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Abstract
Many methods exist for generating keyframe summaries of videos. However, relatively few methods consider on-line sum-
marisation, where memory constraints mean it is not practical to wait for the full video to be available for processing. We
propose a classification (taxonomy) for on-line video summarisation methods based upon their descriptive and distinguishing
properties such as feature space for frame representation, strategies for grouping time-contiguous frames, and techniques for
selecting representative frames. Nine existing on-line methods are presented within the terms of our taxonomy and subse-
quently compared by testing on two synthetic data sets and a collection of short videos. We find that success of the methods
is largely independent of techniques for grouping time-contiguous frames and for measuring similarity between frames. On
the other hand, decisions about the number of keyframes and the selection mechanism may substantially affect the quality of
the summary. Finally, we remark on the difficulty in tuning the parameters of the methods “on-the-fly”, without knowledge
of the video duration, dynamic or content.

Keywords Keyframe selection · On-line video summarisation · Taxonomy · Experimental comparison

1 Introduction

Video summaries aim to provide a set of frames that accu-
rately represent the content of a video in a significantly
condensed form. Applications arise in various disciplines
[13], including security [9], entertainment [1,18,37], brows-
ing [29], retrieval [8] and lifelogging [22,27]. Proposed
algorithms and systems are often tailored to the specific
domain. Truong and Venkatesh [35] describe and categorise
existing solutions for video summarisation. Comprehensive
surveys also exist for application- or approach-specific solu-
tions, e.g. egocentric videos [12] and lifelogging [7], and
context-based summaries [23].

Most solutions are based on identifying segments (shots/
scenes/ events or other time units of interest) within a video,
by detecting significant change in the content information
[14,21,22,40,41], or grouping the frames into clusters (not
necessarily time-contiguous) [11,18,19,29,42]. Frames are
selected from the identified segments based on temporal loca-
tion, [2,21,30,36], representativeness [11,18,19,29,40–42],
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or the relative values of the metric for identifying changes in
the video stream [1,14,22].

The summaries generated are typically in the form of
static keyframe sets, e.g. [22], or dynamic video skims, e.g.
[37]. In addition, methods may either consider the time-
stamp of frames, or content only. Time-aware methods may
include a frame that is similar to an existing keyframe if it
represents a shot distinct in time, e.g. [18]. Time-oblivious
methods ignore any later frames that are similar to an exist-
ing keyframe from earlier in the video [11,19,29,42]. The
appropriate choice for the form of the summary depends on
the application.

Many of themethods used for generating video summaries
are computationally expensive; for example, requiring com-
plex pre-processing [27], using high-level feature extraction
[9], or selecting the frames through iterative, or multi-stage
algorithms [20,27,37]. Methods typically also assume that
the full video is available for processing. Here we are inter-
ested in on-line summarisation,where keyframes are selected
for the summary before the entire video has been captured or
received. On-line methods have been proposed that address
different constraints, e.g. memory [4,15], latency [1,3,31]
or processing power [15,28]. With such constraints, the
traditional high-level feature extraction, such as through con-
volutional neural networks (CNN) [4], may be infeasible.
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Similarly, elaborate summary selection methods may not be
applicable on-line.

Lightweight wearable cameras allow consumers to cap-
ture a continuous stream of images from their daily activities
[5]. Examples of possible applications include recording
first-person sport video footage [24], maintaining records for
law enforcement purposes [10], monitoring social interac-
tions [39], training medical professionals [33] and creating
appealing travelling logs [6] or personalised summaries
[17,38]. Selecting a summary for such a video on-the-fly
would make it possible to keep recording for a long time
within the limited resources of the wearable device. Meth-
ods for on-line video summarisation considered in this study
can potentially be used for this process.

To develop a method fit for this application, it is first
instructive to understand and assess existing on-line video
summarisation methods. We wish to identify the aspects
of methods that influence performance and the restrictions
inherent in on-line applications.

