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Abstract
In this paper, we aim to improve the convolutional deep learning by means of proposed statistical feature image descriptor
and Laplacian of Gaussian filtering. We propose a statistical feature image descriptor (SFID) that is composed of spatial and
temporal parts for video content classification using convolutional deep neural network. We apply the proposed descriptor
to multi-view action unit classification. The SFID is a statistical representation of the raw image based upon K-abstraction
levels. It is capable of addressing the fixing input array size of the deep learning model. Further, it eliminates redundancy in
representation of the content; hence, it reduces computation cost. The proposed SFID can be in spatial and/or temporal form.
The temporal form is particularly important in video content classification. We added a new layer of Laplacian of Gaussian
filter (LoG) right before fully connected layer into the regular deep convolutional neural network (DCNN) structure. The
parameters of the LoG are adaptively calculated using the Gaussian mixture models. The classification results are compared
with regular DCNN, SVM models, and KNN together with feature descriptors of SIFT and SURF. The results show that the
proposed feature descriptor and introducing a LoG filter layer give promising performance for deep learning.

Keywords Action unit classification · Facial expression · Image descriptor · Deep learning · Video mining

1 Introduction

Face is the primary nonverbal human’s tool to transfer emo-
tions and communicate with others. Studying the human’s
facial expressions has been an important topic in different
cultures and countries [1]. Facial expression recognitions are
an important aspect of human–machine interaction [2]. Sim-
ilar facial expressions such as happiness follow the same
structured patterns of the relaxation and contraction of mus-
cle in the specific regions of face. Based on the regional
structure of facial expressions, some local units can be
defined. The action unit (AU) structure is the most common
system used for describing facial expressions [3]. The action
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units can be defined as the variation of the muscles in differ-
ent locations of face such as month and eyebrow that follows
a general set of patterns such as relaxation and contraction
in different facial expression [4]. The variation of the mus-
cles can be defined as the temporal information which is an
important part of the action units as the action units are built
based on the dynamic of the face [5]. A total of 46 action units
have been defined which are able to describe more than 7000
facial expressions [6]. Figure 1 has some sample images of
the action units that are used in this paper. AU 1, AU 4, AU
6, and AU 7 are associated with upper part of the face, such
as eyes and eyebrow. AU 10, AU 12, AU 14, AU 15, AU 17,
and AU 23 are associated with the lower part of face, such
as mouth.

Factually, the main advantage of using action units is that
a large number of facial expressions can be described by a
limited number of action units. There have been some appli-
cations for facial and action recognition including biology,
neuroscience and psychology [1] disease detection, analysis
of human emotions, security, learning systems, and surveil-
lance [7].
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Fig. 1 Ten action units existing in FERA 2017 dataset [4]

Facial action unit recognition can be a challenging task
as many variations such as head-pose, illumination [1], and
scale may affect the accuracy of the results. Moreover, the
spatial relevance of the action units to the class label may not
be so clear for many classifiers since each action unit belongs
to a specific region of face. Furthermore, big size of the input
image can be a problem for many deep learning architectures
as the computational cost of the deep learning architecture is
highly dependent on the size of the inputs.

In this paper, we propose a spatial–temporal feature image
and LoG filter operation to enhance the deep convolutional
neural network (DCNN)-based learning to classify action
units in multi-view facial expression videos. DCNN is a
state-of-the-art method that is suitable for complex image
processing problems [8, 9]. We employed spatial–tempo-
ral feature image instead of raw images that is common in
DCNN-based classification. Furthermore, the trained feature
maps are processed by LoG filter layer whose parameters are
adaptively computed by mixtures of Gaussian models.

Wecompared the performance of SIFTandSURFdescrip-
tors from which the proposed statistical feature image is
formed. Our experimental results show that the SURF-based
SFID is better than that of SIFT. Among the feature extrac-
tors, SURF descriptors [10] provide a good representation
under rotation and scale variation [11]. However, there are
three issues when SURF descriptors are used. Firstly, SURF
descriptors can handle a slight amount of variation in rota-
tion while in the multi-view case, face images may have a
significant amount of rotation. Secondly, the number of key
points extracted by SURF descriptors is not fixed. However,
in many types of classifiers such as neural network-based
classifiers, the number of inputs must be fixed. Thirdly, the
number of key points can be high that makes the computa-
tional cost expensive. Figure 2 shows an example of SURF
key points detected in faces at different views and scales.

