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Abstract
Facial aging is an important problem of face recognition in missing children and automatic template update. As aging is a
temporal process, it alters the facial appearance of the individuals. The sources of variations in facial appearance are caused
by wrinkles (under eyes, forehead, around lips, and jawline), facial growth (cranial size and skull), and skin tone. The other
factors such as health, lifestyle, and gender also impose variations in the aging process. Therefore, predicting facial aging
with considering all those factors is a very difficult task. We present our 3D gender-specific aging model which automatically
produces simulated images at age y by taking only one input image at age x irrespective of the pose and lighting conditions.
The gender-specific aging model is constructed by various datasets (FG-NET, PCSO, Celebrities, BROWNS, Private), and its
quality is evaluated with respect to various combinations of the datasets. We further fine-tune the aging model by changing
the length of shape and texture eigenvectors and examine how these parameters affect the simulation results. Comparisons
of the simulation results with state-of-the-art approaches as well as ground truth images demonstrate the effectiveness of
the proposed methods. The subjective and objective evaluations are also carried out which emphasize the potential of our
proposed gender-specific 3D aging model.

Keywords Age progression · Age simulation · 3D aging · Age modeling · Facial aging · Age rendering · Age my face ·
Make me old

1 Introduction

Aging process seeks to automatically simulate a photograph
of a person from age x to age y as shown in Fig. 1. The aging
simulation process is a very challenging task because of the
non-deterministic nature of aging for every individual. From
input photographs, it is difficult to determine the genetics,
health conditions, lifestyle, and environment which makes a
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huge difference in the aging process. To build an agingmodel
which may replicate the real aging process (keeping the
other factors such as health, lifestyle, and environment con-
stant), we need a large facial aging image dataset that spans
over human lifetime and contains images at various ages.
However, there are only a few public domain datasets (e.g.,
FG-NET and MORPH) that are relatively small with limited
age range, poor quality and lighting conditions, and of low
resolution. In addition to private datasets, these publically
available datasets have been constantly in use by researchers
[1–5] to construct discriminative [3,6–9] or generative aging
models [1,2,10–14].

The simulated face images help to find the missing chil-
dren and people in blacklists for law enforcements. Also,
people can see how their children will look like when they
grow up and how their parents used to look like in their child-
hood. A number of studies have been performed so far in the
field of automatic aging simulation or age progression.

1.1 Related work

Related researches for age modeling or age progression [1–
8,10–20] show how the aging process causes variations in
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(b)

(c)
age 55

(a)
age 0~5

Fig. 1 Example of aging simulation results by proposed method from age x = 0–5 to age y = 55; a input images, b pose-corrected images, and c
age-simulated images

the facial features and appearance. Facial aging simulation
models can be divided into two categories, namely (i) dis-
criminative models and (ii) generative models.

1.1.1 Discriminative models

Suo et al. [15] proposed amulti-resolution dynamicmodel for
facial aging simulation based on a dynamic Markov process.
Their agingmodel was learned from a large dataset of 50,000
adult facial images of high resolution that showed promising
results. Ling et al. [3,7] proposed their aging process in the
passport photograph verification task to show how the face
recognition performance degrades in the presence of aging.
The illumination and expression variations, however, are not
explored in their study. Li et al. [8] presented a discriminative
aging model to be used in the application of face recognition.
The authors proposed densely sampled local descriptors for
feature representation and multi-feature discriminant analy-
sis. They used the distribution of intensity gradient in the face
image as age invariant information. Kemelmacher et al. [6]
presented an illumination aware age progression approach.
They first computed an average image subspace by using col-
lection flow method. For an input image in frontal pose, the
flowdifferences of texture and illumination are used for aging
simulation. Then, the aspect ratio is adjusted to incorporate
the facial shape aging effect. The simulated facial image is

then mapped on to the original background image with keep-
ing the aspect ratio.

1.1.2 Generative models

Lanitis et al. [10] proposed an approach for aging simulation
using a statistical face model based on reversible coding.
The relationship between coded representations of facial
images and their associated ages is used to estimate the ages
of unseen individuals and to reconstruct the appearance of
an individual at any age. Singh et al. [14] presented their
registration-based age transformation approach to minimiz-
ing the variations in facial features due to aging. Later, the
authors proposed a facial aging model where short-term age
patterns are learned from partially dense datasets (FG-NET
and MORPH) [5]. The learned short-term aging patterns are
concatenated to build the long-term aging patterns. Park et
al. [1,2] proposed their 3D age model constructed in separate
shape and texture spaces. They used FG-NET (1002 images
from 82 subjects) dataset to model the aging spaces (shape
and texture). The shape aging space consists of facial shapes
of 82 subjects in the age range of 0–70. The texture space
is of the same dimensions and formed by using grayscale
texture of facial images in FG-NET dataset.

