seen that
our method is more robust than the other two methods
at the noise level under 12%. At higher noise levels, the
interference edges increase, and the ellipse is too broken
to satisfy all kinds of constraints; thus, it cannot be rec-
ognized. In terms of detection time, as seen in Fig. 15c,
the fluctuation of themethods is small, and the proposed
method achieves higher detection speed.

(6) Single Ellipse Synthetic dataset #2 is used to investigate
the performance of the proposed method with respect to
ellipse rotation, axes ratio and axes size. As shown in
Figure 16, most of the failed detection are aggregated
in the areas with small axes ratio and length of a. It is
evident in Fig. 17a that the recognition rate is low when
the axes ratio is smaller than 0.3. With the increase in
axes ratio, the recognition rate is on the rise and the
maximum is reached at the axes ratio � 1.0.

As shown in Fig. 17b, the recognition rate is relatively low
when the length of a is 10 pixels. With the length increasing,
the recognition rate also goes up and reach the maximum
point at a� 100.

The rotation angle also has influence on the recognition
rate. The recognition rate reaches theminimumat the rotation
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Fig. 12 Comparison of a F-measure, b Precision and c Recall of the proposed method with other methods for synthetic images. F-measure,
Precision and Recall here are the mean of 100 images in each group

Fig. 13 Comparison of a fitting
counts and b execution time of
the proposed method with other
methods for synthetic images.
Both counts of ellipse fitting and
number of ellipses here are the
mean of 100 images in each
group

angle � 40° (Fig. 17c). The low recognition rate is due to
that the size of the arcs after the classification (Sect. 2.1)
cannot satisfy the length constraint. For example, as shown
in Fig. 18, when the rotation angle is 45°, the length of the
arcs belonging to I, III is far less than those belonging to II,
IV, which causes mistakable removing of the short arcs.

(7) Single Ellipse with Multiple Scales: When the ellipse
target is small, the classified arcs are difficult to sat-
isfy the size constraint, and the round-off errors become
significant due to low resolution. In practical applica-
tions, upscaling the input image 1.5–2 times is a quick
and effective way to solve such problems. However,
since the proposed approach employs a series of con-
trol parameters, it is necessary to verify whether theses
parameters can adapt to the scale changes. Synthetic
dataset #2 is upscaled to 1.5 and 2 times of the origi-
nal images, and the experimental results are shown in
Fig. 16. It is evident that upscaling the detection image
can improve the detection effect and reduce the false
detection caused by axes length and rotation angle. Nev-
ertheless, as the axes ratio is too small, such as 0.1,
the improvement is not obvious. In general, upscaling

the detection image 1.5–2 times can improve the detec-
tion effect, and the control parameters in the proposed
method can be adapted to such scale change detection.

(8) Images with No Ellipses The images with no ellipses
are used to evaluate the filtering ability of the proposed
method for interference lines. As shown in Fig. 19, the
proposed method can effectively reduce the occurrence
of false detection when there are line segments and
noise interference in the image. The average number
of false detections per image with each J is pre-
sented in Fig. 19g. As the line segments increase, the
false detected ellipses of Fornaciari’s method gradually
increase. However, the false detection of Jia’s method
and the proposed method is obviously much less than
that of Fornaciari’smethod. Totally, there are seven false
detected ellipses occurred by Jia’s method and two by
our method in the 600 test images. We show all false
detected ellipses in Fig. 19h.

(9) Occluded Ellipses The detection ability of the proposed
method for occluded ellipses is tested in this part. Some
examples of detection results are shown in Fig. 20a. As
observed, the proposed method cannot recognize the
ellipses with large overlapped area, which leads to low
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Fig. 14 Examples of ellipse detection on synthetic images. a Original
image, b Ellipses detected by Fornaciari’s method, c Jia’s method and
d proposed method

recall rate. Nevertheless, a high detection precision is
obtained, and the number of false detection is signif-
icantly lowered. As the number of occluded ellipses
increases, the overlapped area of the ellipse increases
gradually, which results in the poor detection and the
decrease of F-measure (Fig. 20b). Meanwhile, there are
more arcs to be processed, but ourmethod stillmaintains
a relatively fast detection speed, as shown in Fig. 20c.

