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Abstract

This article studies the problem of detecting cerebral micro-bleeds (CMBs) using a convolutional neural network (CNN).
Cerebral micro-bleeds (CMBs) are increasingly recognized neuroimaging findings, occurring with cerebrovascular diseases,
dementia, and normal aging. Naturally enough, it becomes necessary to detect CMBs in the early stages of life. The focus
of this article is to infuse new techniques like Bayesian optimization to find the optimum set of hyper-parameters efficiently,
making even the simplest of CNN architectures perform well on the problem. Experimentally, we observe our CNN (five
layers, i.e., two convolution, two pooling, and one fully connected) achieves accuracy = 98.97%, sensitivity = 99.66%,
specificity = 98.14%, and precision = 98.54% on the test set (hold-out validation) when calculated over an average of ten
runs. The proposed model outperformed state-of-the-art methods.
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1 Introduction

Cerebral micro-bleeds (CMBs) are increasingly recognized
neuroimaging findings, emerging as diagnostic markers for
cognitive impairment and dementia [1], stroke and intracere-
bral hemorrhages (ICH) [2], and cerebral amyloid angiopathy
(CAA) [3]. Recent studies suggest that common etiolo-
gies can cause CMBs, including blood pressure, aneurysm,
blood vessel abnormalities, blood disorders, head trauma,
and brain tumors [4]. At the same time, some special eti-
ologies that cause CMBs include cocaine abuse, posterior
reversible encephalopathy, brain radiation therapy, intravas-
cular lymphomatosis (IVL), thrombotic thrombocytopenic
purpura (TTP), moyamoya disease, infective endocardi-
tis (IE), sickle cell anemia, B-thalassemia, proliferating
angioendotheliomatosis, cerebral autosomal dominant arte-
riopathy with subcortical infarcts and leukoencephalopathy
(CADASIL), genetic syndromes, and obstructive sleep apnea
(OSA) [5]. CMBs are tiny deposits of blood degradation
products, mostly consisting of hemosiderin. Hemosiderin is
a strong paramagnetic material and, hence, can be detected
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with a magnetic field [6]. This phenomenon, known as
the susceptibility effect, forms the basis for CMB imag-
ing techniques like three-dimensional T2*-GRE [7] and
susceptibility-weighted imaging (SWI) [8], with SWI being
the most sensitive one to date.

As the frequency of CMBs varies enormously depending
on the MRI study characteristics and selection of the study
subjects, reported prevalence in different clinical conditions
has considerably wide ranges: 18% to 71% in ischemic stroke
[9,10], 47% to 80% in ICH [9,11], or 17% to 46% in cog-
nitive decline/dementia [12]. Naturally enough, it becomes
necessary to detect CMBs in the early stages of life. However,
manual detection of CMBs is time-consuming, less accurate,
and subjective, which is especially evident from the high
inter-observer and intra-observer variability. These intrica-
cies arise due to their complex morphological structure and
widespread distribution throughout the brain [13]. Moreover,
itis easy to miss smaller CMBs or even mistake them for vein
cross sections as their sizes commonly range from 2 to 10 mm
[14].

The current literature points to the fact that deep learning
methods prove especially effective. Hence, we propose using
a convolutional neural network (CNN) to detect CMBs. This
method no longer demands the traditional handcrafted fea-
tures and instead learns the features that are most relevant for
making correct predictions, all by itself. However, acommon
limitation is the lack of exploration in the hyper-parameter
space. This is evident by the previous models that fail to
acquire a near-perfect accuracy, which is unneglectable in
a clinical setting. Hence, we suggest using Bayesian opti-
mization, a reasoning-based approach to find the perfect
hyper-parameter sleast evaluations possible, as shown in
Sect. 4. The integration of Bayesian optimization improves
upon the traditional hit-and-trail methods like random search
and grid search in both accuracy and training-efficiency per-
spectives. A comparison of this is illustrated in Sect. 5.6.
We also employ image augmentation to introduce a reg-
ularization effect, therefore reducing over-fitting. Image
augmentation helps increase the test set performance by gen-
eralizing to the data well, as illustrated in Sect. 5.3. All
this results in a highly compact, efficient, and near-perfect
classifier. In Sect. 5.7, we compare our model to some state-
of-the-art methods. Again here, we see that our model scores
better than the topmost performers, although being the small-
est one (5 layers), especially when compared to ResNet-50
(50 layers) and DenseNet-201 (201 layers).