Here, we propose a classification of on-line video sum-
marisation methods by identifying their most relevant
descriptive properties. We investigate nine on-line summari-
sation methods by specifying them in the terms of the
proposed classification, and subsequently apply them to syn-
thetic data with an objectively “best” solution available, and
to a collection of real videos. The rest of the paper is organised
as follows. Section 2 introduces the classification system, and
Sect. 3 describes themethods. The experiments are presented
in Sect. 4, and the conclusion, in Sect. 5.

2 A classification of on-line video
summarisationmethods

Truong and Venkatesh [35] provide a useful classification
of video summarisation methods, which we adapt here for
on-line video summarisation. Figure 1 shows our proposed
classification.

All methods contain the same basic components:

• Feature representation Video frames are described as n-
dimensional vectors in some feature space, x ∈ R

n . The
choice of a feature space may be an integral element of a
summarisation method [32], or the method may be inde-
pendent of feature space [35]. Some existing methods
use relatively complex features, e.g. CNN [4,15]. How-
ever, for an on-line application, features that are less
computationally expensive and require less memory are
preferable. Examples of such feature spaces are the HSV
histogram as a colour descriptor [1,3,32] and textural
descriptors such as the CENTRIST feature space [28].

• Similarity How representative a keyframe is can be mea-
sured by how similar it is to the frames from which it is

selected. To evaluate similarity between frames, we can
use the feature representation in R

n and metrics defined
on this space. Examples of suchmetrics are the Euclidean
orCosine distances [15,31]; the volumeof the convexhull
of a set of frames [4]; the correlation between two frames
[3]; the degree of linear independence between batches
of frames [1]; the orthogonal projection of a frame onto
the span of existing keyframes [28]; and the intersection
of colour histogram bins [32]. Finally, some methods use
statistical measures, such as the likelihood that a frame
belongs to a distribution of existing frames, or the equiva-
lence of two sets of frames in terms of mean and variance
[34].

• Grouping strategies Representative frames are selected
from groups of frames, which may or may not be time-
contiguous. The groups can be created from the data
stream either explicitly, e.g. clustering [4,15], or implic-
itly, e.g. change detection [1,3]. Gaussianmixturemodels
(GMM) group the frames into a fixed [31] or variable [34]
number of Gaussian distributions.

• Frame selection Particular frames are selected to repre-
sent each group. The criterion for selecting a frame can
be its location within the cluster; typically the most cen-
tral frame is chosen [4,15]. Alternatively, frames can be
selected based on their locationwithin a shot, e.g. the first
[1] or middle frame [32]. Some methods consider each
frame within a group and progressively select keyframes
based on some condition, e.g. the difference to existing
keyframes [31].

• Set management In on-line video summarisation, the
frames are acquired one by one, as the stream is
being processed.We distinguish between two approaches
for the keyframe set management: fixed and dynamic.
According to the “fixed” approach, once a frame has
been included in the summary, it cannot be replaced
or removed [1,3,15,28,31,32,35]. Conversely, in the
“dynamic” approach, framesmay be dropped or replaced
[4]. Dynamic management may not be practical in appli-
cations where latency is a constraint, and keyframesmust
be transmitted as soon as they are selected.

• Summary formVideo summaries can be either in the form
of skims (dynamic summary) [3,31,37] or keyframe sets
(static summary) [1,3,4,15,28,32] . In this study,we focus
primarily on methods that generate static keyframe sets.

• Number of keyframes With an on-line application, the
total number of frames will typically not be known
beforehand. Deciding on the number of keyframes a pri-
ori may not be practical but is often done so as to ensure
that the summary is suitable for the human viewer or
complieswith the on-line constraints [4]. Post-processing
trims down an excessive keyframe set selected by the
on-line method [4,37]; termed a posteriori in the dia-
gram. Finally, the summary may stay as extracted by the
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Fig. 1 A classification of on-line video summarisation methods

on-line method [1,3,15,28,31,32,34,35], with the num-
ber of keyframes not known until the summarisation is
complete.

• Running memory Some methods only need to store
the current keyframe set [4,28,35], whereas others have
potentially larger memory requirements such as buffer-
ing an entire shot in addition to maintaining the keyframe
set [3,32]. Methods that process frames in batches will
need to hold the full batch in memory [1,15,34].