The proposed method is unable to detect the ellipse with
one quadrant missing. However, in the detection scenario
where there is no obvious occlusion on the elliptical target,
the proposedmethod canworkbetter than conventionalmeth-
ods. In the experiments, it is found that the proposed method
can accurately identify the occluded ellipses in which each
quadrant is not completely lost.

(10) Half Ellipses Synthetic images (400×400) with half
ellipse were generated to evaluate the limitation of

the proposed method, and some examples are shown
in Fig. 21. The experimental results show that the
proposed method cannot detect such ellipses, which
reflects the limitation of the proposed approach. Con-
cretely, our method is unable to detect the ellipse with
one quadrant missing, due to the requirement of pro-
viding four quadrant arcs in the arc grouping phase.

(11) Stretched Ellipses In Fig. 16, we plot the false detec-
tion distribution with axes ratio from 0.1 to 1. To
intuitively demonstrate the detection results on the
stretched ellipse, twenty-five ellipses are generated on
a 1000×1000 image. The length of semi-major is set
to 100, and the orientation of the ellipses is assigned
randomly in the range sdpf. In addition, the axe ratio of
the stretched ellipse is randomly distributed from 0.1
to 0.4. As observed in Fig. 22, the proposed method
has fewer false detection. As the ellipse is too flat and
the axes ratio is about 0.1, it is difficult to detect the
ellipse by the proposed method. This is mainly due
to the fact that the arcs in the flat ellipse cannot be
accurately classified, which leads to the failure of sub-
sequent grouping. As axes ratio increases to around
0.2, these stretched ellipses are accurately identified.

(12) Images of Different Sizes As shown in Fig. 23, when
the image size is 100×100 or 200×200, the detection
results of the three methods are worse. The reason is
that the number of an ellipse edge pixels is too small
to meet the fitting requirements. In this case, the image
upsampling can be leveraged to improve the detection.
With the image size increasing, F-measure does not
fluctuate significantly. This is because the proposed
method relies on the geometric properties of the ellipse
to screen candidate arcs. When the size of an ellipse is
too small, the strict size constraints will filter out the
edge. With the increase in the arc size, the incidence
of such false filtering will decrease.

(13) Overlapping Ellipses Under Gaussian Noise In this
experiment, 100 images with the size of 500×500
are generated. Each image contains six ellipses. The
parameters of the ellipses obey the uniform random
distribution, and center points are random located
within the image. The lengths of semi-major and semi-
minor axes are set randomly in the range [50, 100], and
the orientations of ellipses are assigned randomly in
the range [0◦, 90◦]. The intensity of the ellipses in the
image is 0, and the intensity of the background is 255.
Gaussian noise with 0 mean and standard deviations
ranged from 0 to 80 is added to the gray values of each
pixels in the image.

As shown in Fig. 24a, as the standard deviation of
Gaussian noise increases, the detection results of the three
ellipse detection methods gradually deteriorate. As shown
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Fig. 15 Testing on synthetic images which contain 8 overlapping
ellipses in each image and are corrupted by salt-and-pepper noise.
a Examples of test images with the noise density shown in the bot-

tom right corner. b F-measure and c execution time are plotted against
noise rate. The values of the data in the figure are the average of 100
different synthetic images

Fig. 16 Distribution of detection failure ellipse. a Failure distribution of the original images. b Failure distribution after 1.5 times upscaling of the
original image. c Failure distribution after 2 times upscaling of the original image

in Fig. 24b, as the standard deviation of Gaussian noise
increases to 70, Jia’s method is unable to identify ellipses.
The proposed method and Fornaciari’s method cannot iden-
tify ellipses when the deviation increases to 80. Since the
noise breaks the edge, the broken edges cannot satisfy the
constraints of forming an ellipse. Nevertheless, the detection

accuracy of the proposed method under Gaussian noise is
relatively high.

As the Gaussian standard deviation increases, the number
of interference edges increases gradually, which increases
the detection time. As shown in Fig. 24c, when the devi-
ation increases to 50, the detection time becomes shorter.
This is because most of the edges do not meet the constraints
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Fig. 17 Recognition rate, with respect to a axes ratio b/a, b major semi-axis length a and c and rotation θ . The recognition rate here is the ratio of
the correct detection images to the total number of images

Fig. 18 An example of an
oblique ellipse. The rotation
angle of the ellipse will affect
the length of arcs

of forming an ellipse, and no time is spent on fitting and
post-processing. In general, the proposed method maintains
a relatively fast speed under the Gaussian noise.

