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Abstract
Glaucoma is a retinal disease caused due to increased intraocular pressure in the eyes. It is the second most dominant cause of
irreversible blindness after cataract, and if this remains undiagnosed, it may become the first common cause. Ophthalmologists
use different comprehensive retinal examinations such as ophthalmoscopy, tonometry, perimetry, gonioscopy and pachymetry
to diagnose glaucoma.But all these approaches aremanual and time-consuming. Thus, a computer-aided diagnosis systemmay
aid as an assistive measure for the initial screening of glaucoma for diagnosis purposes, thereby reducing the computational
complexity. This paper presents a deep learning-based disc cup segmentation glaucoma network (DC-Gnet) for the extraction
of structural features namely cup-to-disc ratio, disc damage likelihood scale and inferior superior nasal temporal regions for
diagnosis of glaucoma. The proposed approach of segmentation has been tested on RIM-One and Drishti-GS dataset. Further,
based on experimental analysis, the DC-Gnet is found to outperform U-net, Gnet and Deep-lab architectures.
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1 Introduction

Glaucomawell-known as “silent theft of sight” was probably
recognized as a disease in the initial years of the seventeenth
century, when the Greek term glaukEomameaning obscurity
of the lens or cataract signifying lack of understanding of the
disease came into existence. It begins due to an increase in
the pressure of an eye, known as intraocular pressure lead-
ing to damage to the optic nerve. The aforementioned optic
nerve carries visual information from the retina to the brain
resulting in visualization of the outside world [1]. According
to the World Health Organization (WHO), glaucoma is one
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of the leading causes of blindness, which has affected more
than 60 million people to date across the globe and may rise
to 80 million by 2020. Also, it is estimated to influence 12
million people in India around one-fifth of the total Indian
population. Its common symptoms include sudden visual dis-
turbance, severe eye pain, blurred vision, red eyes and halos
around lights. This disease is normally found to affect people
who are elder than 40 years [2]. Ophthalmologists use differ-
ent comprehensive examinations such as ophthalmoscopy,
tonometry, perimetry, gonioscopy and pachymetry to diag-
nose glaucoma. Tonometry is the measure of internal eye
pressure, whereas ophthalmoscopy is the examination of the
colour and shape of the optic nerve. Perimetry is the visual
field analysis; pachymetry is themeasure of the corneal thick-
ness, and gonioscopy is the measure of the angle between the
iris and cornea [3].All these approaches aremanual, consume
time and may lead to biased decisions by different experts.

Thus, there is a need for a computer-aided diagnosis sys-
tem (CAD) which can act as a second opinion for doctors.
CADs for glaucoma use a retinal fundus imaging as an input
to extract different types of features and classify the retinal
image as “abnormal” or “normal” [4]. The retinal fundus
image is acquired using a fundus camera which consists of
a microscope attached with a flash-enabled camera to cap-
ture the image of the interior surface/backside of an eye. The
fundus image comprises of the optic cup, optic disc, rim and
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Fig. 1 Retinal fundus image

inferior, superior nasal, temporal rim regions shown in Fig. 1.
Here, the optic disc is the centric bright portion of retina
where various optic nerves come together, and the optic cup
is the depression of changeable size present on the optic disc.
Glaucoma can be diagnosed by analysing the progression of
the optic cup or thinning of rim [5].

The structural features used for diagnosis of glaucoma by
CAD systems include cup-to-disc ratio (CDR), disc damage
likelihood scale (DDLS) and inferior superior nasal temporal
(ISNT) regions defined as:

(i) Cup-to-disc ratio (CDR) CDR is defined as the ratio
of horizontal length, vertical length and area measure-
ments of the optic cup to the optic disc, computed using
Eqs. (1)–(3) for diagnosis of glaucoma.

HCDR � Hoptic_cup

Hoptic_disc
(1)

VCDR � Voptic_cup
Voptic_disc

(2)

ACDR � Aoptic_cup

Aoptic_disc
. (3)

Here, HCDR is the horizontal cup-to-disc ratio, VCDR

is the vertical cup-to-disc ratio, and ACDR is the ratio
of the area of the cup to the area of the disc. Further,
Hoptic_cup, Voptic_cup and Aoptic_cup signify horizontal
length, vertical length and area measurements of the
optic cup, respectively.WhileHoptic_disc,Voptic_disc and
Aoptic_disc signify horizontal length, vertical length and
area measurements of the optic disc, respectively. The
average CDR value for a normal eye is considered to
be less than 0.3 and that for a glaucomatous eye is

considered to be more than 0.5, while the ones in the
range 0.3–0.5 lies in suspect cases [6].

(ii) Disc damage likelihood scale (DDLS) DDLS is the
ratio of the minimum rim width to the diameter of the
disc. It is computed using Eq. (4).

DDLS � MinRimwidth

Discdia
. (4)

Here, MinRimwidth is the minimum width of the rim
and Discdia is the diameter of the optic disc. DDLS
value for a normal eye is more than 0.3, and that for a
glaucomatous eye is less than 0.3 [7].

(iii) Inferior superior nasal temporal (ISNT) rule ISNT rule
specifies the order of rim width in inferior, superior,
nasal and temporal regions. The normal eye follows
the order given in Eq. (5), while the abnormal eye does
not follow the same.