In summary, a new content-based image representation
SFID is proposed in this paper. In addition, we showed that
the proposed adaptive LoG-based DCNN structure improves
classification performance of facial action units.

1.1 Previous work

The study of facial expression recognition can be catego-
rized into two groups: The first group utilizes only spatial
appearance information and the second group exploits tem-
poral dynamic features in addition to the spatial one.

The most of the researches utilized non-deep learning
methods. Using spatial images with a non-deep architec-
ture is a common method for facial expression and action
unit recognition. In [2], the researchers proposed a real-time
algorithm for facial expression recognition that is invariant to
pose and scale change. They utilized patch-based histogram
of oriented gradients (HOG) features. Several key points
in the face are detected to determine the most informative
patches. A support vector machine (SVM) is used to classify
the extracted features.

Non-deep methods also have been used with temporal
images. In [12], the cumulative different gabor features were
used to extract temporal features. Independent component
analysis (ICA) was conducted to solve the class separation
problem. Multiple classifiers are created to recognize dif-
ferent action units. Each testing sample is compared to the
manifold vectors in the dictionary for classification. How-
ever, creating separated classifiers for a binary problem may
cause overfitting, especially for some action units that the
number of positive samples is low and the training process
cannot fit an appropriate model to the data.

Deep learning method with spatial images has been
considered by several researchers for facial expression
and action unit recognition. Using Restricted Boltzmann
Machine (RBM) to compute the relevancy of the actions
units and facial expression in a low-level representation is
suggested in [13]. The gradient descent algorithm using log
likelihood cost function is exploited for the training part and
some probability measurements are considered to link the
facial expressions and action units in a high-level represen-
tation. Nevertheless, it was not defined that how temporal
variation can be considered while the action units and facial
expression relationship is captured by the deep neural net-
work. After a preprocessing stage including eye detection
and image cropping in [14], convolutional neural network
(CNN) was used for facial expression recognition. Six types
of expressions were recognized and among them happy, sur-
prise and disgust received the highest classification rate. Still,
the proposed facial expression recognition system is highly
dependent on the preprocessing stage such as eye detection
that may lead to some errors if there is any fault in the prepro-
cessing stage.Moreover, no temporal information is added to
the proposed system and also the input image size is too low.
[15], designed a deep and multi-label learning (DRML) for
action unit classification of raw images. Theyused region lay-
ers to capture the local facial features (action units) as well as
regular convolutional layers. Still, the image size is 170×170
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Fig. 2 The SURF key points
detected in face images with
different view and scale (face
image is courtesy of [29])

that may not be sufficient. Furthermore, the weights assigned
to classify different action units are equal. However, different
action units are localized differently and may need different
assigned weights. Using a hierarchical deep model with raw
facial images was proposed in [16]. Firstly, image prepro-
cessing is done for the rigid transformation normalization.
After dividing imaged to patches, DCNN is used for feature
extraction and two classifiers, Softmax and SVM are used
to classify the facial action units. Nevertheless, the proposed
structure of the network is too simple for handlingmany vari-
ations such as pose change. In [17], after importing facial
images and segmenting the image to patches using sliding
window, face component detector is applied using HOG fea-
tures and RBM. Using the Gabor feature of eyes and mouth,
facial expressions are recognized using Autoencoder. How-
ever, the preprocessing steps are too complex that may result
to the different outputs in different runs of the algorithm.

Using deep learning approaches and spatial and temporal
information is a powerful method that has been suggested
by a few researchers. In [18], the researchers exploited a
deep approach that uses two parallel dynamic and appear-
ance modules. Raw images are used as the input of the facial
appearance module and the images obtained by the optical
flow approach are considered as the input of the dynamic

module. Training the both of the modules is done by using
two DCNNs. The final classification results are obtained
based on the final score calculated from fully connecting lay-
ers with joint outputs. However, both of temporal and spatial
networks use the same frames which may not be efficient
as they may capture the same information. Similar to [18],
in [19] they used two networks for classifying spatial and
temporal features but as opposed [18], two spatial and tem-
poral processes are sequential. After importing the image
sequences, they manually segment the action units based on
a reference image. They used both raw units and binary units
in the first layer of the DCNN and then they join two raw
units and the binary units in the second layer. The output
of the DCNN is exported to a temporal network, short-term
memory neural networks, for the final decision. Neverthe-
less, the obtained results are not so promising. Moreover, the
preprocessing algorithms to obtain image patches seem to be
manual.