2 Related work

Many researchers have made efforts to solve the problem
of CMB detection. Barnes et al [15] came up with a statisti-
cal thresholding algorithm to identify hypo-intensities within
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the images and employed support vector machines (SVM) to
separate affirmative CMBs from the marked hypo-intensities
based on features such as signal intensities and shapes.
Bian et al. [16] developed and tested a semi-automated
method for identifying CMBs on minimum intensity pro-
jected susceptibility-weighted MR images. Their algorithm
utilized 2D fast radial symmetry transform initially to detect
putative CMBs and then eliminated false positives by exam-
ining geometric features measured after performing 3D
region growing on the potential CMB candidates. Fazlollahi
etal. [17,18] presented two pieces of research. One utilizes a
novel cascade of random forest classifiers that are trained on
robust Radon-based features with an unbalanced sample dis-
tribution. Second, being a two-step technique that first detects
and bounds the potential CMB candidates using multi-scale
Laplacian of Gaussian. Then, inside each such bounding box,
a set of robust three-dimensional Radon- and Hessian-based
shape descriptors are extracted to train a cascade of binary
random forests (RF). Chen et al. [19] proposed their method
in a three-step approach: candidate localization with statisti-
cal thresholding, hierarchical 3D feature representation with
deep CNN and SVM classification to reduce false positives.
Van den Heuvel et al. [20] proposed a two-step method. In
the first step, each voxel is characterized by 12 features based
on the dark and spherical nature of CMBs, and a random for-
est classifier is used to identify candidate CMB locations. In
the second step, segmentations are made from each identified
candidate location. Subsequently, an object-based classifier
is used to remove false-positive detections of the voxel clas-
sifier. Kaaouana et al. [21] gave a rather interesting method.
They demonstrated a fast 2D phase processing technique for
computing internal field maps (IFM), which makes it possible
to characterize CMBs through their magnetic signature in a
routine clinical setting, based on 2D multi-slice acquisitions.
Wang et al [22] came up with a CNN-based approach for
identifying CMBs that exploits rank-based average pooling
scheme. Another innovative approach by Hong and Lu [23]
enables CMB detection via discrete wave transformation and
backpropagation neural network. A more recent method by
Liu J. et al [24] promotes CMB detection using ResNet-50
with transfer learning to compensate for the limited number
of training samples. At the same time, another transfer learn-
ing method is demonstrated by Tang C. et al [25] that utilizes
DenseNet-201 as the basic algorithm.

3 Method
3.1 Feature learning through convolution
In the classification of elementary binary images, a sim-

ple feed forward neural network might suffice, but these
networks perform poorly on images which have high spa-
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Table 1 Summary of the model

Type of layer Kernel size # of Filters Stride Padding # of Parameters Feature map
Input_Image (41,41, 1)
Conv_2D_1 (3,3, 1 64 (1, 1) 0,0) 640 (39, 39, 64)
Batch_Norm_1 256 (39, 39, 64)
ReLU_1 0 (39, 39, 64)
Max_Pool_2D 1 “4,4,1) 4, 4) 0, 0) 0 9,9, 64)
Conv_2D_2 (3,3, 64) 128 (1, 1) 1, 1) 73856 9,9, 128)
Batch_Norm_2 512 9,9, 128)
ReLU_2 0 9,9, 128)
Max_Pool_2D_2 4,4, 1) 4,4) 0,0) 0 (2,2, 128)
FC_1 1026 1,1,2)
Softmax_1 0 (1,1,2)

Total parameters: 76,290

Trainable parameters: 75,906
Non-trainable parameters: 384

Note: Dropout is not used in this model

tial dependences. Nevertheless, convolutional neural net-
works are successful in capturing these spatial and temporal
dependencies through the application of relevant filters. An
additional benefit of using convolution is its reusability of
weights, which leads to a reduction in trainable parame-
ters. Owing to these reasons, we adopt convolution into our
approach. The convolution operation consists of two main
components:

(a) Feature Maps: The CNN performs a series of convo-
lution operations. During each of such operations, the inputs,
commonly known as input feature maps, are converted into
output feature maps using filters. In our case, inputs to the
CNN will be grey-scale images which serve as the initial
input feature maps. A grey-scale image consists of a 2D
matrix, where each element of the matrix represents the inten-
sity of the corresponding pixel, hence making our initial input
feature maps 2D in shape.