I < S < N < T . (5)

Here, I, S,N andT represent thewidth of rim in inferior,
superior, nasal and temporal regions [8].

Although many approaches have been used to date for
glaucoma diagnosis using CDR, very few [9, 10] have uti-
lized all the three structural features at the same time. Also,
improving the accuracy of segmentation is of great signifi-
cance for large scale clinical use, as better the performance
of segmentation, the better is the diagnosis. Thus, this work
presented an automated approach for diagnosis of glaucoma
using CDR, DDLS and ISNT as a diagnostic feature. Here,
the segmentation of optic disc and optic cup have been per-
formed using DC-Gnet, and the performance is found to
be better than the U-net, Gnet and Deep-lab. The proposed
methodology comprises of:

1. Pre-processingof input fundus images to removeoutliers.
2. Segmentation of optic disc and optic cup using DC-Gnet.
3. Calculation of CDR, DDLS and ISNT.

Deep learning has played a major role in the detection
and diagnosis of diseases such as cancer, glaucoma, etc. The
approach that has been used here uses convolutional neural
networks (CNNs) to constructively segment the optic disc
and cup using downsampling and upsampling. CNNs are a
class of deep neural networks that are primarily used for
image processing. When an input is fed to a CNN, it is con-
volvedwith a featuremap, i.e. convolution filter and the result
is passed on to the next layer. The convolution operation is
performed between the input and the feature maps thereby
forming a network between each layer. The input to a CNN
is an image of size (number of images)× (image width)×

123



DC-Gnet for detection of glaucoma in retinal fundus imaging Page 3 of 14 34

(image height)× (image depth), and after convolving with a
feature map, i.e. a filter the output is an image of size (num-
ber of images)× (image width)× (image height)× (number
of channels) [11].

Basic steps followed by CNN are as follows:

(i) Padding Padding prevents the size of the image from
decreasing and thereby retaining the actual size of the
image. It prevents the image from disappearing and
allows the input size and output size to be the same,
using Eq. (6)

pad � ( f − 1) ÷ 2. (6)

Here, ‘f ’ represents the size of the filter. It is used to
perform the convolution of filter ‘f ’ having size ‘f × f ’
with the image portion of size ‘f × f ’.

(ii) CNN output The output of a convolutional neural net-
work is determined using Eq. (7)

Output � (Input + 2 × pad − f )/s + 1 (7)

where ‘Input’ signifies input dimension, ‘pad’ is the
padding size, ‘f ’ is the filter dimension and ‘s’ is the
stride size.

(iii) CNN layer output Finally, the output of a convolution
layer is computed using Eqs. (8) and (9)

zn � W ·
(
xn−1

)
+ bn (8)

xn � an(zn) (9)

where ‘W ’ represents weights of the convolution layer,
‘xn−1’ is the intermediate value obtained from the pre-
vious layer, ‘b’ is the bias, ‘xn’ signifies output of the
convolution layer and ‘an’ is the activation function.

The approach presented in this paper involves modifica-
tion in the architecture ofU-net to improve the accuracy of the
optic disc and optic cup segmentation. U-net is a CNN that
includes upsampling layers instead of maxpooling layers to
increase the resolution of the output. There is a large number
of feature channels in the upsampling layers, which allows
the propagation of context information to the higher resolu-
tion layer through the network, this gives the architecture a
U-shaped structure. U-net is made up of two parts—a con-
tracting and an expanding path. The contracting part consists
of the typical convolutional network, i.e. convolution layers,
rectified linear unit (ReLU) andmaxpooling layers. The con-
tracting part results in a decrease in the spatial dimensions
and an increase in feature information. On the other hand, the
expanding part consists of upsampling layers and concate-
nation layers. The expanding part involves the combining of

the spatial and feature information and its concatenation with
the high-resolution features from the contracting part [12].

The rest of the paper is further organized into Sect. 2
comprising of related work, Sect. 4 experimental setup and
datasets used andSect. 5 for themethodology. Further, Sect. 6
includes performance metrics, Sect. 7 includes training and
testing parameters, experimental results and discussions fol-
lowed by conclusion in Sect. 8.

2 Related work

Researchers across the globe have performed different
approaches for segmentation of optic disc and optic cup using
retinal fundus images. These approaches are categorized
into two broad categories, i.e. the computer vision-based
approach and deep learning-based approach. Computer
vision-based approach is further categorized into threshold-
ing, contouring and clustering-based approaches. Some of
the commonly used approaches are as follows:

2.1 Computer vision-based approaches

2.1.1 Thresholding-based segmentation

Walter and Klein [13] applied thresholding followed by mor-
phology to segment optic disc from input retinal fundus
image, and the gradient-based traditionalwatershedwas used
to extract contours from the optic disc. But the approach was
not able to perform optimally for images with low contrast.

Further, Pallawala et al. [14] used wavelet transformation
and ellipse fitting to delineate optic disc from retinal fundus
image. Daubechies wavelet was employed to get wavelet fea-
tures and thresholding, followed by image subtraction to get
the optic disc image.