Du et al. [11] proposed a sparse-constraint nonnegative
matrix factorization (NMF) approach. The NMF algorithm
is updated by considering sparse coefficients (H) or the basis
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Age progression by gender-specific 3D aging model 93

Table 1 Details of the datasets
used in our 3D gender-specific
aging model

FG-NET PCSO BROWNS Celebrities Private Total

#Subjects 82 130 4 33 8 257

#Females 34 18 4 20 7 83

#Males 48 112 0 13 1 174

#Images 1002 1203 132 523 119 2979

3D
 M

or
ph

ab
le

 M
od

el
 

53
49

0 
×

3 
ve

r�
ce

s i
n 

X,
Y,

Z

Re
du

ce
d 

3D
 

m
or

ph
ab

le
 m

od
el

(8
1 

×
3 

ve
r�

ce
s)

Input 68 landmark 
points in 2D

Fi�ed 3D model with 
13 forehead points

Fi�ed 3D model in 
frontal pose

3D Model fi�ng for 
input pose

Fig. 2 A 3D model fitting in frontal pose from 2D landmarks using our reduced morphable model

vector (W) and used for better age simulation results. Wang
et al. [17] proposed aging simulation approach using tensor
space analysis and active appearance model (AAM). The
super resolution method is adopted to improve the aging
results. Yang et al. [4] used sparse representation of age
and person specific facial properties for aging simulation
results.

Wang et al. [18] proposed their recurrent face aging
(RFA) framework which is based on recurrent neural net-
work (RNN).The face images are normalized by optical flow
method to preserve the wrinkles information. The two-layer
gated recurrent unit is proposedwhere the top andbottom lay-
ers produce an older and younger face from the input image,
respectively. Wang et al. [19] proposed an aging simulation
approach based on a tensor completion technique. The author
assumes that texture of different subjects in the same age
group is similar and the people who have high resemblance
tend to age in similar ways. Thus, during the aging simu-
lation process, bigger weights are assigned to the samples
in three-order tensor model which have higher similarities
with the test image through multilinear graph embedding. To
measure the similarity between subjects, a metric learning
approach is adopted.

1.2 Advancements from related work

In this paper, we present a generative gender-specific 3D
aging model. The proposed aging model automatically pro-
duces simulated images at various ages (0–69years old) from
an input 2D image of a person at age x . Our 3D aging model
is built in a similar fashion to generic aging model by Park et
al. [1]; however, we constructed gender-specific aging model
with added datasets (see details inTable 1).Main components
of our work are given as follows:

• Gender-specific agingmodel (separatemale, female):We
separated the subjects in FG-NET, PCSO, Celebrities,
BROWNS, and Private datasets (see details in Table 1)
based on gender and constructed two 3D aging models
as shown in Fig. 4.

• Pose correction in 3D: We used a reduced 3D demor-
phable model based on Blanz and Vetter’s model [21] for
pose correction. The input 68 landmark points in 2D are
used to perform model fitting to interpolate the 13 fore-
head points. The fitted 3D model is mapped to the 3D
frontal pose afterward. These 3D facial images are then
used for our 3D aging model construction.

• Separate shape and texture pattern space: The aging pat-
terns (shape and texture) are learned separately in a
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similar fashion of [1] with additional datasets (FG-NET,
PCSO, Celebrities, BROWNS, and Private datasets).

• Aging simulation on pose-corrected images: In testing
stage, the aging simulations are performedon frontal pose
of the facial images after 3D model fitting and forehead
interpolation.

• Color and flare corrections: After aging simulation, the
color and flare corrections are performed to make the
aging simulation results more realistic.

• Compositing age-simulated image to original back-
ground:Because our agingmodel does not age/de-age the
hair, we composite the age-simulated frontal face image
to the original background for comparison with ground
truth reference images and state-of-the-art results.

1.3 Major contributions

Following are the major contributions of this paper.

• Study the effects of adding various datasets: In our 3D
aging model, we studied the effects of adding vari-
ous datasets (FG-NET, PCSO, Celebrities, BROWNS,
and Private) qualitatively and quantitatively. The result
of aging averages and simulation results are provided.
Furthermore, we show the goodness-of-fit measure for
adding each dataset in the aging model.

• Study the effects of eigenvectors: The effects of increas-
ing or decreasing the length of shape and texture eigen-
vectors in simulation results are studied.