(b) Filters: A filter is a 3D weight matrix, whose height
and width are hyper-parameters defined by the user and
whose depth is equal to that of the input feature map. Using
filters is acommon technique in image processing for enhanc-
ing any given image. It enables us to emphasize certain
features of the image or even remove other features. For a
deep learning model, this is especially vital, as it can help
bring out the relevant features of the image and train on them
alone while neglecting the redundant ones, which is con-
ducive to better classification. It depends on the application
as to what filters might work the best. Hence, the filters we
use in our CNN are matrices with variables as its elements,
usually referred to as weights. These weights are learned by
the CNN itself, based on the data fed to the network. This
way, we let the model select the features it wants to train on,
ensuring maximum precision.

During the process of convolution, a filter is stridden over
the input feature map, performing element-wise multiplica-
tion with the portion of the feature map it is currently on, and
then summing up the results into a single pixel. The filter
repeats this process for every location it strides over, creat-
ing an output feature map of a 2D shape. Finally, there is
the bias term unique to every filter matrix, which is used to
perform an element-wise sum with the resultant matrices.
The use of multiple filters can result in multiple 2D output
matrices. Hence the operation is extended in such a case by
stacking the output matrices over each other, giving rise to
3D output feature maps.

This operation can be seen in Fig. 1. The filters start from
the top-left corner of the input feature map and move to the
right with a specific stride value until they parse the com-
plete width. After that, they hop down to the extreme left
with the same stride value and repeat this process until the
entire feature map is traversed. The convolution operation
can be performed in two ways:

e (a) Valid Padding: The dimensions of the convoluted
image are less than those of the input image. This method
needs no prior preparation as a reduction in dimension-
ality is a natural consequence of convolution.

e (b) Same Padding: The dimensions of the resultant
image are the same as those of the input image. This
method can be achieved by padding the input image
with a border of zero-value pixels. So when this padded
image is convoluted, the height and width fall back to the
original dimensions. The general formula for finding the
height of the image after a convolution operation is given
in Eq. (1), where H is the height of the image, W is the
width, s is the value of stride, p is the padding, and [/]
denotes the /™ layer.

@ Springer



36 Page4ofi14

P. Doke et al.

Fig.1 Convolution operation Input Feature Map \
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3.2 Structure of the CNN

The model consists of two convolutional layers and one dense
layer. The input image is fed into the first convolutional layer,
which consists of 64 filters, each of kernel sizes 3*3*1. The
output of this convolutional layer is batch normalized and
passed to a ReLU activation function, whose output is fur-
ther passed to a max-pooling layer with a kernel size of
4*4*]1, A similar feature learning block consisting of a con-
volutional layer, batch normalization, ReLLU activation, and
max-pooling is then applied. All kernel sizes are the same as
the previous feature learning block, while a total of 128 filters
are used in the convolutional layer. The output of our feature
learning layers is then flattened and given to a dense layer,
which is coupled to a softmax activation function. This clas-
sifies the samples into CMBs and Non-CMBs. A summary
of the model is given in Table 1.

3.3 Training

After building the model as specified in Sect. 3.2, we pro-
ceed to train it. Out of several different training algorithms,
we specifically choose Adam [26] (adaptive moment esti-
mation). Our choice allows for better learning due to the
combined effect of momentum and scaling, aspects of SGD
with momentum and RMS-prop, respectively.

Momentum attributes to faster learning, as it takes the
moving average of the past gradients. With this characteris-
tic, SGD helps produce gradients that are consistent in the
direction of the optimum. RMS-prop allows for scaling the

@ Springer
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=I H: Height of the input feature map

W: Width of the input feature map
D: # of channels in the input feature map
FH: Height of the filter
FW: Width of the filter
NF: # of filters used for convolution

S: Stride
NF

Filter being stridden

gradients. It first calculates the moving average of squared
gradients and then scales the gradients found using momen-
tum to damp out undesired oscillations.
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vép
At I 4
Y T T (B ©@
t
S
At dp
I 5
T T (B ©)
~t
1)
§flp +e€

Equations (2) to (6) represent the mathematical implemen-
tation of these two Adam components. Here, f; is the
momentum term, f; is the RMP-prop term, p is some param-
eter of the network, dp is the derivative of the cross-entropy
function w.r.t. p, t is the time, « is the learning rate, and €
is an epsilon term for avoiding division by zero. It should be
noted that only in Egs. (4) and (5), ¢ is used as an exponent,
i.e., (B;)!. All other occurrences of ¢ should be treated as
notations.