Further, Abdel-Ghafar andMorris [15] gave thresholding-
based approach for segmentation of optic disc from retinal
fundus image. Sobel operatorwas initially applied to enhance
the input image and thresholding followed by circular Hough
transform was applied to achieve approximate boundaries of
the optic disc with mean and variance as thresholds.

Liu et al. [16] segmented optic disc and optic cup to
diagnose glaucoma using the CDR. Optic disc was seg-
mented using the variational level set, and ellipse fitting was
applied to smoothen the contour. Whereas, optic cup was
segmented using thresholding followed by variational level
set and ellipse fitting.

Zhang et al. [17] also worked on extraction of disc and cup
using intensity-based information to analyse histogram and
calculate threshold values for thresholding. The variational
level set followed by ellipse fitting and the convex hull was
applied for extraction disc and cup to calculate CDR.
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Later, Sarkar and Das [18] suggested thresholding-based
approach for segmentation of optic disc and optic cup.
Median filter was initially applied to smoothen the image,
and adaptive thresholding was applied to extract optic disc
and optic cup. CDR was then calculated to diagnose glau-
coma at an earlier stage.

Priyadharsini et al. [19] applied histogram equalization
followed by connected components to extract segment optic
disc. Circular Hough transform was thereafter applied to
refine the segmentation and morphology followed by Otsu’s
thresholding was used for segmentation of optic cup.

2.1.2 Contouring-based segmentation

Therefore, Osareh et al. [20] utilized colour spaces for local-
ization of optic disc. Retinal vessels present in the input
image were removed by applying morphology in the ‘L’
channel of ‘HLS’, ‘Lab’, and ‘Lch’ colour space. Gradient-
based active contourwas then employed for the segmentation
of optic disc in case of low contrast images as well.

Later,Chrastek et al. [21] presented an automatic approach
for segmentation of optic nerve head for glaucoma diagnosis.
Input retinal image was initially pre-processed using normal-
ization and median filtering to estimate non-uniform illu-
mination. Active contour modelling was applied to segment
optic disc and circular Hough transform to refine boundaries.

Similarly, Blanco et al. [22] with few modifications pre-
sented another approach for segmentation of optic disc using
gradient vector field (GVF) followedby fuzzy circularHough
transform, where the initial region of interest for GVF was
extracted using canny edge detector.

Datt et al. [23] used red channel of input retinal fundus
image to segment optic disc and green channel to segment
optic cup. Retinal vessels present in input images were
suppressed using morphological operations in respective
channels. Canny edge detector followed by circular Hough
transform was then employed for the extraction of initial
contour, and active contour was applied for segmentation of
optic disc. Medial axis was thereafter used for segmentation
of optic cup by interpolation to avoid differences in intensity
within cup region. Finally, the structural feature CDR was
extracted to diagnose glaucoma using retinal fundus image.

Yin et al. [24] suggested median filtering of green channel
input RGB fundus image for removal of vessels. Active shape
modelling followed circular Hough transform and ellipse fit-
ting was utilized to segment optic disc and optic cup for glau-
coma diagnosis. The proposed approach was found to out-
perform level set by improving the accuracy of segmentation.

Xu et al. [25] gave reconstruction-based learning approach
for localizationof optic cupbycodebookof reference images.
Random sampling was used for the generation of a code-
book, and cup descriptors identified were reconstructed with
Hadamard product cost function. Lagrange multiplier with

Gaussian distance and Kronecker product was used for
minimization of the objective function, and the CDR was
calculated for diagnosis of glaucoma.

Later, Cheng et al. [26] suggested dissimilarity-based
approach for glaucoma screening. Three approaches, namely
circular Hough transform, proceeded by ASM, superpixel
classification and ellipse Hough transform to segment optic
disc and optic cup for glaucoma diagnosis using CDR.

2.1.3 Clustering-based segmentation

Kavitha et al. [27] utilized morphologically closed green
channel of retinal fundus image to segment optic cup by
component analysis method. The value of CDR calculated
thereafter using segmented regions was used for prediction
of ‘normal’ and ‘abnormal’ glaucoma cases.

Khalid et al. [9] presented a clustering-based approach
for segmentation of optic disc and optic cup from retinal
fundus images. Morphological dilation and erosion were ini-
tially applied on the red channel and green channel of input
images to remove the vessels for proper segmentation. Fuzzy
C means clustering was then applied on pre-processed fun-
dus image to segment optic disc and optic cup for glaucoma
diagnosis using CDR.

Further, Mittapali and Kande [28] gave an optic cup and
optic disc segmentation approach for diagnosis of glau-
coma. Pre-processing was initially performed by replacing
vessel pixels with non-vessel pixels followed by use of a
median filter to smoothen the input image. Segmentation
was then performed by spatial weighted fuzzy C means
(SWFCM)-based thresholding using the distribution of pix-
els in a grayscale image. Finally, the structural features,
namely CDR, ISNT and DDLS, were calculated for diag-
nosis of glaucoma.

Also, as per the survey conducted by Thakur and Juneja
[10], it was observed that the approaches used emphasized
more on the optic disc, while the diagnosis of glaucoma also
involves the use of structural parameters such asCDR,DDLS
and ISNT obtained using different segmentation approaches.
Calculation of all these parameters is performed using the
information of both optic disc and optic cup.