• Qualitative comparison of the aging simulations results:
The results of aging simulations on FG-NET are com-
pared with ground truth reference images at the same
age. Furthermore, we compared our results with those of
state-of-the-art aging simulation methods.

• Quantitative comparison (subjective and objective eval-
uations): A subjective survey is carried out for two eval-
uation metrics, such as identity matching (IM) and age
matching (AM). Our proposed approach achieved higher
subjective average scores. Furthermore, we performed
age invariant face recognition experiments with two
setups of FG-NETdataset. The comparisonwith state-of-
the-art methods shows that our approach achieves higher
Rank-1 (%) accuracy.

The rest of this paper is organized as follows: Sect. 2
introduces the proposed gender-specific 3D aging model
(constructed by FG-NET, PCSO,Celebrities, BROWNS, and
Private datasets) and aging simulation process. Section 3 pro-
vides the aging simulation results on FG-NET dataset. The
aging simulation results are compared with ground truth ref-
erence images as well as state-of-the-art results. In Sect. 4,

we conclude this paper by setting an insight on the future
work in facial age modeling.

2 Proposed gender-specific 3D aging

In this section, we describe our 3D gender-specific aging
model construction and aging simulation process. We first
convert 2D images in themodeling datasets to the 3D faces in
frontal pose; then, those 3D face images are used to generate
two aging spaces, i.e., shape and texture.

2.1 Dataset collection for agingmodeling

The FG-NET dataset contains 82 subjects and 1002 images
only, which is insufficient to fill the 3D aging model in shape
and texture spaces as proposed by Park et al. [1]. Therefore,
we take more face images, from (i) PCSO (mugshot data
collected from 130 subjects), (ii) Celebrities (a collection
of images from 33 female and male subjects found on the
web), (iii) BROWNS (a collection of pictures of four sisters
taken every year over a period of 33 years from 1975 to
2007) [22], and (iv) Private (which is a private collection
of the images from 8 male and female subjects), in order
to utilize various shape and texture aging patterns (0–69). In
total, we compiled 174male and 83 female subjects, which is
a significantly larger number as compared to that of FG-NET
dataset (48 males and 34 females) used in [1]. The details of
the modeling datasets are given in Table 1.

2.2 Agingmodeling and simulation revisited

In this section, we describe how age modeling in 3D domain
is performed. In order to normalize the pose variations, input
2D images are mapped to 3D face models using 68 facial
landmarks. Active shape model (ASM) v4.0 [23] is used to
detect 68 facial landmark points and then 13 additional points
for forehead are augmented using reduced 3D morphable
model (Fig. 2). Example landmark detection results are
shown in Fig. 3. The reduced 3Dmorphablemodel is induced
from the Blanz and Vetter’s model [21] and represented by
the top eigenvectors (L = 30) as Sα = Sm + ∑L

l=1 αl Vl ,
where Sm is the mean shape of 100 3D face models, Vl are
unit eigenvectors obtained from the PCA analysis [1], and
αl = [α1, α2, . . . , αL ] is a control parameter for facial shape
or coefficient that defines a specific shape instance under the
given deformable model. The covariance of αl is a diagonal
matrix where αlε�L [24,25].

After obtaining all the 3D faces (S3d) by fitting reduced
morphablemodel to 2D input images, we apply PCAonmale
and female 3D faces separately (1 ∼ N in male and 1 ∼ N ′
in female, where N = 167 and N ′ = 68) with available ages
(0 ∼ M − 1, where M = 70). The reduced shape space in

123



Age progression by gender-specific 3D aging model 95

(a)

Celebri�es PCSO 

(b)

Fig. 3 Landmark detections on the celebrities and PCSO datasets using ASM v4.0, a example images, and b landmark detection results
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Fig. 4 Gender-specific 3D agingmodels separated in the shape and tex-
ture space, amale aging model and b female aging model. The subjects
are separated and their 68 landmark detections are shown in (I) first

block (top), the forehead interpolation and pose correction is shown in
(II) second block (middle), and finally the age shape and texture space
filled by linear interpolation are shown in (III) third block (bottom)

3D for N male subjects and M ages, s3d(N , M) is obtained
as s3d(N , M) = V T

s (S3d(N , M)− Sm), where Vs are the top
50 principle components of S3d. The female model is also
similarly constructed. In the N × M shape pattern space,
we fill missing patterns by using an interpolation method as
s3d(n,m′) = w1 × s3d(n,m1) + w2 × s3d(n,m2), where
s3d(n,m1) and s3d(n,m2) are the facial shapes for subject n
at agesm1 andm2 that are closest to the agem′ andw1 andw2

are the weights inversely proportional to the distance from

age m′ to m1 and m2, respectively. We construct the texture
pattern space t(N , M) from the original texture patterns by
using PCA analysis similarly as shape pattern space.