Due to the momentum and scaling effects, Adam is gen-
erally regarded as fairly robust when compared to the other
optimizers, given the hyper-parameter choices are ideal.
These aspects of Adam lead us toward tuning the model
for yielding maximum possible accuracy. However, tuning
can be a lengthy process due to the limitless combinations
of hyper-parameters that can be tested. Hence, we go for a
technique that combines search with reasoning for greater
efficiency, namely Bayesian optimization.
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4 Tuning hyper-parameters using Bayesian
optimization

Hyper-parameter tuning aims to find the right hyper-parameter
choices for a given machine learning algorithm so that it
returns the best performance when evaluated on a test set.
As shown in Eq. (7), where f is considered to be the per-
formance, x is some hyper-parameter setting, and x,,, is the
optimum choice.

Xopt = argmax f (x). @)

xeX

There several ways to achieve this, with grid and random
search being the most common ones. These methods are
suitable for hyper-parameter tuning, but they do not learn
anything from the evaluated hyper-parameter sets during the
tuning process. This disadvantage of grid and random search
methods is why we turn to Bayesian optimization.

Bayesian optimization builds a probability model that
maps hyper-parameter values to the probability of getting
a certain value of the objective function, often referred to
as the score. Using these probabilities, it selects the most
promising hyper-parameter values to evaluate the true objec-
tive function.

While tuning hyper-parameters, the main problem arises
when an objective function is too expensive to compute.
Because for each set of new hyper-parameters, we have to
train the model from scratch to find out how well it performs.
At the same time, calculating gradients for most of the hyper-
parameters is impossible, leaving re-iteration the only option.
So there is aneed for a cheaper probability model that approx-
imates the true objective function, and we try to achieve the
same using Bayesian optimization. Bayesian optimization is
a class of mathematical methods for optimizing expensive
functions. These methods start by building a Bayesian sta-
tistical model (also called the “surrogate’) on the objective
function and are represented by P (y|x), where y is the score
and x is some set of the hyper-parameters. In most cases, this
statistical model is a Gaussian process prior.

The process of Bayesian optimization is as follows:

(a) Build a Gaussian process prior model of our objec-
tive function: Gaussian process models are generally good
for predicting results of future experiments and hence serve
well for our purpose. They assume that similar inputs give
a similar output, which means that the objective function
is smooth. As we do not know much about the hyper-
parameters, this prior is a sensible assumption. These models
also learn the appropriate scale for measuring similarity, i.e.,
they can realize the scale of each hyper-parameter setting.
This scale can indicate the amount of difference needed to
expect very different results.

f(x')
f(x') is normally distributed

Keeping the value of f(x) fixed

Fig.2 Conditioning on a multivariate Gaussian

Gaussian processes predict a distribution, instead of a sin-
gle value, for every hyper-parameter setting. They are called
Gaussian processes because these predictions are Gaussian
distributed. For predictions that are close to several consistent
training cases, the predicted Gaussian curves are relatively
sharp and have less variance. However, for predictions that
lie far away, curves tend to be more spread out and exhibit
high variance.

Mathematically, Gaussian process regression can be under-
stood as follows. Say we have a function “f” that we wish
to model. Given x and x’, we put the corresponding func-
tion outputs, i.e., f(x) and f(x’), in a vector and assume it
to be drawn from a multivariate Gaussian, as shown in Eq.
(8). Here, we have ) (kernel) a function that decreases with
[lx — x’|| and w as another function, which is usually set to
a constant.

[f(x)] ~N <[u(x)} [Z(x,x) Z(x,x’)D ®)
F(&x) p& TG ) Yo XD ] )

Figure 2 shows this Gaussian distribution in picture. If we
take the conditional probability keeping f(x) fixed, we
observe that f(x”) is normally distributed.