2.2 Deep learning-based approaches

Sevastopolsky [29] pre-processed the input retinal fundus
image using contrast limited adaptive histogram equalization
to improve the quality of the image. Segmentation of optic
disc and optic cup was performed using modified U-net with
a smaller number of filters to reduce the computational com-
plexity. Thereafter, Fu et al. [30] presented a single-stage
joint segmentation of optic disc and optic cup using convolu-
tional neural network comprising of U-shaped convolutional
network, multiscale input layer, multi-label loss function and
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side output layer. Also, Sun et al. [31] employed recurrent
convolutional neural networks for the segmentation of optic
disc from retinal fundus images and found that the perfor-
mance of the proposed network was better than state of the
art. Further, Chakravarty and Sivswamy [32] presented the
joint segmentation of disc and cup using a multi-task convo-
lutional neural network. Before segmentation, input images
were cropped to extract the desired region of interest, and
after segmentation thresholding followed by morphology
was applied to refine the regions of segmented areas. Simi-
larly, Edupuganti et al. [33] used a fully convolutional neural
network (FCNN) to segment optic disc and optic cup. But
the computational complexity of the network was very high.
Thus, Wang et al. [34] recently in 2019 suggested U-net-
based deep learning model for segmentation of optic disc
from retinal images. Also, Juneja et al. [35] employed deep
learning-based segmentation of optic disc and optic cup using
Gnet and Kang et al. [36] used Deep-lab V3+ for segmenta-
tion of optic disc and optic cup .

3 Deep learning-based segmentation
approaches

This section describes the implementation of various state-
of-the-art approaches used for comparison with the proposed
approach.

3.1 U-net

U-net is a CNN that was developed to segment biomedical
images. U-net includes upsampling layers instead of max-
pooling layers which increases the resolution of the output.
There a large number of feature channels in the upsampling
layers which allows the propagation of context information
to the higher resolution layer through the network, this gives
the architecture a U-shaped structure. U-net is made up of
two parts—a contracting and an expanding path. The con-
tracting part consists of the typical convolutional network,
i.e. convolution layers, rectified linear unit (ReLU) and max-
pooling layers. The contracting part results in a decrease in
the spatial dimensions and an increase in feature information.
On the other hand, the expanding part consists of upsam-
pling layers and concatenation layers. The expanding part
involves the combining of the spatial and feature informa-
tion and concatenates with the high-resolution features from
the contracting part [12].

3.2 Gnet

Gnet is a modified U-net architecture which can perform
better than the traditional U-net in segmenting the optic disc
and optic cup. The key feature of Gnet is the increase in the

filter size from (3, 3) to (4, 4), in maxpool layer from (2, 2)
to (4, 4) and in upsampling layer from (2, 2) to (4, 4). This
leads to an increase in the total number of filters used in Gnet
to 256, which is double the number of filters used in U-net.
This increase in filter size leads to an increase in the accuracy
of segmenting the optic disc and optic cup [35].

3.3 Deep-lab

Deep-lab is a model developed for semantic segmentation of
the optic cup and optic disc. Deep-lab uses atrous convolu-
tions to extract features from the images along with batch
normalization layers to facilitate an efficient training pro-
cess. The model also uses atrous spatial pyramid pooling to
extract features from the images with long-range informa-
tion. Deep-lab has an encoder–decoder structure, in which
the encoder performs the above task and decoder refines the
model results along with the boundaries. The output from the
encoder–decoder structure is passed through a binary com-
ponent analysis technique to get the final result. The final
result is then used to calculate CDR [36].

4 Experimental setup and datasets used

This section presents the details of the environmental setup
employed for the performance of experimentation of the pro-
posed approach and state of the art for the comparison. Also,
it emphasizes the details of the dataset used for analysis in
the study.

4.1 Experimental setup

The segmentation approaches of the optic disc and optic
cup in retinal fundus images used in this study were imple-
mentedonpythonversion3.7 andTensorFlowversion1.13.1.
Furthermore, the execution was performed on the following
hardware setup:

• CPU: Two Intel® Xeon® CPU E5-2650 v4 @2.20 GHz
• GPU: nVidia Titan Xp 12 GB GDDR5X
• Memory: 256 GB ECC DDR4 RAM (32 GB×8)
• OS: KDE Neon
• Nvidia Drivers v430 and CUDA Toolkit 10.1

4.2 Datasets

(i) DRISHTI-GS The dataset comprises 101 retinal fun-
dus images with 30 normal images and 71 glauco-
matous images acquired using a retinal fundus cam-
era. The ground truth for comparison of implemented
approaches comprises of the ‘normal/abnormal’ labels
and soft segmented maps of ‘disc/cup’ generated by
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the researchers of the IIIT Hyderabad in alliance with
Aravind eye hospital in Madurai, India. It also includes
a.txt file for each retinal image comprising of CDR
values, which is a significant diagnostic parameter for
glaucoma. Further, the images in the data repository are
gathered from people of varying age groups visiting the
hospital, with images acquired under varying brightness
and contrast [37].

(ii) RIM-One This dataset comprises of 166 retinal fundus
images with labels “glaucoma” or “non-glaucoma” fol-
lowed by ground truth of cup and disc. The images in
the dataset are acquired under different brightness and
contrast using Nidek AFC-210 retinal fundus camera.
It includes 92 normal images and 74 abnormal images
(glaucoma/suspect) [38].