5.4.2 Experimental results with real image datasets

(1) Original Real Images The performance of the proposed
method is compared against two state-of-the-art detec-
tion methods which have preferable detection affection
andhighdetection speed.As shown inTable 4, the detec-
tion results of the proposed method on three classical
datasets are not stable. This is because some objects of
oval shapes like airship, irregular polygon and human
faces are regarded as ellipses in the classical datasets.
In industrial applications, these non-elliptical objects
are often needed to be circumvented, since they would
weaken the pertinence of elliptical target detection. The
proposed method achieves accurate and stable detec-
tion on CMOS and phone datasets containing regular
ellipses.

We show the execution time for each processing steps
in Table 5. The proposed method is more efficient than the
current speed leading methods. Compared with the two con-
ventional methods, for CMOS dataset, the execution time
is reduced by 17.75% (from 50.53 to 41.56 ms) and 53.65%
(from 89.66 to 41.56ms), respectively, and for phone dataset,
it is reduced by 16.32% (from 62.55 to 52.34ms) and 48.07%

(from 100.78 to 52.34 ms), respectively. For all the three
methods, the most time-consuming step is grouping which is
a combination process of three arcs (Fornaciari’s method and
Jia’s method) or four arcs (proposed method). By using the
size constraint, relative position constraint and tangent lines
constraint, the interference edges are effectively filtered out
and the grouping is greatly accelerated.

Some detected examples on the five datasets are depicted
in Figs. 25 and 26. For Fornaciari’s method and Jia’s method,
there are more wrongly detected ellipses and undetected
ellipses. The reason is that the parameter estimation strongly
depends on the result of edge detection. Moreover, since the
constraint of the ellipse is not strong enough, there will be
more false detection. Some ellipses also cannot be detected
by the proposed method, and it is mainly because large area
occlusion or edge blurred.

(2) Real Image Under Salt-And-Pepper Noise We added
salt-and-pepper noise to phone dataset with the noise
rate from 2 to 20% with the step of 2% to test the
robustness of the proposedmethod. As shown in Fig. 27,
the F-measures for all three methods in the experiment
show a downward trend as the noise rate increases.
Accordingly, the precision increases and the recall
decreases. Until the noise rate increases to 10%, three
methods all have a high F-measure which are about
0.64, 0.65, 0.66 for proposedmethod, Jia’s method, For-
naciari’s method, respectively. When the noise rate is
below 18%, the F-measure of proposed method is close
to that of Jia’smethod. However, if the noise rate is 20%,
the detection of the proposed method becomes worse.
This is mainly because that the elliptical edges are bro-
ken in small pieces by noise and cannot satisfy the size
constraint or the geometric constraint.
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Fig. 19 Testing on synthetic imageswhich contain overlapping line seg-
ments and are corrupted by 4% salt-and-pepper noise. a–f Examples of
detection results. The first row shows examples of the test image with
the number of lines shown in the bottom right corner of the image. The
second to fourth rows demonstrate the results detected by Fornaciari’s

method, Jia’s method and our method, respectively. g Average number
of false detections per image plotted against the number of overlapping
line segments. h All false detections of our method across the 600 test
images
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Fig. 20 Testing on synthetic images containing occluded ellipses.
a Examples of detection results. The first row shows examples of the
test image with the number of occluded ellipses shown in the top left
corner of the image. The second to fourth rows demonstrate the results

detected by Fornaciari’s method, Jia’s method and our method, respec-
tively. b F-measure and c execution time are plotted against the number
of occluded ellipses. The values of the data in the figure are the average
of 100 different synthetic images with the same number of ellipses

Fig. 21 Examples of half ellipses used in the experiment

Fig. 22 Examples of stretched ellipses detection results. a original
image. b–d Ellipses detected by Fornaciari’s method, Jia’s method and
our method

Fig. 23 Comparative results under varying image sizes

All three methods in the experiment run faster with noise
increasing because more edges were removed as interference
lines in preprocessing. The proposed method still maintains
relatively high detection speed in the experiment.
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Fig. 24 Experiment under Gaussian noise. a Examples of detection
results. The first row shows examples of the test image. The mean value
of Gaussian noise is zero. The standard deviation of Gaussian noise is
shown in the bottom right corner of the image. The second to fourth rows

demonstrate the results detected by Fornaciari’s method, Jia’s method
and our method, respectively. b F-measure and c execution time are
plotted against the standard deviation of Gaussian noise. The values of
the data in the figure are the average of 100 different synthetic images