Gaussian regression takes this same calculation and gen-
eralizes it to multiple dimensions.

n(x1)

fx1) Do, x1) L Do (x, xg)

~N

bl

S w(xp) Dok, x1) - Do (ks Xg)

€))
We then proceed to Bayesian linear regression using all the
first k — 1 observations, to analytically compute the posterior

on a new k' point, given the rest of the observations. This is
achieved as follows:

= X1x-1) Y ixen Xx-)” f o) (10)

of =Y (k1) — Y%k X1k1)
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Using the formulas shown in Egs. (10) and (11), we are now
capable of computing the distribution at any required point
Xi, whose mean is u; and variance is crkz. In effect, if we take a
large (infinitely many) number of points, we can draw a whole
curve passing through their means. In addition, we can also
have the confidence intervals around them, hence forming
our Bayesian statistical model on the objective function, as
shown in Fig. 3. The black curve in the figure is the true
objective function, and the blue dashed curve is the Gaussian
regression model with confidence interval in sky-blue. Points
in black are the already explored sets hyper-parameters.

(b) Find the hyper-parameter values that maximize the
acquisition function: A good strategy about which setting
to try next can be as follows. We can keep track of the best
setting so far while evaluating settings in the region where it is
valuable to learn (where the acquisition function is optimum).

Say we want to maximize our objective function, and we
model the same using a Gaussian process, as in Fig. 4. Now,
consider the three predicted distributions on points a, b, and
c for three different hyper-parameter settings we would like
to try next. The dashed blue line represents the mean. Notice
that the upper limit of the confidence interval at b and c is less
than that at . So it is rational to try and evaluate the objective
function at a. This is because we are quite uncertain about
that region, and it is possible to find a new maximum at point
a. So learning at a is more valuable. We, therefore, require
a function whose optimum corresponds to this point @ and
is cheaper to evaluate and optimizable using our traditional
methods of gradients and Hessians. This function is often
known as the expected improvement acquisition function.

Mathematically, we implement it as follows. If we have
a posterior function f, which models the loss, and after n
evaluations, we find the minimum of this posterior to be
f* for some x*. If we do one more evaluation, our poste-
rior gets updated, and the value of the objective function at
some new point x is revealed to us, say f(x). If we wish to
stop here, the solution to our optimization problem would
be min(f*, f(x)). So the reduction in loss now becomes the
expected difference between f* and min(f*, f(x)), which
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Fig.4 Acquisition function for choosing the next point of evaluation

is conditioned over the n-times evaluated posterior, as shown
in Eq. (12).

Expected Improvement = E,[ f* — min(f*, f(x))]. (12)

Equation (12) can be further converted into Equation (13),
where n signifies that n evaluations have already been done,
f* is the optimum after first n evaluations, i, is the mean, oy,
is the standard deviation, ¢ is the probability density function
of a normal, and @ is the cumulative density function of a
normal. Optimally, we evaluate the objective at a point that
gives the maximum expected improvement.

Expected Improvement

=[f* = I + 0, ()9 (M)
on(x)
LU ol <_m> "
o (x)

(c) Evaluate the objective function and incorporate
the results into the Gaussian process posterior: Our next
step requires us to evaluate the objective function using the
set of hyper-parameters obtained previously via acquisition
function. This new observation leads to an improved under-
standing of the objective we aim to model and moves our
Gaussian process posterior from n evaluations to n + 1. The
same is depicted in Fig. 5, where x is the hyper-parameter
setting suggested by the acquisition function.

(d) Repeat steps (b) and (c) until the maximum number
of iterations is reached.

5 Experiments

5.1 Subjects

The CMB samples used in this article were collected from
patients with cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy (CADASIL),
while the otherwise samples were procured from some
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Fig.5 Gaussian process regression

Table 2 Background information about the subjects

Criteria CADASIL HC
Number of subjects 10 10

Age (years) 51.6 £ 9.6 53.8t6.1
Gender (male/female) 14/16 14/16
Education level (years) 122 £2.1 11.9 £2.8
Disease duration (years) 179 £ 17.1 -

healthy volunteers, also referred to as healthy controls
(HCs). Their 3D volumetric brain images of dimensions
364%448+*48 were reconstructed using the Syngo MR B17
software. More background information about the subjects
is given in Table 2.

Doctors specializing in neuroradiology were employed
to mark CMB voxels from the image data manually. Vox-
els were marked CMBs if they were labeled “possible” or
“affirmative,” while other classes were treated as non-CMBs.
Any conflicting samples were judged based on votes. The
exclusion criteria were as follows: (1) Blood vessels were
discarded and (2) lesions larger than 10mm were discarded.