5 Methodology

The approach used for the detection of glaucoma relies on
precise segmentation of optic disc and optic cup. The fundus
images available in the dataset were too large to be directly
fed into the convolutional network; hence, croppingwas used
to reduce the size of the image. Further, as the training of
network requires a large number of data, augmentation was
performed to increase the number of images in the dataset.
The images were then split into red, green and blue chan-
nels. Red channel was used for the segmentation of the optic
disc due to better visibility of optic disc in the red chan-
nel as compared to green and blue channels. Whereas the
blue channel was used for the segmentation of the optic cup
due to the highest contrast of optic cup boundaries in this
channel as compared to green and red channels. Thereafter,
the images were fed into the CNN model as input and were
trained to segment the optic disc and optic cup while pass-
ing through the different convolutional layers. Finally, the
values of CDR, DDLS and ISNT were computed for diagno-
sis. Figure 2 shows the diagrammatic representation of the
methodology used for the detection of glaucoma.

The detailed explanation of the procedural steps is as fol-
lows:

5.1 Pre-processing

The pre-processing was done to remove irrelevant details
from the input data. Diagnosis of glaucoma with structural
parameters such as CDR, DDLS and ISNT in retinal imaging
involves an analysis of the pale yellowish region in the centre
called the optic disc and depth of variable size called an optic
cup. The acquired image comprises of extra irrelevant details
leading to an increase in the size of an image, as a result of
which computation time is increased. Also, the presence of
retinal vessels results in the reduction in segmentation accu-

racy. Thus, the pre-processing of the retinal images included
cropping to remove irrelevant details and reduce the size of
the image, augmentation to increase the number of images
in the dataset for training convolution network followed by
separation of channels for clear visibility of optic disc and
optic cup suppressing the retinal vessels.

5.2 Segmentation using DC-Gnet

The retinal fundus images input to the CNN model were
initially cropped to 512×512 pixels and then were resized to
256×256 pixels, as the original size of the imageswere quite
large, and CNN was not able to train due to the high-power
computation. The images were then further normalized for
easier computation. The DC-Gnet with 28 layers comprising
of 2Dconvolutional layers, pooling layers, dropout layers and
upsampling layers was used for segmentation of optic disc
and optic cup from pre-processed images. The convolutional
layers extracted features from the resized images using the
convolutional filters. The images were then downsampled up
to some extent without significant loss of data using a low
pass filter in the convolutional layer. The use of low pass filter
before downsampling in the convolutional layer reduces the
high-frequency components, which creates attenuation and
retains only the significant details for further processing. The
model then built a binary mask using the features extracted
by upsampling using the upsampling 2D layer. The model
gives a binary image as an output of the input image. The
logic output per pixel is itself combined by the model to give
a binary image as an output. Also, the ground truth available
in the datasets used for experimentation is in the form of a
binary image.

Further, the training is performed in such away that output
is a binary mask, and thus the model outputs a binary image.
The upsampling 2D layer maintained the connectivity in the
model by doubling the dimensions of input from convolu-
tion 2D layer, thereby attaining the shape of the input image.
Pooling layers and dropout layers were employed to drop
features while training to prevent the model from overfitting.
A dropout of 0.18 was used after every two convolutional
2D layers and after every upsampling layer. Also, the value
of dropout was varied, but the best results were observed in
this case. The layers were then activated by ReLU activa-
tion function. The output obtained was a binary mask of size
256×256 pixels.

The binary image was then masked and ANDed with the
original cropped RGB fundus image. Thus, the two stages
of segmentation, i.e. for optic disc and optic cup, were per-
formed. Two-stage segmentation used the two different U
nets for optic disc and optic cup, and the masking was used
to improve the segmentation outputs. Also, it reduced the
number of unwanted pixels and offered better visibility of
the optic cup in the image achieved. Thus, masking helps
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Fig. 2 Methodology

to reduce the computation and removes the background pix-
els which do not contribute to the prediction of the optic cup.
The original cropped RGB fundus image was then again split
into red, green and blue channels. The blue channel was then
used for the segmentation of optic cup since, due to clear vis-
ibility in this channel. The model was thus made to perform
the same operations on the image as it did to get the binary
mask of the optic disc, but this time the region of interest for
the model was the optic cup. The binary image of the optic
cup was then ANDed with the cropped RGB fundus image.
Masking the original cropped fundus image with a binary
mask of the optic cup creates a new RGB image. This RGB
image is split into RGB channels, and the green channel is
used to train another model to get the binary mask of the
optic cup. This resulted in a binary image of the optic cup of
size 256×256 pixels.