6 Application

In the industrial production, the ellipse detection can be used
to locate the circle object for quality inspection and assem-
bly. Therefore, the ellipse detection was also performed on
the mechanical part images. Some of detection results are
presented in Fig. 28. It can be seen that the proposed method
can effectively extract the circular target onmechanical parts.
After utilizing interference edge filtering and false detection
removal, the detected ellipse edge coincides well with the
actual circular hole edge, which can well support the hole
location or aperture calculation.

7 Conclusions

In this paper, we proposed a fast and effective ellipse detec-
tion method, which is faster than the current speed leading
detection method and performs better detection results. The
proposed arc classification, interference edge removal, arc
grouping and ellipse validation approaches can effectively
improve the detection speed while reducing the number of
false detections. The results of noise added experiments and
multi-scale experiments demonstrate the robustness of the
proposed method. The average execution time for the image
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Table 4 Result of our method
compared with
the-state-of-the-art methods on
five real image datasets

Dataset Fornaciari Jia Our

Precision

Dataset Prasad 0.884 0.739 0.795

Dataset F #1 0.736 0.728 0.744

Dataset F #2 0.525 0.474 0.433

CMOS dataset 0.787 0.842 0.759

Phone dataset 0.665 0.687 0.760

Recall

Dataset Prasad 0.348 0.306 0.243

Dataset F #1 0.469 0.504 0.422

Dataset F #2 0.572 0.596 0.547

CMOS dataset 0.501 0.576 0.605

Phone dataset 0.759 0.383 0.731

F-measure

Dataset Prasad 0.499 0.433 0.372

Dataset F #1 0.573 0.596 0.539

Dataset F #2 0.547 0.528 0.483

CMOS dataset 0.612 0.684 0.673

Phone dataset 0.709 0.492 0.745

The best results are highlighted in bold

Table 5 Execution time (ms) for
each step on CMOS dataset and
phone dataset

CMOS dataset Phone dataset

Fornaciari Jia Our Fornaciari Jia Our

Edge detection 4.79 4.81 4.93 7.55 7.29 7.29

Preprocessing 16.30 16.04 16.29 26.75 25.39 25.20

Grouping 57.76 25.63 10.10 51.81 23.20 9.68

Estimation 7.72 2.96 6.27 9.81 4.50 5.80

Validation 3.07 1.08 3.96 4.84 2.14 4.36

Clustering 0.02 0.02 0.02 0.02 0.02 0.02

Total time 89.66 50.53 41.56 100.78 62.55 52.34

Counts of ellipse fitting 60.70 20.97 21.76 50.90 22.54 19.63

The best results are highlighted in bold

in size of 300×400 taken by mobile phone is 52.34 ms, and
the average value of F-measure is 0.745, which can meet the
requirement of real-time detection.

The proposed method can significantly speed up the
grouping procedure. However, it assumes that an ellipse has
four arcs in different quadrants. Therefore, the ellipse will
not be detected when large area of occlusion happens. In the
detection scenario where there is no obvious occlusion on the

elliptical target, the proposed method works better than the
conventional methods. Several thresholds are utilized, which
is not conductive to the optimization and stability of the algo-
rithm. However, the proposed method can satisfy most of the
actual detection condition. In the future, we will focus on
reducing the number of thresholds and try to improve the
stability of the algorithm.
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Fig. 25 Examples of images in three classic datasets. The first two
images are from Prasad dataset. The third and fourth images are from
Fornaciari dataset #1. The rest two images are from Fornaciari dataset

#2. a Original image, b canny edge map, c ellipses detected by the
proposed method, d Fornaciari’s method and e Jia’s method
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Fig. 26 Examples of images of CMOS dataset and phone dataset. The gray images of the first three lines come from CMOS dataset, and the color
images come from phone dataset. a Original image, b canny edge map, c ellipses detected by the proposed method, d Fornaciari’s method and
f Jia’s method
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Fig. 27 Detection results of Fornaciari’s method, Jia’s method and our method under salt-and-pepper noise with varying ratios of noise from 2 to
22% with the step 2%

Fig. 28 Application examples of ellipse detection for mechanical parts
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