Given the shape and texture models as shown in Fig. 4, we
perform the aging simulation as follows. We first calculate
the reduced shape pattern of the input image as s3d(x) at age
x and fit it to the shape aging space as given in Eq. 1.

ŵs = argmin
c−≤ws≤c+

||s3d(x) − sws (x)||2 + rs ||ws ||2, (1)
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Fig. 5 Color correction of age-simulated image, a input age-simulated image, b reference image, and c color-corrected image (zoom in to see the
values)
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Fig. 6 Compositing age-simulated image (after color and flare correc-
tion) to the original background image, a input image, b pose-corrected
image, c age-simulated image, d color-corrected image, e flare-

corrected image, f compositing without ESBC, g soft boundary edges,
and h composited face image with ESBC approach (zoom in to see the
details)
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Fig. 7 Effectiveness of generic versus gender-specific aging simulation results, a generic aging model by Park et al. [1], and b gender-specific
aging model (proposed)
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Fig. 8 Average texture space at each step of adding a new dataset in the female aging model, and a averages of texture space from age 0 to 69, b
name of gender-specific aging model
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(d)

(a) (b)

(c)

Model 1 Model 2 Model 3 Model 4 Model 5

Fig. 9 Effects of adding datasets in the aging model, a input image, b pose-corrected image, c aging simulation results at target age (15years old),
and d aging model used for the simulations

Table 2 Goodness-of-fit
measure for shape and texture
aging models

Mean (RMSshape) values Mean (RMStexture) values

Model 1 22.3465 21.6267

Model 2 21.3222 17.4303

Model 3 14.9091 18.2407

Model 4 7.3183 17.501

Model 5 4.768 17.1735

Best results are indicated with bold font

where sws (x) = s3d(x) + ∑N
i=1

(
s(i, x) − s3d(x)

)
ws,i , 0 ≤

j ≤ M−1, and rs is the regularizer (rs = 3) [26] to handle the
casewhenmultiple solutions ofws are obtained. Thisweight,
ws , obtained at the input age x is then applied to the target age
y to obtain the aging-simulated shape. The aging-simulated
texture is also similarly obtained, and the combination of
the shape and texture becomes the aging simulation result
at age y. More details of the aging modeling and simulation
processes can be found in [1].

2.3 Color and flare correction

After shape and texture aging, we perform the color correc-
tion or histogram matching so that the synthesized frontal
pose image (Iage) can be mapped back to the original back-
ground image. The objective of histogram matching is to
transform Iage such that the gray values are redistributed and
histogram is more uniform and matched with the reference
image (Iref ) (see Fig. 5c).

Todo color correction,weused original frontal pose image
as a reference image (Iref ) and age-simulated image in frontal

pose (Iage) as an input image with dimensions of mr by
mc. The value of each pixel’s intensity ranges from 0 to
Page − 1 where Page = 256 is often the maximum pos-
sible intensity value. We denote m as the number of total
available pixel intensities in an image. The color correc-
tion is performed on each channel of an RGB image of Iage
by first calculating the number of pixels for each intensity
(n = 0, 1, . . . , Page − 1) present in each channel, frequency

of intensity values, fn = no. pixels with intensity n
mr×mc

, and cumula-
tive frequencies (Fm), where F0 = f0 and Fm = Fm−1+ fm .
Then, from the intensity value of each channel of Iref , the
range of intensity values of Iage is adjusted by multiplying
(Pref −1) to the cumulative frequencies (Fm). By performing
floor rounding on the intensity values, we get the corrected
pixel intensities of output image, Fout

m as given in Eq. 2. To
obtain the color-corrected image (Iout) which is uniformly
distributed on [0, Pref − 1], the number of pixels in Iage
with the same intensity values is replaced with new inten-
sity values from Fout

m . The number of equally spaced bins,
we selected, is N = 64 [27]. The flare which occurs due
to color correction is eliminated by removing the top fre-
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Fig. 10 Example results of using various lengths of shape and texture eigenvectors in aging simulations, a input image from FG-NET dataset, b
pose-corrected image, and c age simulation images (age 10) at different lengths of eigenvectors of shape (Sl) and texture (Tl) space

Table 3 Goodness-of-fit
measure using different shape
(Sl) and texture (Tl)
eigenvectors