In conventional U-net, all conv2d layers had a filter size of
(3, 3), whereas, in modified U-net the downsampling conv2d
has a filter size of (4, 4). The upsampling layer also has a fil-
ter size of (2, 2) in conventional layers, whereas, in modified
U-net, it has a filter size of (4, 4). The number of filters in
the first conv2d layer is 32, 64 in the next 2 layers, and 128
in the further 2 layers. Maxpool has a pool size of (2, 2) in
the conventional U-net, whereas, (4, 4) in the modified U-
net. Larger filter size in modified U-net helps to extract more
features from the image. As each layer adds a large number
of parameters, a larger size of maxpool helps to downsample
effectively. The dropout layer in themiddle has been removed
in the modified U-net as it leads to loss of information which
further leads to underperformance of the model. Thus, only

a single dropout was used in such a way that loss of data is
minimal, and no significant data are lost. The use of low pass
filter before downsampling in the convolutional layer reduces
the high-frequency components, which creates attenuation
and thus retains the significant details for further processing.
Also, the larger filter size of the upsampling layer than the
conventional U-net was used to get better performance. The
DC-Gnet used for segmentation with the arrangement of dif-
ferent layers is shown in Fig. 3, and the block diagram for
the same is given in Fig. 4.

5.3 Calculation of CDR, DDLS and ISNT

The predicted binary mask of disc and cup was then used to
calculate the structural parameters CDR, DDLS and ISNT.
These masks were then individually traversed either verti-
cally or horizontally and width measures were noted. After
getting the maximum or minimum width for each mask in
each traversal, the axis of traversal was rotated by an angle
equal to the value given by the precision angle (more is the
precision angle, more is the accuracy) and the same process
was repeated till the rotation of the image to 360 degrees.
These measures were then inserted into Eqs. (1)–(5) to get
values of CDR, DDLS and ISNT.

6 Performancemetrics

The performance of the segmentation approaches used for an
optic disc and optic cup was analysed using metrics such as
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Fig. 3 DC-Gnet architecture

Fig. 4 Block diagram of DC-Gnet

dice similarity, Jaccard index and accuracy derived from the
values of true positive (TP), false positive (FP), true negative
(TN) and false negative (FN).

TP is defined as the region of image segmented as disc/cup
and also belongs to disc/cup.
FP is defined as region of image segmented as disc/cup,
but does not belong to disc/cup.
TN is defined as region of image not segmented as
disc/cup, and also does not belong to disc/cup.
FN is defined as regionof imagenot segmented as disc/cup,
but belongs to disc/cup.

Here, the values of TP, FP, TN and FN are derived using
background area (BA) of the segmented region, desired area
(DA) of ground truth and segmented area (SA) of segmented
region using the calculations in Table 1.

6.1 Dice similarity

Dice similarity (DS) is a measure of similarity between the
segmented image and the ground truth. Higher is the value

of DS, better is the performance of segmentation [39]. DS is
calculated using Eq. (10):

DS � 2|DA ∩ SA|
|SA| + |DA| . (10)

6.2 Jaccard index

Jaccard index (JI) is the measure of dissimilarity between
the segmented image and the ground truth. Lower value of
JI signifies the better performance of segmentation [40]. JI
is calculated using Eq. (11):

JI � 1 −
(
DA ∩ SA

DA ∪ SA

)
. (11)

6.3 Accuracy

Accuracy (Acc) is the measure of preciseness or correctness
of segmented image with respect to the ground truth. Higher
is the value of Acc, better is the performance of segmentation
[9]. Acc is calculated using Eq. (12):

Acc � TN + TP

TN + FN + FP + TP
. (12)

123



DC-Gnet for detection of glaucoma in retinal fundus imaging Page 9 of 14 34

Table 1 Calculations of TP, FP, TN, FN [9]

Metric FP FN TP TN

Criteria SA > DA SA ≤ DA SA ≥ DA SA ≺ DA SA ≥ DA SA ≺ DA SA � DA SA ≤ DA

Calculation SA−DA
BA−DA 0 0 DA−SA

DA 1 1 − DA−SA
DA 1 − DA−SA

BA−DA 1

7 Experimental results and discussions

This section emphasizes the performance of deep learning-
based optic disc and optic segmentation for diagnosis of
glaucoma using structural parameters such as CDR, DDLS
and ISNT. The performance of DC-Gnet is compared with
the U-net [9], Gnet [35] and Deep-lab [36] for segmentation.
Performance metrics such as Dice similarity, Jaccard index
and accuracy are used for comparison of the approaches.

7.1 Training and testing parameters

The experimental evaluationwas performedon the total num-
ber of 267 images combined from both datasets. The original
retinal images in the dataset were of dimensions 2896×1944
which were quite large to be given directly as an input to the
deep neural networks. The input image was initially cropped
to 512×512 pertaining targeted portion, i.e. optic disc in
the centre and was further resized to 256×256 to reduce
computational complexity. Cropping was performed manu-
ally in such a way that it included the region comprising
of the optic disc and the outer boundaries within a distance
of 1 cm approx. Cropping thus removed data irrelevant for
glaucomadiagnosis, reduced the computation timeand raised
the accuracy. Computational time was reduced as the image
without cropping was of bigger dimension, while the crop-
ping reduced the dimension of the image. The approximate
training time for the U-net is observed to be 9 min, Gnet is
12 min, Deep-lab is 15 min and DC-Gnet is 10 min.

On the other hand, segmentation accuracy was increased
as the cropped image included only the desired region of
interest (ROI) due to which better was the segmentation
accuracy, and correct was the prediction. Also, it increased
the visibility of ROI as a result of which segmentation was
improved. While the image without cropping may include
false regions as well which may result in inaccurate pre-
diction. Figure 5 shows the original and the input cropped
image in Rim-One and Drishti-GS dataset used in the study.
The reduced dimension of the input image does not affect
the optic disc region. The desired region of interest remains
in the same proportion as that in the input image. The objec-
tive function of the training process is logarithmic dice error
which calculates the loss of data while the optimization algo-
rithm used to decrease the loss in data is adadelta.