5.2 Data generation
5.2.1 Image preprocessing

Input dataset is generated using a sliding window of 41%41
pixels. First, we slice the main 3D image into 2D images,
hence resulting in multiple cross-sectional axial plane image
slices of the brain varying in depth. The sliding window oper-
ation is then used to fragment these sliced images into pieces
of size 41*41 pixels. The window size of 41*%41 is specifi-
cally chosen as it provides optimally sized images (in terms of
memory) without compromising much on the quality, lead-
ing to higher efficiency in training. The sliding window is
stridden over the image from left to right and top to bottom
to produce samples. As for labeling, we check if the central
pixel p of the sample of interest is a corresponding CMB
voxel in its 3D counterpart or not, as shown in Eq. (14). Fig-

Table 3 Types of augmentations used

Augmentation Mean Variance Angle
Gaussian noise 0.1%255 -
Gaussian blur 0 1 -
Rotation - - (-25,25)
ure 6 shows these labeled samples.

true (1), if p belongs to CMB
label = (D P & (14)

| false (0), otherwise.
5.2.2 Train and test set

The dataset contains a total of 13031 samples, out of which
6407 belong to CMBs and 6624 correspond to non-CMBs.
We implement hold-out validation by splitting the data ran-
domly into two groups, namely training set and test set. The
split fraction is 0.7, i.e., 70% of the samples are put into the
training set, while the remaining 30% are used for evaluating
the deep learning model.

Moreover, data that are reserved for training undergo
image augmentation. Each sample in the training set is aug-
mented to produce a new artificial image. The original and
augmented sets are then combined to form the new training
set, doubling the size of the training samples we have. Test
data remain unaugmented.

5.3 Image augmentation

To make our deep learning model perform better, we
use image augmentation. This technique produces artificial
images by combining multiple augmentations to reduce over-
fitting and therefore improving accuracy on the test set. The
types of augmentations we use in our application are shown
in Table 3. As per our observations, only one augmentation
from blur and noise is chosen at a time, as they tend to cancel
out each other. We illustrate the augmented images in Fig. 7.

5.4 Results obtained by our proposed method

To evaluate the performance of our model, we use the mea-
sure of accuracy. Accuracy tells us how close our predictions
are to the ground truth. We also employ some extra perfor-
mance measures for future experiments.

TP + TN
Accuracy = (15)
TP 4+ TN + FP + FN
o TP
Sensitivity = ——— (16)
TP + FN
Specificit N (17)
ificity = ———
Peeliely = TN FP
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Fig.7 The first row shows the original unaugmented images, the second row onward augmentations are applied in the sequence given in Table 3,
and the last row corresponds to the mixed effect of all augmentations together

.. TP
Precision = ——. (18)
TP 4 FP

All the metrics of interest are illustrated in Egs. (15) to (18),
where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

In this experiment, we illustrate the results of using
Bayesian optimization. We choose three hyper-parameters
to optimize—learning rate, momentum term, and the RMS-
prop term. Detailed information on the range to probe into

@ Springer

the hyper-parameter space, as well as the results of Bayesian
optimization, is given in Table 4.

To evaluate performance, we proceed to train a model from
scratch using the optimum values. Performance results are
illustrated in Fig. 8 and Table 5. An accuracy of 99.73% was
observed on the training set and accuracy of 98.21% on the
test set. The model was trained for 5 epochs with a mini-batch
size of 64 samples. The optimum hyper-parameter settings
were found in just 13 iterations of Bayesian optimization.

Table 5 shows the accuracy on training and test sets before
we proceed to train the model and after we are done training
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Table 4 Hyper-parameter settings

Hyper-parameter name Range to probe Optimum value

Learning Rate (1075, 1) 10—2703
Momentum Term (0.0001, 0.9999) 4.015% 107!
RMS-prop Term (0.0001, 0.9999) 9.999 % 10!