3 Methods included in the comparison study

We review and compare nine methods for on-line video sum-
marisation. Themethods are tested on two synthetic data sets,
and video data from the VSUMM project [11]. Table 1 cat-

egorises the methods according to the classification given in
Fig. 1, described in Sect. 2. Here, we give a brief description
of each method.

3.1 Shot-boundary detection (SBD)

Abd-Almageed [1] uses change in the rank of the feature
space matrix, formed by a sliding window of frames, to iden-
tify shot boundaries. The first frame in a shot is selected as a
keyframe. The method parameters are the window size and
a threshold on the rank for identifying change.

3.2 Zero-mean normalised cross-correlation (ZNCC)

Almeida et al. [3] also look for shot boundaries. They
compare the similarities between consecutive frames, using

123



510 C. E. Matthews et al.

Table 1 Description of the methods included in the comparisons in
terms of the classification in Fig. 1 (in alphabetical order of the first
author)

Property Value

1. Shot-boundary detection (SBD)a (Abd-Almageed [1])

Feature representation Colour histograms

Similarity Linear independence

Grouping strategy Change-detection

Frame selection Start-shot

Set management Fixed

Summary form Keyframes

Number of frames As extracted

Running memory Batch

2. Zero-mean normalised cross-correlation (ZNCC)
(Almeida et al. [3])

Feature representation Colour histograms

Similarity Correlation

Grouping strategy Change-detection

Frame selection Mid-shot

Set management Fixed

Summary form Keyframes or skim

Number of frames As extracted

Running memory Shot

3. Diversity promotion (DIV)a (Anirudh et al. [4])

Feature representation Convolutional neural network

Similarity Convex hull volume

Grouping strategy Clustering

Frame selection Mid-cluster

Set management Dynamic

Summary form Keyframes

Number of frames A priori and a posteriori

Running memory Keyframes

4. Submodular convex optimisation (SCX)a

(Elhamifar and Kaluza [15])

Feature representation Convolutional neural networks

Similarity Euclidean distance

Grouping strategy Clustering

Frame selection Mid-cluster

Set management Fixed

Summary form Keyframes

Number of frames As extracted

Running memory Batch

5. Minimum sparse reconstruction (MSR) (Mei et al. [28])

Feature representation Texture

Similarity Orthogonal projection

Grouping strategy Clustering

Frame selection Conditional

Set management Fixed

Summary form Keyframes

Number of frames As extracted

Running memory Keyframes

Table 1 continued

Property Value

6.Gaussian mixture model (GMM)a (Ou et al. [31])

Feature representation Colour-MPEG-7

Similarity Euclidean distance

Grouping strategy Gaussian mixture model

Frame selection Conditional

Set management Fixed

Summary form Skim

Number of frames As extracted

Running memory Keyframes

7.Histogram intersection (HIST)a (Rasheed and Shah [32])

Feature representation Colour histograms

Similarity Histogram intersection

Grouping strategy Change-detection

Frame selection Mid-shot & Conditional

Set management Fixed

Summary form Keyframes

Number of frames As extracted

Running memory Shot

8. Merged Gaussian mixture models (MGMM)a

(Song and Wang [34])

Feature representation Any

Similarity Statistical

Grouping strategy Gaussian mixture model

Frame selection Mid-cluster

Set management Dynamic

Summary form Keyframes

Number of frames As extracted

Running memory Batch

9. Sufficient content change (SCC) (Truong and Venkatesh [35])

Feature representation Any

Similarity Any

Grouping strategy Change detection

Frame selection Start-shot

Set management Fixed

Summary form Keyframes

Number of frames As extracted

Running memory Keyframes

aDenotes where the method name is our own

the zero-mean normalised cross-correlation as a measure
of distance. Once shots have been identified, a predefined
parameter determines whether or not the shot should be
included in the summary. Keyframes are selected at uniform
intervals throughout a shot. The authors define the desired
interval size in terms of the full video length, which typ-
ically will not be known in the on-line case. They apply
their method in the compressed domain, where it can pro-
duce either keyframe sets or skims.
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3.3 Diversity promotion (DIV)