In order to increase the number of images, the images in
the dataset, as well as the binary masks, were augmented
manually using custom augmentor. Several augmentation
techniques such as zooming, width shifting, height shifting,
rotation, vertical flipping and horizontal flipping were used.
The images and the binary masks were zoomed in a range
of 0.9–1.0, thereby increasing the size of the dataset. Then,
the dataset size was further increased by shifting the width
and height by 0.1. Furthermore, the images and binary masks
were rotated by − 10° to 10°. Figure 6 shows the augmen-
tation of images performed to increase the number of input
images for the training of the proposed CNN model.

The cropped and augmented images were then split into
three channels viz. red, green and blue. The red channel was
then used for disc segmentation, as the disc is more clearly
visible in the red channel as compared to other channels.
While the blue channelwas used for cup segmentation, due to
clearmost visibility of cup in this channel. The clear visibility
of the optic disc and cup enables the neural network to extract
maximum and the significant features which further leads to
an increase in the performance of segmentation accuracy.
Figure 7 shows the red, green and blue channels of the input
RGB image.

Thus, the total number of 267 images combined from both
the datasets was further increased to 1332 for experimen-
tal evaluation of deep learning approaches. The number of
images was increased to 1332 as the deep learning-based
approaches require training at large scale for correct predic-
tion. Data augmentation increases the number of images for
training, as a result of which “better is the training improved
the accuracy of testing”. Thus, augmentation plays a sig-
nificant role in the case of a smaller number of samples in
the dataset. The training was performed on RIM-One dataset
and testing onDrishti dataset. The same set of pre-processing
comprising of cropping, augmentation and channel separa-
tion was applied on U-net, Gnet, Deep-lab and DC-Gnet to
avoid biases in performance evaluation. Further, the learn-
ing rate of 0.41, batch size of 8, 60 number of epochs, ReLU
activation for hidden layers and sigmoid activation for output
layers with ada_delta optimizer was used.

7.2 Performance analysis of optic disc segmentation

Segmentation of optic disc has been performed using deep
learning-based approaches such asU-net,Gnet,Deep-lab and
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Fig. 5 Cropping of region of interest

Fig. 6 Augmentation

Fig. 7 Channel separation

DC-Gnet. Figure 8 shows the outputs of disc segmentation
using different approaches followed by its quantitative anal-
ysis in Table 2 using metrics such as DS, JI derived from DA
and SA, and accuracy derived from TP, FP, TN, FN (where
TP, FP, TN, FN are further derived from BA, DA and SA).

Based on the experimental analysis, values ofDS, JI, accu-
racy for optic disc segmentation using U-net are observed to
be 0.77, 0.36, 0.81 for Drishti dataset with 0.63 TP, 0.36 FP,
1 TN, 0 FN and 0.94, 0.13, 0.96 for RIM-One with 1 TP,
0.02 FP, 0.97 TN, 0 FN. Also, for the segmentation of optic
disc using Gnet the DS of 0.80, JI of 0.32 and accuracy of
0.83 is observed for Drishti dataset with 0.67 TP, 0 FP, 1 TN,

0.32 FN and the DS of 0.96, JI of 0.04 and accuracy of 0.98
is observed for RIM-One dataset with 0.95 TP, 0 FP, 1 TN,
0.04 FN. Further, the values of DS, JI, accuracy for optic
disc segmentation using Deep-lab are found to be 0.73, 0.42,
0.78 for Drishti dataset with 0.57 TP, 0 FP, 1 TN, 0.42 FN
and 0.91, 0.15, 0.93 for RIM-One with 1 TP, 0 FP, 0.8 TN,
0.13 FN. Finally, for the optic disc segmentation using DC-
Gnet, DS of 0.88, JI of 0.12, accuracy of 0.93 is observed for
Drishti dataset with 0.87 TP, 0 FP, 1 TN, 0.12 FN and DS of
0.98, JI of 0.03, accuracy of 0.99 is observed for RIM-One
dataset with 1 TP, 0.007 FP, 0.99 TN, 0 FN.
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Fig. 8 Optic disc segmentation

Table 2 Performance of optic
disc segmentation S. no. Segmentation

approach
Dataset Performance metric

TP FP TN FN DS JI Accuracy

1. U-net Drishti 0.63 0.36 1.0 0.0 0.77 0.36 0.81

RIM-One 1.0 0.02 0.97 0.0 0.94 0.13 0.96

2. Gnet Drishti 0.67 0.0 1.0 0.32 0.80 0.329 0.83

RIM-One 0.95 0.0 1.0 0.04 0.96 0.04 0.98

3. Deep-lab Drishti 0.57 0.0 1.0 0.42 0.73 0.42 0.786

RIM-One 1.0 0.0 0.87 0.13 0.91 0.15 0.934

4. DC-Gnet Drishti 0.87 0.0 1.0 0.12 0.88 0.120 0.937

RIM-One 1.0 0.007 0.99 0.0 0.98 0.036 0.996

Bold values indicate to highlight the result of the proposed DC-Gnet

7.3 Performance analysis of optic cup segmentation

Similar to optic disc segmentation, the optic cup is also
extracted using deep learning-based approaches such as U-
net, Gnet, Deep-lab and Modified U-net. Figure 9 shows the
outputs of cup segmentation using different approaches fol-
lowed by its quantitative analysis in Table 3 using metrics
such asDS, JI derived fromDAandSA, and accuracy derived
from TP, FP, TN, FN (where TP, FP, TN, FN are further
derived from BA, DA and SA).