Mean (RMSshape) values Mean (RMStexture) values

Sl = 20 11.245 11.883

Tl = 50

Sl = 20 10.998 11.317

Tl = 180

Sl = 20 10.720 11.221

Tl = 300

Sl = 50 11.687 11.496

Tl = 50

Sl = 50 11.033 11.316

Tl = 180

Sl = 50 10.733 11.234

Tl = 300

Sl = 200 11.464 11.967

Tl = 50

Sl = 200 10.967 11.401

Tl = 180

Sl = 200 10.751 11.246

Tl = 300

Best results are indicated with bold font
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Fig. 11 Aging simulations performedonone female subject inFG-NET
dataset from age x to target ages (y = 3–29years old), a input image,
b pose-corrected image, c age-simulated images at target age y (ours),

d color- and flare-corrected age-simulated images (ours), e background
composite results (ours), and f reference ground truth images from FG-
NET dataset

quency components. See Fig. 6c–e for age simulation at age
y = 55 from input age x = 15 years, color correction, and
flare removal results.

Fout
m = floor

(

(Pref − 1)
m∑

n=0

Fm

)

. (2)

2.4 Compositing age-synthesized image

After the color correction, we composite the synthesized
image in frontal pose (If) to the original background image
(Ibg) using 81 landmark points pts81.An example ofmapping
process from frontal pose image to original image is shown in
Fig. 6. The initial mapping results are very noisy due to edges
of the synthesized image (Fig. 6f). Therefore, we introduce
our edge smoothing background composite (ESBC) method
as given in Algorithm 1.

In ESBC Algorithm 1, there are four steps to achieve the
composited age-simulated imagewith smooth edges, Ismooth.
First step is to generate a mask on facial region including
forehead on original background image after mapping age-

simulated image. In Step 2, we make dilated edge image
(Idilate) on the mapped image where the boundary regions
are noisy by using face mask (maskbg). In Step 3, the blurred
image is created from the mapped background image with
noise by applying the circular averaging filter. This filtered
image, Ifilter, is then used for filling the edge areas to create a
realistic compositing result. The results of compositing after
ESBC are shown in Fig. 6h.

3 Aging simulation results

In this section, we provide the aging simulation results using
our 3D gender-specific aging model.

3.1 Effect of gender-specific aging versus generic
aging

The effectiveness of our gender-specific aging is shown in
Fig. 7 by comparing our resultswith those fromgeneric aging
model proposed by Park et al. [1].
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(a)
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Fig. 12 Aging simulations performed on one male subject in FG-NET
dataset from age x to target ages (y = 2–40years old), a input image,
b pose-corrected image, c age-simulated images at target age (y), d

color-corrected age-simulated images, e background composite results,
and f reference ground truth images from FG-NET dataset

The use of a generic aging model creates a shape and
texture space that is not appropriate with the gender of the
subject. However, the proposed gender-specific model cre-
ated more realistic results. The unrealistic aging simulation
result of generic aging model [1] is due to the domina-
tion of male face images in aging pattern space at older
ages.

3.2 Effects of adding datasets on agemodeling

There are five different datasets used in constructing our
gender-specific 3D agingmodel. The average texture at a few
ages with different components of datasets, such as model 1:
FG-NET, model 2: FG-NET + PCSO, model 3: FG-NET +
PCSO+Celebrities,model 4: FG-NET+PCSO+Celebrities
+ BROWNS, and model 5: FG-NET + PCSO + Celebrities
+ BROWNS + Private, is shown in Fig. 8. It is clearly shown
that the average textures for ages 0–69 are becoming more
realistic with the addition of datasets (more images and sub-
jects) in the gender-specific aging model.

The effects of the 3D aging model on aging simulation by
adding more dataset are shown in Fig. 9. By increasing the
number of datasets, both the shape and texture spaces vary
in the aging model. Thus, the aging simulation generates dif-
ferent results at the same target age (15 years) as shown in
Fig. 9. It is observed that by adding more datasets (increased
subjects and number of images), the texture and aging sub-
space averages providemore realistic aging results compared
to those from fewer datasets with less number of images and
subjects.