The approach taken by Anirudh et al. [4] is to group frames
into clusters while simultaneously maximising the diversity
between the clusters. They use the volume of the convex
hull of the keyframe set as a measure of diversity. Incom-
ing frames replace existing keyframes as cluster centres if
doing so increases the diversity of the keyframe set. This
diversity measure introduces a constraint on the number of
keyframes in relation to the feature space size; the number
of keyframes must be greater than the feature space dimen-
sionality. The authors recommend the use of PCA to reduce a
high-dimensional feature space. However, it is not clear how
they calculate the principal components for data in an on-line
manner.

3.4 Submodular convex optimisation (SCX)

Elhamifar and Kaluza [15] process frames in batches, and
propose a “randomised greedy algorithm for unconstrained
submodular optimisation” to select representative frames for
each batch. These representatives can be a combination of
existing keyframes and new keyframes fromwithin the batch
itself. In their experiment on videos, they pre-process the
data to extract shots and use these as batches. An alternative
choice, such as a fixed batch size, will have to be used in
a true on-line setting. Similarly, their experiment defines a
regularisation parameter in terms of the maximum observed
distance between frames; a value that will not be available
when running the method on-line.

3.5 Minimum sparse reconstruction (MSR)

The MSR method [28] uses the orthogonal projection of a
frame onto the span of the current keyframe set to calculate
the percentage of reconstruction for the frame. A predefined
threshold then determines whether the frame is adequately
represented by existing keyframes, or it is added to the
keyframe set. The use of the orthogonal projection forces
a constraint on the number of keyframes used for recon-
struction, which is limited to the number of dimensions of
the feature space. Once the maximum number of frames is
reached, only the keyframes that best represent the others in
the set are used to calculate the percentage of reconstruction.

3.6 Gaussianmixture model (GMM)

Ou et al. [31] use the components of a Gaussian mix-
ture model to define clusters of frames. Each new frame is
assigned to the nearest cluster, provided it is sufficiently close
to the cluster mean, or otherwise forms a new cluster. The
number of clusters is fixed, so any new clusters replace an
existing one. Two parameters for themethod interact to deter-

mine how long clusters are remembered for. This memory
affects whether non-contiguous, similar frames are grouped
together or not. This method has substantially more parame-
ters to tune than the other methods. The number of clusters,
and the initial variance and weight for new clusters must be
defined, in addition to the two learning-rate parameters. The
authors describe the algorithm as a method for video skim-
ming rather than keyframe selection.

3.7 Histogram intersection (HIST)

Rasheed and Shah [32] propose a multi-pass algorithm that
first detects shot boundaries, and then explore scene dynam-
ics. For the on-line scenario here, we consider just the
shot-boundary detection. The detection algorithm uses the
intersection of HSV histograms for consecutive frames. An
overlap below a predefined threshold defines a shot bound-
ary. Once a full shot has been identified, frames from the
shot are sequentially added to the keyframe set if they are
not sufficiently similar to any existing shot keyframes.

3.8 Merged Gaussianmixture models (MGMM)

Similar to Ou et al., Song andWang [34] sequentially update
a GMM to describe the distribution of a data stream. How-
ever, rather than a fixed number of clusters, their method
allows new ones to be added if necessary and also provides
a mechanism for combining statistically equivalent clusters.

The MGMM method is for clustering a generic on-line
data stream. For a comparison with video summarisation
methods, we add an additional step of selecting a repre-
sentative from each cluster as a keyframe. At each stage of
processing, the frame closest to each cluster mean is stored
as the current keyframe. Frames may be replaced if a subse-
quent frame is closer to the mean. As the cluster means are
dynamic, the final set of keyframes may not be the optimal
set that would be chosen if the full data set is kept in memory,
and the keyframes selected at the end of processing.