Training algorithm used: Adam

Mini-batch size: 64

Number of epochs: 3

Optimum hyper-parameter settings found in iteration number: 13

it with the optimal set of hyper-parameters. It is evident from
the table that both train and test accuracy starts from 39.45%
and 28.24%, respectively. As shown in Fig. 8, due to a steep
gain in the first iteration, we do not see a gradual increase.
We also observe that training accuracy does a commendable
job at staying high; contrastingly, test accuracy fluctuates in
the second iteration. This fluctuation occurs due to the flow
of gradients that promote over-fitting. The accuracy on the
training set increases slightly, making the model memorize
the training samples. However, starting again from the third
iteration, training accuracy falls, and test accuracy rises. This
boost in test performance can be justified by the noise we
introduce in the training data using image augmentation, as
described in Sect. 5.3.

5.5 Comparison of different CNN structures

Deciding upon the structure of CNN can be quite difficult
since the perfect structure can vary from application to appli-
cation. Hence, to find the best fit for our problem, we explore
a few possible structures. Due to the size of images being
41%*41, we restrict our model with a maximum of two convo-
lutional layers, as two convolutional layers already reduce the
dimensions of the original image to a feature map with size
of 9*%9, making another iteration of convolution and pooling
impossible.

This experiment was performed by training six CNNs
from scratch, each of which had its hyper-parameters tuned
by Bayesian optimization. Adam was used as the optimiza-
tion algorithm, with a mini-batch size of 64 and the number
of epochs set to 5.

From the performances shown in Fig. 9, we observe that
models with one convolutional layer perform weakly, as one
such layer is not enough to extract the required features. Even
after increasing the dense layers, depreciation is noticed. A
plausible explanation for this is attributed to the inability
of a single convolutional layer to bring out the best pos-
sible features to learn on. Instead, the single convolutional
layer promotes learning on the redundant features, forcing
the feed-forward network to learn on incorrect data, hence
causing the poor test set performance. Adding more fully

connected layers generally allows for a complex classifier,
but compromises on the generalization. This effect is espe-
cially noticed in the decreasing test set performance with an
increasing number of fully connected layers.

Adhering to these facts, we hypothesize that more con-
volution layers and less dense layers are required for better
performance and therefore build three more models to test
it. Continuing our experiment, we find that our hypothesis
indeed holds.

Moving on to the models with additional convolution lay-
ers, we observe performance gains up to 99.73% on the
training set and 98.28% on the test set. The accuracy on the
training set remains approximately equal on all three mod-
els. However, when referring to the test performance, we see
a slight dip in the model with two fully connected layers.
Models with one and three fully connected layers perform
similarly, with the latter having an almost negligible lead.
Nevertheless, given that the performance is quite similar, we
prefer the model with one fully connected layer as it is smaller
and efficient.

5.6 Comparing Bayesian optimization with grid
search and random search

In this experiment, we compare the performance of random
and grid search to Bayesian optimization. Random search and
grid search are some alternatives to Bayesian optimization.
However, they tend toward being inefficient, as they do not
learn anything from their past evaluations of the objective
function.

We perform a maximum of 847 evaluations in a grid
search. 847 is specifically chosen, as it lets us create a
7*11*11 grid, enabling us to perform a thorough grid search.
To keep it fair, we iterate random search 847 times as well.
Table 6 shows the details of the hyper-parameter space to
probe for both these methods and also the results.

Using the optimal settings found by all the three methods,
we trained three models from scratch and compared their
performances side by side. Accuracy is considered the pri-
mary measure to evaluate performance, but we also employ
the previously discussed secondary measures of sensitivity,
specificity, and precision.

Table 7 and Fig. 10 show this head-to-head performance
comparison. We see that the results are quite accurate in all
three methods, and this is due to the structure of the net-
work and the techniques used. The biggest difference is seen
in the number of evaluations all three methods perform. As
expected, Bayesian optimization takes just 13 iterations to
find the optimum value, in comparison with 417 and 276 of
grid search and random search, respectively. These results
provide proof to our hypothesis, on why a reasoning-based
approach is better than hit-and-trial methods like grid search
and random search.
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Table 5 Training results

Before training (%) After training (%)

Training set accuracy 39.45 99.73
Test set accuracy 28.24 98.21
Training algorithm used: Adam
Number of epochs: 5
Mini-batch size: 64
Table 6 Hyper-parameter settings
Grid search
Hyper-parameter name Range to probe Optimum value
Learning rate (1076,107%,107*,1073,1072, 101, 1) 103
Momentum term (0.0001, 0.1,0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9, 0.9999) 4% 107!
RMS-prop term (0.0001,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 0.9999) 9% 107!