Similar to the experimental analysis of optic disc, values of
DS, JI, accuracy for optic cup segmentation using U-net are
observed to be 0.63, 0.62, 0.79 for Drishti dataset with 1 TP,
0.25 FP, 0.99 TN, 0 FN and 0.79, 0.38, 0.943 for RIM-One
with 1 TP, 0.01 FP, 0.98 TN, 0 FN. Also, for the segmentation
of optic cupusingGnet theDSof 0.73, JI of 0.41 and accuracy
of 0.81 is observed for Drishti dataset with 0.58 TP, 0 FP, 1
TN, 0.41 FN and the DS of 0.89, JI of 0.26 and accuracy of
0.96 is observed for RIM-One dataset with 0.96 TP, 0.03 FP,

1 TN, 0 FN. Further, the values of DS, JI, accuracy for optic
cup segmentation using Deep-lab are found to be 0.42, 0.72,
0.69 for Drishti dataset with 0.23 TP, 0 FP, 1 TN, 0.76 FN and
0.69, 0.41, 0.94 for RIM-One with 1 TP, 0.11 FP, 0.88 TN, 0
FN. Finally, for the optic cup segmentation using DC-Gnet,
DS of 0.84, JI 0.36, accuracy of 0.90 is observed for Drishti
dataset with 0.63 TP, 0 FP, 1 TN, 0.36 FN and DS of 0.91, JI
of 0.19, accuracy of 0.978 is observed for RIM-One dataset
with 1 TP, 0.002 FP, 0.91 TN, 0.19 FN.

Further, the approximate execution time for U-net is
observed to be 2.8 s, Gnet is 3.2 s, Deep-lab is 3.5 s and DC-
Gnet is 3 s. It can be observed from Figs. 8 and 9 that U-net
performs over-segmentation, while Gnet performs under-
segmentation and the Deep-lab gives coarse/incomplete
segment boundaries. The inaccuracies in the state-of-the-art
models were observed due to overfitting. To overcome this,
theDC-Gnet increased the size of kernel in case of downsam-
pling and decreased in case of upsampling to avoid overfitting
of the model. Also, the size of the pool was increased in case
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Fig. 9 Optic cup segmentation

Table 3 Performance of optic
cup segmentation S. no. Segmentation

approach
Dataset Performance metric

TP FP TN FN DS JI Accuracy

1. U-net Drishti 1.0 0.25 0.99 0 0.63 0.62 0.790

RIM-One 1.0 0.01 0.98 0 0.79 0.38 0.943

2. Gnet Drishti 0.58 0 1.0 0.41 0.73 0.41 0.810

RIM-One 0.96 0.03 1.0 0 0.89 0.26 0.962

3. Deep-lab Drishti 0.23 0.0 1.0 0.76 0.42 0.72 0.617

RIM-One 1.0 0.11 0.88 0 0.69 0.41 0.941

4. DC-Gnet Drishti 0.63 0 1.0 0.36 0.84 0.36 0.900

RIM-One 1.0 0.002 0.74 0 0.91 019 0.978

Bold values indicate to highlight the result of the proposed DC-Gnet

of maxpooling layer for refined edges of disc and cup. Thus,
it can be stated both qualitatively and quantitatively that the
DC-Gnet outperformsU-net, Gnet andDeep-lab for segmen-
tation of optic disc and optic cup with highest values of DS,
accuracy and least value of JI.

8 Conclusion

The paper presented a deep learning-based DC-Gnet for seg-
mentation of optic disc and optic cup, followed by extraction
of structural features namely cup-to-disc ratio (CDR), disc
damage likelihood scale (DDLS) and inferior superior nasal
temporal (ISNT) regions for diagnosis of glaucoma. As, the
traditional approaches employed for diagnosis were man-
ual time-consuming, and offers diagnosis often on the values
CDR values. This approach offers improved automated diag-
nosis, additionally based on DDLS and ISNT. Based on the
experimental evaluations, the performance of DC-Gnet is
found to outperform other deep learning-based models such

as U-net, Gnet and Deep-lab with DS of 0.84, JI of 0.36,
accuracy of 0.90 for Drishti dataset with 0.63 TP, 0 FP, 1 TN,
0.36 FN and DS of 0.91, JI of 0.19, accuracy of 0.978 for
RIM-One dataset with 1 TP, 0.002 FP, 0.91 TN, 0.19 FN. As
the performance of segmentation on Drishti dataset was less
remarkable than RIM-One due to training solely in RIM-One
dataset. Future efforts could be to train the proposedmodel on
varied images to improve the performance on other datasets
and make it generalize for all fundus images.
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