3.9 Sufficient content change (SCC)

The change-detection algorithm from Truong and Venika-
tesh [35] selects the first frame sufficiently different to the
last keyframe as the next keyframe. Unlike the other change-
detection algorithms, this method does not require a buffer
of all frames that have appeared within a shot so far. Only
the keyframe set is stored in memory. The authors describe
this algorithm in terms of a generic content change func-
tion. Here, we implement the algorithm using Euclidean,
Minkowski or Cosine distance.
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Fig. 2 Synthetic data set #1. The time tag is represented as the grey
intensity. Earlier points are plotted with a lighter shade. The “ideal”
selected set is shown with red target markers

4 Experiments

4.1 Data

We test each of the nine methods on two synthetic data sets
and subsequently illustrate their performance on the 50 real
videos from the VSUMM collection [11].1

The first data set reproduces the example of Elhamifar et
al. [16]. The data consists of three clusters in 2-dimensional
space as illustrated in Fig. 2. Each point represents a frame
in the video. The three clusters come in succession, but the
points within each cluster are generated independently from
a standard normal distribution. The order of the points in the
stream is indicated by a line joining every pair of consecu-
tive points. The time tag is represented as the grey intensity.
Earlier points are plotted with a lighter shade. The “ideal”
selected set is shown with red target markers.

The second synthetic data set, shown in Fig. 3, follows
a similar pattern, but the clusters are less well-defined, they
have different cardinalities, and the features have non-zero
covariance. Data set #2 is also larger, containing 250 points,
compared to 90 in data set #1. The difference in cluster size
and total number of points between the two data sets will
guard against over-fitting of parameters that may be sensitive
to shot and video length.

For both data sets,we add twodimensions of randomnoise
(from the distributionN (0, 0.5)).A higher-dimensional fea-
ture space is used so that theMSRmethod is not penalised by
being constrained to amaximum of two keyframes for recon-
struction. The additional dimensions and noise also make the
synthetic examples a more realistic test for the methods.

1 https://sites.google.com/site/vsummsite/download.

Fig. 3 Synthetic data set #2. The time tag is represented as the grey
intensity. Earlier points are plotted with a lighter shade. The “ideal”
selected set is shown with red target markers

Finally, we use the 50 videos from the VSUMM collec-
tion, and five ground-truth summaries for each video. Since
the choice of feature representation may have serendipitous
effect on somemethods,we experimentwith twobasic colour
descriptors: the HSV histogram and the RGB moments.
These two spaces are chosen in view of the on-line desider-
ata. HSV histograms and RGB colour moments are among
the most computationally inexpensive and, at the same time,
the most widely used spaces. For the HSV histogram, each
frame is divided uniformly into a 2-by-2 grid of blocks (sub-
images). For each of the four resulting blocks, we calculate
a histogram using eight bins for hue (H), and two bins each
for saturation (S) and value (V). For the RGB colour space,
we divide the frame into 3-by-3 blocks. For each block, we
calculate the mean and the standard deviation of each colour,
which gives 54 features in total for the frame.

For the four methods (DIV, SCX,MSR, GMM) developed
using a specific feature space, other than colour histograms,
we extract the original features (CNN, Centrist, MPEG7
colour layout) for the VSUMM collection. These original
features are used to test whether using an alternative feature
space leads to an unfair representation of the performance of
a method.

4.2 Evaluationmetrics

The aim of video summarisation is to produce a comprehen-
sive representation of the video content, in as few frames
as possible. If the video is segmented into units (events,
shots, scenes, etc.), the frames must allow for distinguishing
between the units with the highest possible accuracy [25].
Therefore, we use three complementary objective measures
of the quality of the summary:
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Table 2 Parameters for the nine
methods tested, the ranges used
for tuning the methods to
synthetic data set #1, and the
parameter value that generates
the best result