Random search
Hyper-parameter name

Range to probe

Optimum value

Learning rate
Momentum term

RMS-prop term

(1076, 1)
(0.0001, 0.9999)
(0.0001, 0.9999)

1072,83]

3.136 % 107!
7.717 % 107!

Training algorithm used: Adam
Mini-batch size: 64
Number of epochs: 3

For grid search, optimum hyper-parameter settings found in iteration number: 417
For random search, optimum hyper-parameter settings found in iteration number: 276

5.7 Comparison with the state-of-the-art methods

We compared our model to some of the state-of-the art meth-
ods. These methods include four-layer SAE [27], seven-layer
SAE [28], CNN+RAP [22], DWT+PCA+BPNN [23], eight-
layer CNN [29], nine-layer CNN-SP [30], ResNet 50 [24],
and DenseNet-201 [25]. Performance results are based on
the four average measurements of ten runs.

Figure 11 shows this comparison plot. Our method per-
forms better than the rest with an accuracy = 98.97%,
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0.900

accuracy

0.875
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train accuracy
0.800 test accuracy
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epoch

Fig.8 Accuracy and Loss curves
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sensitivity = 99.66%, specificity = 98.14%, and precision =
98.54%. DenseNet-201 [25] comes closest to our approach,
but all of its metrics stop well before the 98% mark. ResNet
50 [24] performs better than our model in terms of speci-
ficity, but good performance in just one aspect makes the
model quite unbalanced. While comparing our approach to
both the above methods, we find them to be computationally
heavy. Our model achieves a higher accuracy with just five
layers instead of the 201 layers of DenseNet and 50 layers of
ResNet. Even though these networks are enormous and can
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Table 7 Training results

99 100

Method (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Iterations required
Bayesian optimization 98.21 97.11 99.55 99.62 13
Random search 99.51 99.67 99.32 99.44 417
Grid search 99.08 99.53 98.52 98.80 276

Training algorithm used: Adam

Number of epochs: 5

Mini-batch size: 64
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Our Model
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Fig. 11 Comparison with state-of-the-art methods

learn a highly complex hypothesis, our smaller but highly
tuned model fits the problem better.

The nine-layer CNN-SP [30] outperforms the remaining
methods with its balanced performance and manages to score
above 97% in every metric. Stochastic pooling implemented
here helps in regularizing the deep learning network. How-
ever, stochastic pooling also leads to a higher bias, hence
under-fitting the data. Another approach that focuses on pool-
ing methods is the CNN+RAP [22] method, which uses
rank-based pooling to achieve higher translational invariance
and scores about 97% in every metric.

Another approach, the eight-layer CNN [29], is very
unbalanced but still scores no less than 92% in every met-
ric. Subsequently, we find two SAE-based neural network
approaches, with the seven-layer [28] being a bit more accu-
rate but unbalanced than the four-layer [27]. Both methods
still score above the 93% mark. Moreover, we observe the
least accurate of them all, DWT+PCA+BPNN [23], with
every metric being less than 89%.

Comparing to the state-of-the-art techniques, we find that
our high performance is attributed to the reasoning-based
hyper-parameter search we employ. Image augmentation also
plays a crucial role in this success.

6 Conclusion

Early detection of CMBs attributes to early detection of
related diseases and hence is of crucial importance. Our
research focuses on a CNN-based approach, which is tuned
using Bayesian optimization. We tested different methods to
tune hyper-parameters and found our proposed method to
be more efficient. Further comparing our model to the state-
of-the-art methods, we again observed that our model scores
better than the topmost performers, although being the small-
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est one (5 layers), especially when compared to ResNet-50
(50 layers) and DenseNet-201 (201 layers). This is based on
the fact that we achieve an accuracy = 98.97%, sensitivity =
99.66%, specificity = 98.14%, and precision = 98.54%.

There are a few limitations to our model, which we plan
to improve in the future. For instance, we can include more
classes or separate classes for pathological brain diseases.
Currently, we are using a sliding window to fragment images
into smaller pieces, which are then fed to CNN. In future
research, we can try to work directly with the 3D MRI
images, bypassing the whole sliding window operation. This
can bring more efficiency to our approach.

Furthermore, we will also focus on developing an unsu-
pervised learning algorithm or semi-supervised learning [31]
algorithm, as manual labeling of data is tedious if we wish to
collect larger datasets for more sophisticated practical appli-
cations.
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