In [20], model-based and feature-based approaches are
described. For feature-based methods for instance, shape
evaluation of face images is done in [21] and curvelet
variation investigation is done in [22]. As examples ofmodel-
based methods, 3Dmodels of facial expression are created in
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Fig. 3 An example of one-dimensional Gaussian mixture models with
three Gaussian densities [25]

[23] and augmented Legrangian multiplier approach (ALM)
was used in [24].

2 Method

In this section, we explain the proposed statistical feature
image descriptor and utilization of Laplacian of Gaussian
filter whose parameters are adaptively calculated by means
of Gaussian mixture models.

2.1 Gaussianmixture models

Gaussian mixture models (GMM) were introduced to handle
some limitations of single Gaussian model [25]. Figure 3
shows aGMMwith threeGaussian densities. ForK Gaussian
densities, the mixture of Gaussian models can be calculated
by the linear combination of the densities as follows:

p(x) �
K∑

k�1

πk N (x |μk,Σk) (1)

where theweightπk is mixing coefficient to form linear com-
binations of Gaussian densities N (x |μk,Σk) with mean μk

and covariance Σk [25].
A dataset of {x1, x2, …, xN} can be modeled with GMM

by maximizing the likelihood function based on parameters
including mean, covariance, and mixing coefficients. The
step of the modeling can be described as follows [25].

1. Initialize mean μk , covariance Σk , and mixing coeffi-
cients πk

2. Calculate the posterior probability for the random vari-
able znk , P(znk ,) using the following equation:

P(znk) � πk N (xn|μk,Σk))∑K
j�1 π j N (xn|μk,Σk)

(2)

where K is the number of Gaussian densities.

3. Re-estimate the parameters as follows:

μnew
k � 1

Nk

N∑

n�1

P(znk)xn (3)

Σnew
k � 1

Nk

N∑

n�1

P(znk)
(
xn − μnew

k

)(
xn − μnew

k

)T (4)

πnew
k � Nk

N
(5)

where Nk �
N∑

n�1

P(znk) (6)

4. Calculate the log likelihood:

ln p(X |μ,Σ, π) �
N∑

n�1

ln

{
K∑

k�1

πk N (x |μk,Σk)

}
(7)

5. Repeat from step 2 until convergence

2.2 Laplacian of Gaussian

Laplacian of Gaussian as can be formulated as the following
equation is a filter that can be used to find rapid change in
pixels values in image data. The σ can actually control the
amount of filtering [26]:

∇2G(x, y) � 1

2πσ 4

(
2 −

(
x2 + y2

σ 2

))
e−(

x2+y2
)
/2σ 2

(8)

Laplacian of Gaussian can be used as appropriate features
of images by finding the significant variation in the pixels
instead of using all the pixel values that can contain mean-
ingless data [27]. Figure 4 shows the outputs of the LoG
filters with different variances.

2.3 Statistical feature image descriptor

The DCNN models require predefined input size. This
requirement imposes difficulty when raw images are used
as an input to a DCNN model. On the other hand, the raw
images inherently explode representation space making the
content recognition more challenging. As solution, we pro-
pose transforming features obtained from the raw content
into the form of an image.

Themain steps of obtaining theSFID: (1)Compute feature
descriptors, such as SURF descriptors, from the raw image,
(2) obtain sampling signature by applying a discretization to
each dimension of the feature descriptors. The discrete levels
are obtained from K-percentiles of feature matrix. Let PrK
denote the sequence of K-percentiles. Let Perk(S) denote
PrK (k)th percentile of the set S; e.g., Pr4 � (20, 40, 60, 80),
then Per2(S) will be 40-percentile of the set S. In the formal
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Fig. 4 Five examples of outputs
of LoG filters with different
variances (face image is
courtesy of [29])

form, given a key descriptor matrix D � [F1F2 · · · FN ] with
N feature vectors Fj � (

f j,1, f j,2, . . . , f j,L
)T of size L,

where j � 1, 2, .., N , then

SFIDK � {k : Perk(Si ); k � 1, 2, . . . , K − 1;