Method Parameter Range Optimum

SBD Batch size (N ) 5–30 14

Change threshold (e) 0.1–0.5 0.18

ZNCC Change threshold (e) 0.01–0.5 0.13

Minimum segment length % (m) 0.1–10 1.2

DIV # Keyframes (K ) 3–10 3

Regularisation (λ) 8–12 10

Error to diversity weighting (τ ) 0.2–1 0.6

Probability of random update (p) 0.5–3 2

SCX Batch size (N ) 5–30 25

Regularisation (λ) 0.6–2 1

MSR Representation threshold % (e) 0.3–0.9 0.3

# representative keyframes (K ) 4a 4

GMM Number of clusters (C) 3–10 8

Learning rate (α) 0.003–0.005 0.004

Selection threshold (e) 0.1–0.5 0.2

Initial cluster variance (σ 2
0 ) 2–5 3.5

Initial cluster weight (w0) 0.05–0.5 0.1

HIST Change threshold (ec) 0.05–1 0.05

Selection threshold (es) 0.05–1 0.8

MGMM Batch size (N ) 5–30 30

Significance level for match (ρ) 0.01–0.5 0.01

SCC Change threshold (e) 0.1–800 1.1

Distance function (fn) Euclidean, Cosine, or Minkowski Cosine

aThe number of keyframes in the representative set is limited to the feature space dimensionality

Cardinality : K = |P| (1)

Approximation error : J =
N∑

i=1

d(xi ,p∗
i ) (2)

Accuracy : A = 1-nn(P) (3)

where X = 〈x1, . . . , xN 〉 is the sequence of video frames, N
is the total number of frames in the video, P = {p1, . . . ,pK }
is the selected set of keyframes, p∗

i is the keyframe closest
to frame xi , d is the Euclidean distance, and 1-nn(P) is the
resubstitution classification accuracy in classifying X using
P as the reference set. To obtain a good summary, we strive
to maximise A while minimising J and K .

For the tests on synthetic data, we can evaluate the results
of the summaries against the distributions used to generate
the data. However, we acknowledge that what constitutes an
adequate summary for a video is largely subjective. If user-
derived ground-truth is available for a video, one possible
way to validate an automatic summary is to compare it with
the ground truth. Thematch between the summaries obtained
through the nine examined on-line methods and the ground
truth is evaluated using the approach proposed by De Avila
et al. [11]. According to this approach, an F-measure is
calculated (large values are preferable) using 16-bin his-

tograms of the hue value of the two compared summaries
[26].

4.3 Experimental protocol

We first tune parameters by training each method on the syn-
thetic data set #1. Table 2 shows the parameters and their
ranges for the nine methods.

Somemethods have a parameter that defines the number of
frames in a batch. For thesemethods,we define an upper limit
of the batch size to represent the inherent on-line constraints
of memory and processing. This limit ensures that tuning
the batch size does not cause it to increase to an essentially
off-line, full dataset implementation.

We extract the Pareto sets for the three criteria described
in Sect. 4.2 and sort them in decreasing order of accuracy, A.
Results with equal accuracy are arranged by increasing val-
ues of K (smaller sets are preferable), and then, if necessary,
by increasing values of J (sets with lower approximation
error are preferable). As A and J achieve their optimal values
by including all frames as keyframes, we discount solutions
that select more than ten keyframes.

An example of the results of training the SCX method on
data set #1 is shown in Table 3.
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Table 3 The Pareto sets for the SCX method trained on data set #1,
describing the optimal combinations of accuracy, cardinality of the
keyframe set, and approximation error

Batch size Regularisation Accuracy Cardinality Approximation
error

25 1 1 3 157

20 0.8 1 4 154

15 1 1 5 135

10 0.6 1 7 126

5 0.8 1 8 121

5 0.6 1 10 114

15 0.6 0.99 6 132

25 1.6 0.67 2 339

The parameter values that generated the results are also shown

To assess the robustness of the method parameters across
different data samples, the best parameters for each method,
as trained on data set #1, are used to produce summaries for
an additional 40 randomly generated data sets: 20 samples
following the same cluster size and distributions as data set #1
(Fig. 2), and 20 samples following the cluster distributions
of data set #2 (Fig. 3). We can think of the first 20 samples as
“training”, and the latter 20 samples as “testing”, and place
more value on the testing performance.

For all 40 data sets, the results for the methods are ranked
one to nine; a lower rank indicates a better result. Tied results
share the ranks that would have been assignedwithout the tie.
For example, if there is a tie between the top two methods,
they both receive rank 1.5.