The goodness of fit in shape and texture space is also
measured by performing a statistical RMS error test on each
aging model consisting of different datasets. The goodness-
of-fit test is evaluated separately on shape and texture aging
using a test dataset consisting of 439 images of 35 male and
female subjects from FG-NET dataset with the average age
gap≤ 40 years. Average age gap per subject is calculated as,

avg. age gap =
∑

(target age−current age)
no. images , where the target age

is fixed as 55 years and current age is the actual age of the
subject in the image. The goodness of fit in shape is computed
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Fig. 13 Aging simulations comparison with state-of-the-art, a input images, b state-of-the-art results [1,4,6,17] (middle two rows), and c our aging
simulation results

as RMSshape = ∑| (GS−ES)2

ES |, where GS and ES are ground
truth and expected shape feature vectors, respectively. Simi-
larly, the goodness of fit in texture space is also computed as

RMStexture = ∑| (GT−ET)2

ET |, where GT and ET are ground
truth and expected texture feature vectors, respectively. The
results of RMS error test in shape and texture aging are given
in Table 2. For each of agingmodels 1–5, we take themean of
all RMS values per test dataset and write them in front of the
model number as given in Table 2. From the mean RMS val-
ues obtained per model, we deduce that using more images
from various subjects and ages for aging model construction
helps to improve the aging simulation quality.

3.3 Effects of shape and texture eigenvectors

Similar to Park et al. [1], initially we selected the shape
and texture eigenvalues as 50 and 180, respectively. Later,
we evaluated different shape and texture values to test the
simulation results. The various lengths of shape and tex-
ture eigenvectors, we selected, are: Sl = [20, 50, 200] and
Tl = [50, 180, 300], respectively. The comparison of effects
of using different lengths of eigenvectors in shape and texture
aging is shown in Fig. 10.

To test the effectiveness of different combinations of shape
and texture eigenvectors in the aging process, we performed
the RMS error test again using the same test dataset as men-
tioned in Sect. 3.2. The aging simulations are performed
on 35 subjects (439 images) using nine different combina-
tions of lengths of eigenvectors in shape (Sl) and texture
(Tl) space. The mean RMS error values in shape and tex-
ture aging obtained from this test are given in Table 3. To
perform simulations, we used our final 3D gender-specific
agingmodel consisting of fivedifferent datasets asmentioned
in Sect. 2.1. From our findings, we can deduce that using
longer length of eigenvectors in shape space (Sl) does not
affect the shape aging much. However, by using the longer
length of eigenvectors of texture space (Tl), we achieved
more detailed texture in the images and less RMS error.
Thus, in our aging simulations we use 20 and 300 as the
lengths of eigenvectors for shape (Sl) and texture (Tl) space,
respectively.

3.4 Aging simulation: FG-NET

The automatic aging simulation experiments are performed
on a well-known dataset, FG-NET. In this dataset, the age
and gender of the subjects are known and we used this given
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(a) (b) (c) (d)

age 0

age 8

age 18

age 23

age 34

Fig. 14 Aging simulations comparison with other methods, a input image, b aging simulation results (ours), c Kemelmacher et al. [6], and d
ground truth reference images

information to select the 3D gender-specific aging model. To
perform aging, we select an input image at age x and auto-
matically simulate to the target or reference ages y. The aging
simulation results in frontal pose and composited image are
shown in Figs. 11 and 12 for male and female aging, respec-
tively. Our aging simulation results in frontal pose are first
color corrected and then mapped to the reference images
from the FG-NET dataset. For a comparison, we also show
the original reference images from the FG-NET dataset at
age y. From Figs. 11e and 12e, we see that our automatic
aging simulation results are visually similar to the reference
images at the same age.

3.5 Comparison of aging simulations

In this section, the comparison of aging simulations is pro-
vided with ground truth reference images as well as with
state-of-the-art results.

3.5.1 Comparison with state-of-the-art

We compare our simulation results in frontal pose and com-
posited images with those of the state-of-the-art techniques
by using FG-NETdataset. The current and target ages of each
subject are as close as possible to those used in the state-of-
the-arts [1,4,6,17]. The comparison of age simulation results
is shown in Figs. 13 and 14.

In Fig. 13, we see that in the younger age group (20 and
35 years old) our shape aging is more realistic than those of
[1,4]. In the older age group (65 years old), our age simulation
results show convincing aging results with visible wrinkles
aroundmouth and forehead as compared to [4,6,17]. Further-
more, our aging simulation results keep the histogram similar
with that of the original input image.

In Fig. 14, we compare our composited age simulation
results with those of [6] and the reference images from FG-
NET dataset at the target age y. From the results in Fig. 14c ,
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Fig. 15 Comparisons of aging simulations with ground truth, a input
image, b pose-corrected image in frontal pose, c age-simulated images
at target ages with histogram correction (ours), d ground truth images

in frontal pose at target age, e age-simulated images composited to
background (ours), and f ground truth images at target ages

we can see that Kemelmacher et al. [6] used facial compo-
nents from the reference images. However, we do not use the
facial properties of the reference and perform the simulations
automatically from the input image. Thus, our aging simula-
tion approach provides better performance as compared with
[6].