Si � (
f1,i , f2,i , . . . , fN ,i

)
, i � 1, 2, . . . , L} (9)

Intuitively, the SFID-K is a statistical representation of
the raw image based upon K-abstraction levels. Note that the
SFID-K is a 2D-array of sizeK ×L and D � [S1; S2; . . . ; SL ]
where it is the stack of row vectors. Figure 5 shows the flow
of the system for SFID and LoG layers. As an example, a
SURF descriptor of size 64 produces an image with the size
of K ×64. Figure 6 shows an example of SFID for AU1 and
AU4.More examples and an illustrative example of obtaining
SFID are provided in Appendix.

2.4 LoG-DCNN

Figure 7 shows the block diagram of the LoG-DCNN. At
each epoch, sub-images are obtained through convolution
and pooling for all statistical images. Each sub-image, then,
is transformed to a 1D feature vector to be used by aGaussian
mixture models. The parameter of the LoG filters is cal-
culated utilizing this GMM. Subsequently, the LoG-filtered
images are utilized to train a regular feedforward ANN. At
the final stage, the classification error is back-propagated to
update each filter.

2.5 Adaptive computation of LoG parameter
bymeans of GMMs

Wepropose to use themean values of the trace of each covari-
ance matrix (MoTC) as the variances of the LoG filters. Note
that the diagonal elements of the covariancematrix of aGMM
give the variation at the corresponding dimension. The ratio-
nale behind use of GMMs is to learn the variation from the
data that is obtained from the multi-view multi-category of
the same class objects.

During the training stage at each epoch, the GMMs are
computed from the feature vector of size m × p × k that
are obtained by concatenating m sub-images with size of
p × k. Hence each sample image is represented by GMMs.
During the testing stage, the variance of the LoG filters is
predetermined experimentally.

We iteratively calculated the LoG filter variance that gives
the minimum testing error. Initially, a minimum–maximum
range is defined and the classification performance is mea-
sured for five different variances within this interval. The
variance that gives the minimum error is used to update the
range. As an example, the initial range is set to [0.001, 10];
the minimum errors are obtained with variance�0.01. Then,
the range is set to [0.005, 0.05] around 0.01. This procedure
continues until the error does not change significantly.
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Fig. 5 A DCNN model with proposed statistical feature image descriptor and LoG layer

Fig. 6 Examples of SFIDs for
AU1 and AU4 (SFID images are
transposed)

AU1 AU4

Raw Image

SIFT-SFID

SURF-SFID

2.6 Statistical spatial–temporal feature images

Action units can be defined as four types of actions in face
muscle: No activity, increasing the contraction of themuscle,
being stable and decreasing the contraction of themuscle [1].
To capture these actions in different regions of the face, a
patched temporal feature image is exploited. An example of
patch-based SURF features can be seen in Fig. 8. While the
spatial feature image is the original SFID, temporal image
can be derived from the spatial image in different frames and
different patches. In this study, the temporal image is obtained
by the accumulative difference of the pixels of the patches of
SFID in 10 frames. Let’s consider a temporal feature image
TI with the size of K × L .

The pixel of (p, l) of the temporal feature image can be
calculated as:

TIcp,l �
10∑

f�1

SFID f ,c
p,l − SFID( f−1),c

p,l (10)

where p ∈ {2, 3, . . . P − 1}, c ∈ {1, 2, . . . ,C}, l ∈
{1, 2, . . . L} and P is the number of percentiles used in the
temporal image, C is the number of patches, L is the size of
SURF feature vector and f is the frame number in a sequence
of facial expression video.

We explored two architectures that utilize temporal/spatial
feature images and DCNN. In the first architecture, a single
DCNN is designated separately for each spatial and feature
images; the final decision is obtained by averaging. In the sec-
ond architecture (namedDCNN-2), both spatial and temporal
feature images are merged to form a single feature image as
seen in Fig. 9.