Wenext illustrate thework of the algorithms on real videos
separately on the HSV and the RGB feature spaces described
in Sect. 4.1. We tune the parameters of each method on
video #21 of the VSUMM database. The ranges described
in Table 2 are used for parameters that are independent of the
feature space and number of data points. Ranges for param-
eters that are sensitive to the magnitude and cardinality of
the data are adjusted appropriately. The parameter combi-
nation taken forward is the one that maximises the average
F-measure obtained from comparing the summary from the
method and the five ground-truth summaries. We then select
the more successful of the two feature spaces and use the
optimal parameter set for each algorithm to generate sum-
maries for the full set of VSUMM videos. The F-measures
are calculated for the comparisons of each video, method
and ground-truth summary, and the average for each method
compared.

Finally, we repeat the training and testing on the VSUMM
database using the original features used by the methods,
where applicable. As methods may have been developed and
tuned to use a specific feature space, this procedure ensures
thatmethods are not disadvantaged by using the colour-based
features.

Fig. 4 Average rank for each method for summaries of 40 randomly
generated data sets (20 each following the cluster distributions of data
sets #1 and #2). On each data set, summaries from all methods are
compared and ranked. Better methods receive lower rank

4.4 Results

The relative performance of themethods on the synthetic data
sets is shown in Fig. 4. The merging Gaussian mixture model
method consistently generates one of the best summaries.
While the method (MGMM) still performs relatively well on
the data set #2 examples, it suffers from some over-fitting of
its batch-size parameter on data set #1.

The SCX and SCC methods also perform relatively well,
and are reasonably robust across changes in the data distri-
bution. This robustness is demonstrated by the relative sizes
of the grey and black parts of the bar for these methods; the
SCXmethod receives better ranks on data set #2 than on data
set #1, and the SCCmethod performs equally well across the
two data sets.

The relatively poor performance of theGMMmethodmay
be due to the fact that this algorithm is designed to generate
video skims, and therefore tends to return a higher num-
ber of keyframes than other methods. The MSR method is
potentially affected by constraints from the low feature space
dimensionality.

The comparison of the two features spaces on VSUMM
video #21 is shown in Fig. 5 and Table 4. Sensitivity to the
respective feature space can be observed both in terms of the
optimal parameter values found (Table 4) and the quality of
the match to the ground-truth summaries (Fig. 5):

– Somemethods (GMM, ZNCC, SCC, DIV) perform quite
differentlywhen the twodifferent feature spaces are used,
with a significantly better average F-measure with one of
the spaces.

123



Classification and comparison of on-line video summarisation methods 515

Fig. 5 Average F-measure for each method compared to five user
ground-truth summaries for video #21. Method summaries are gen-
erated using HSV and RGB feature spaces. Summaries are matched
using histograms of hue values for the selected frames

Table 4 Method parameters tuned on VSUMM video #21 using HSV
histogram and RGB moments to represent frames

Method Parameter HSV RGB

SBD N 20 19

e 0.14 0.13

ZNCC e 0.01 0.05

m 0.1 0.5

K 6 15

DIV λ 11 9

τ 0.2 0.6

p 1 1.5

SCX N 80 100

λ 1.4 2

MSR e 0.56 0.78

K 10 4

GMM C 10 9

α 0.003 0.003

e 0.5 0.5

σ 2
0 2 2.5

w0 0.05 0.05

HIST ec 0.1 0.8

es 0.2 0.1

MGMM N 200 170

ρ 0.1 0.1

SCC e 6 516

fn Minkowski Euclidean

– The two methods that perform relatively well on the syn-
thetic data sets (MGMM and SCX) generate very similar
results when HSV and RGB features are used.

Table 5 Average number of frames and F-measure for summaries
generated by each method of the 50 VSUMM videos using RGB
moments, and average F-measure with the features originally used with
the method

Method RGB Orig. features

Median number
of frames

Mean
F-measure

Mean
F-measure

SBD 10 0.52 0.40

ZNCC 1 0.18 0.17

DIV 15 0.39 0.20

SCX 13 0.54 0.54

MSR 2 0.23 0.35

GMM 0 0.03 0.12

HIST 4 0.38 0.39

MGMM 17 0.52 −
SCC 3 0.27 −
The F-measures are also averaged across the five ground-truth sum-
maries for each video

– For most methods, including those with very different
results (e.g. GMM), the tuned parameters are similar for
both feature spaces.