3.5.2 Comparison with reference images

The comparison of age simulated and ground truth in frontal
pose and composited images at target age y is provided in
Figs. 15 and 16 for male and female aging, respectively. For
the comparison of age-simulated images with background,
we composited the aged/de-aged images to the ground truth
images at the target age y.

From Figs. 15 and 16, we see that our automatic aging
simulation results are visually similar to the ground truth
reference images at the same age. This is qualitative evidence
that our 3D gender-specific aging model can automatically
generate effective aging simulation results from a single 2D
image at an arbitrary age.

3.6 Quantitative evaluation

3.6.1 Subjective evaluation

For subjective quantitative evaluation, we conducted an
online user survey with 30 different subjects. Each subject
views (i) input images at age x and (ii) their respective aging
simulation results at age y generated by our approach and
other methods in a random order. We selected two evalua-
tion metrics in this survey, i.e., (1) age matching (AM) and
(2) identity matching (IM). Each subject is asked to evalu-
ate the age-simulated images by simple scoring method. For
each metric, we provide three scores, i.e., score = [0, 0.5, 1].
The scores 1, 0.5, and 0 mean good, neutral, and bad match-
ing in terms of AM and IM. Each user was shown 36 sets
of images in one sitting, and the next day we show them the
same set of images with random order of view to get their
scores again. We take the averages of sum of score count
(good, neutral, bad) for age-simulated images and sum of
average scores per pair of images (

∑
Scorepp). The statis-

tics of the normalized average scores are given in Table 4.
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Fig. 16 Comparisons of aging simulation with ground truth, a input
image, b pose-corrected image in frontal pose, c age-simulated images
at target ages with histogram correction (ours), d ground truth images

in frontal pose at target age, e age-simulated images composited to
background (ours), and f ground truth images at target ages

Table 4 Subjective quantitative
evaluations: average scores in
terms of age matching (AM) and
identity matching (IM)

Age matching (AM) Identity matching (IM)

Good Neutral Bad
∑

Scorepp Good Neutral Bad
∑

Scorepp

Ours 5.33 1.5 0.167 6.08 5.5 1.5 0 6.25

Kemelmacher [6] 4 1.5 1.5 4.75 4 3 0 5.5

Park et al. [1] 2.5 3 1.5 4 4.5 2.5 0 5

Yang et al. [4] 3 1.5 2.5 3.75 2 3 2 3.5

Wang et al. [17] 4.167 1.5 1.33 4.917 3.833 1.833 1.33 4.75

Best results are indicated with bold font

The comparison with state-of-the-art ([1,4,6,17]) shows that
our age simulation results got 76.2% and 78.5% good aver-
age score ratings in terms of AM and IM, respectively. The

sum of scores per pair of age-simulated images is also higher
for our approach.
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Table 5 Objective quantitative
evaluations: face verification
experiment on FG-NET dataset
(two images per subject)

TAR at FAR at Rank-1 Rank-5 Rank-10 Rank-20
1% FAR (%) 85% TAR (%) (%) (%) (%) (%)

No aging 8.54 45.89 11.59 23.78 36.59 50.00

Aging 12.80 45.82 10.98 26.83 40.24 53.66

Fusion 13.41 41.69 13.41 28.05 41.46 53.66

Best results are indicated with bold font
Max. age gap = 40years, min. age gap = 6years, and avg. age gap = 16.67years for the images used in this
experiment

Table 6 Objective quantitative
evaluations: face verification
experiment on FG-NET dataset
(all images per subject)

TAR at FAR at Rank-1 Rank-5 Rank-10 Rank-20
1% FAR (%) 85% TAR (%) (%) (%) (%) (%)

No aging 42.67 26.53 83.38 92.49 95.23 96.65

Aging 40.93 25.99 79.05 90.48 94.22 96.35

Fusion 43.24 25.15 83.89 93.00 95.44 96.65

Best results are indicated with bold font
TAR and rank-1 show a better improvement after fusion

Table 7 Comparison of
state-of-the-art face verification
systems with the proposed
approach

Face matcher Dataset details (#subjects,
#images) in probe and gallery

Rank-1 (%)