– However, parameters directly related to the feature space
are naturally very sensitive to a change in features. For
example, the optimum distance threshold parameter for
the SCC method is 516 in RGB space, compared to 6 in
HSV space.

Most of themethods performbetterwith theRGBmoment
features. Therefore,weuse these features and the correspond-
ing tuned parameters to generate summaries for the full set
of VSUMM videos. Table 5 shows the average F-measure
across all VSUMMvideos, and themedian number of frames
selected.

The method generating the best results on the synthetic
data (MGMM), again produces relatively good summaries
for the videos. The MSR method performs markedly better
on the real videos, with a higher-dimensional feature space,
than on the synthetic data. The SCX method has the high-
est average F-measure. As an illustration of the results, the
summary generated by this method for video #29 is shown
in Fig. 6 in comparison to the ground-truth summary from
user 3. The method matches 7 of 8 frames selected by this
user (shown next to the SCX frames in Fig. 6).

There is little difference in the performance of themethods
using their original features, compared to RGB moments,
both in terms of average F-measure and overall ranking. The
SCX method maintains the highest average F-measure, and
although the average score for the GMMmethod improves, it
still remains lower than the other methods. The DIV method
scores a lower average F-measure when the original features
are used, highlighting the importance of considering simple,
efficient feature spaces.

123



516 C. E. Matthews et al.

Fig. 6 Comparison of VSUMM video #29 summaries from ground-
truth user #3 and the SCX method. The matches have been calculated
using the 16-bin histogram method with threshold 0.5 [11]. The F-
measure for the match is 0.88

Three observations can be made from the video sum-
maries:

– The F-measures in Table 5 are generally low compared
to those reported in the literature for other video sum-
marisation methods. This difference is to be expected
because here we compare on-line methods which do not
have access to the whole collection of frames.

– Most methods are highly sensitive to their parameter
values. The optimal values tuned on video #21 are not
directly transferable to the remaining videos. Most meth-
ods (ZNCC, MSR, GMM, HIST, SCC) typically select
too few keyframes. This indicates the importance of tun-
ing. In the on-line scenario, data for tuning will not be
available, especially the segment labels needed for cal-
culating A.

– Most methods are tested using a different feature repre-
sentation than that recommended by the authors (HSV
histograms are used in only three of the methods: SBD,
ZNCC, HIST; none of the methods use RGB features).
However, the relative performances do not appear to be
overly sensitive to the choice of feature space.

5 Conclusion

This paper proposes a classification of on-line video sum-
marisation methods that incorporates feature representation,
strategies for comparing and grouping frames, and the size,
selection and management of frames.

Our experiments highlight the difficulty in pre-tuning
the parameters of on-line video summarisation algorithms.

This limitation suggests that algorithms are needed which
are more robust to their parameter fluctuations, and ideally
should adapt with the streaming data.

The relative performance of the methods appears to be
independent of the strategy for grouping the frames into
segments or clusters and of the similarity measure used.
We note that, according to our experiments, no strategy or
measure produced consistently goodor consistently bad sum-
maries. The methods that select the cluster centres as the
keyframe set produce better summaries than those that select
keyframes conditionally. Perhaps unsurprisingly, the method
that decides the number of keyframes a priori, tends to per-
form less well than those that can continue to add keyframes
as required, suggesting that on-line algorithms need flexi-
bility to adapt the number of keyframes to the data. This
requirement must be balanced with the memory restrictions
inherent in on-line video summarisation.

The videos used for testing have well-defined shots, pro-
viding a relatively easy summarisation task. The performance
of the methods may be different on other types of video, e.g.
where the shots are less clearly defined or the variability
within shots is greater. Examples of such type of data are
egocentric videos and lifelogging photo streams.
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