Park et al. [1] FaceVACS FG-NET(82,82), 37.40

Geng et al. [12] Mahalanobis distance, PCA FG-NET (10, 10) 38.10

Du et al. [30] FaceVACS, FG-NET (age group ≤ 18) 39.2

PCA FG-NET (age group > 18) 58.70

Li et al. [8] MFDA, LDA , (Fisherface)
and FaceVACS

FG-NET (82,1002) 47.50

Gong et al. [29] Cosine distance FG-NET (82,1002) 69.0

Yang et al. [31] Graph-based objective
function

FG-NET (82,1002) 64.47

Proposed VGG face CNN FG-NET 83.89*

Approach Descriptor, L2 norm (82, 1002)

aTwofold cross-validation is performed by splitting the FG-NET subjects in two subsets. We adapted the
leave-one-out fashion similar to Li et al.[8]
*Top Rank-1 identification result is indicated with bold font

3.6.2 Objective evaluation

For objective quantitative evaluations, we used the VGG
face CNN descriptor [28] on the age-simulated and origi-
nal images. We performed two face verification experiments
with our age-simulated images. For the first experiment, we
selected two images per subject with the third minimum and
third maximum ages available (average age gap ≤ 16.67
years) in the FG-NET dataset. Three different facial match-
ing schemes were tested, namely (1) no aging, (2) aging, (3)
fusion of no aging and aging. The evaluation results are given
in Table 5 in terms of TAR at 1% FAR, FAR at 85% TAR,
and Rank-1∼20matching. Score-level fusionwas performed
using the weighted score sum method, where the weight (w)
was assigned to the aging-based matching scores and weight
(1− w) was assigned to the original image matching scores.

We empirically chose the weight value in each matching
experiment. The fusion of aging simulations with no aging-
based matching scores improves the matching accuracy by
3.65%.

In the second facial verification experiment on the FG-
NET dataset, we used all the images per subject available in
the FG-NET dataset and performed matching in a leave-one-
out fashion described in Li et al. [8]. We performed twofold
cross-validation with each fold containing images from 41
subjects. Table 6 shows the face recognition results for (1)
no aging, (2) aging, and (3) fusion of no aging and aging. The
recognition performances after fusion are 83.89% in rank-1
and 43.24% in TAR, which are the best performances among
similar evaluations in the literature.

The comparison of our face verification experiments with
state-of-the-art [1,8,12,29–31] is provided in Table 7. The

123



Age progression by gender-specific 3D aging model 107

Algorithm 1 Edge Smoothing Background Composite
(ESBC)

function ESBC

Input
pts81 = 13 forehead and 68 facial boundary points
Ibg = Composited image with noisy edges
Output
Ismooth = Composited image with smooth edges

Step 1: Face mask
maskbg ← Specify polygon region of face using pts81
Step 2: Face edges
Apply Canny edge detector on Ibg ,
Icanny ← Face edge image

Dilate the edges of Icanny ,
Idilate ← dilated face edges

Step 3: Blur image
Apply circular averaging,
H ← averaging filter
I f ilter ← Blur Ibg using H,

Step 4: Smooth composited image
[r , c] ← locations of edges in Idilate
Ismooth ← Copy of Ibg
Ismooth ← Copy blur edges from I f ilter using [r,c].

end

comparison results show that our age simulation-based face
verification results are higher in Rank-1 (%) and TAR (%)
than state-of-the-art approaches. Thus, we are confident that
our gender-specific aging model provides better qualitative
and quantitative results.

4 Conclusion

In this paper, we presented our 3D gender-specific aging
model to automatically simulate an input face image from
age x to age y. The proposed aging model can age or de-
age an input 2D image of a person by mapping it onto
frontal pose of a 3D morphable model. The aging results
on frontal pose images are then mapped to original back-
ground images using edge smoothing background composite
(ESBC) method. Before compositing, we performed color
and flare correction to match the skin color of age-simulated
images. In our aging model, we have five different datasets
such as FG-NET, PCSO, Celebrities, BROWNS, and Private.

We tested the effect of dataset configuration on our aging
model in termsof averages of shape and texture pattern spaces
and aging simulation results. Furthermore, we studied how
the length of shape and texture eigenvectors affect the aging
process. The aging simulation results are achieved on FG-

NET dataset and compared with ground truth and state-of-
the-art results. Although there are expression variations in
the ground truth images, the texture and shape changes with
aging or de-aging were observed more realistic compared
with state-of-the-arts.

In order to evaluate our aging simulation approach qual-
itatively, we performed subjective and objective tests. In
subjective evaluations, our approach received 76.2% and
78.5% scores in terms of age matching (AM) and iden-
tity matching (IM), respectively. In objective evaluations,
our aging simulations-based face verification results show
83.89% rank-1 accuracy and outperform the state-of-the-art
methods. In future,wewould add the functionality of aging or
de-aging of hair and mustaches in the male subjects. More-
over, we would like to add more datasets that comprise of
ethnicity information in the 3D aging model.
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