We also utilized Hu moments [28] as a temporal descrip-
tor. The image is divided into 64 patches and Hu-feature

123



Video mining for facial action unit classification using statistical spatial–temporal… 47

Convolu�onal 
layer

Pooling 
layer

Sub-
images

Hidden 
layer

Mul� 
Logis�c 

Regression 

Transforming to 
1D feature

vectors

Applying 
LoG filters

Conver�ng to 
one dimensional 
feature vectors

Calcula�ng 
error

Upda�ng 
filter weights

Actual class 
value

Crea�ng 
Gaussian 

mixture model

Calcula�ng 
LoG 

variances

Predicted
Class value

Sta�s�cal 
feature 
images

Determining 
Variances

layer

Fig. 7 Block diagram of the LoG–CNN

Fig. 8 An example of patch-based SURF feature with four patches (face
image is courtesy of [29])

vector is calculated for each patch. These feature vectors are
merged to form the temporal feature image. Figure 10 shows
a face image with 64 patches. Our Mahalanobis distance-
based analysis shows that the Hu-feature vectors provide

good separation among different classes of the action units.
Figure 11 supports this observation as the Mahalanobis dis-
tances among each sets are greater than zero.

3 Experiments and results

We used the FERA 2017 [29] dataset which includes sev-
eral facial expressions of different individuals under different
views. The proposed spatial–temporal statistical feature
image with LoG–DCNN is compared with raw image, tradi-
tional SIFT, and SURF as image descriptor together with
the classifiers including DCNN, SVM, and KNN. Fig-
ure 3 illustrates the flow of experiments for the comparison.
The parameters of the classifiers compared are provided in
Table 1. The comparison is conducted for ten action units
listed in Fig. 12.

We exploited a multi-label classification approach in all
DCNN models; as a cost function we used binary cross-
entropy. Note that each action unit is considered as a class.
After testing with different parameters, the best model is
selected. The number of patches used for statistical SURF
feature image is 4 and that of Hu is 64. The number of per-
centile used in spatial feature image is 38 (skipping the first
and last ones given the increment of 2.5 percentile). A total of
100 detected key points are selected from each sample image
to obtain the SIFT and SURF feature vectors (Fig. 13).
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Fig. 9 Two architectures that
utilize spatial/temporal feature
image with DCNN
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Temporal 
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Final decision

Fig. 10 An image of 64 patches; a Hu-feature vector is extracted per
patch (face image is courtesy of [29])
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Fig. 11 Mahalanobis distance among the sets of HU-feature vectors
from different action units

Table 1 Parameters of the classifiers used in comparison

Classifier
Attribute

KNN DCNN SVM (three
kernels)

K 5 – –

Training
method

– Stochastic
gradient
descent
method with
mini-batches

–

Number of
hidden units

– 50 –

Number of
convolutional
layers

– 2 –

Number of
hidden layers

– 1 –

Learning rate – 0.1 –

Batch size – 100 –

Penalty
parameter C

– – 1.0

Degree – – 3

Gamma – – 0.01

Tolerance – – 0.001

3.1 Results and discussion

In this section, we compare the proposed LoG–DCNN
and the feature image descriptor SFID with other classi-
fiers including regular DCNN, SVM models, KNN and the
descriptors including SIFT, SURF, raw image in terms of the
testing error and the area under ROC curve (AURC) [30].

Table 2 shows the abbreviations for classifiers and fea-
tures used in this paper with their explanation. Thereafter,
these abbreviations will be used alone or in combina-
tion with a classifier and/or a feature. As an example,
LoG–DCNN–SURF–S-SFID means that LoG–DCNN uses
SURF as a spatial SFID.

Figure 14 shows the testing and training average errors
out of 10 action units some methods used in this paper. As
can be seen in the figure SFID gave a smoother training and
testing phase compared to RI.

Figure 15 compares the proposed feature images and clas-
sifierswith different deep and non-learning approaches based
upon average testing error out of 10 action units. Among
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Fig. 12 Some videos used from FERA 2017 datasets [29]

Feature extrac�on

Spa�al Feature 
Image

Spa�al + Temporal 
Feature Image

Raw 
images

Classifica�on

SVM with 
three kernels

SFID-SURF SFID-SURF + 
HU image

DCNN

Log-DCNNSFID-SIFT 
SFID-SURF + 
SURF image

KNN

Deep methods
Non Deep 
methods

SURF

SIFT

Fig. 13 Organization of experiments conducted to compare different descriptors and methods

Table 2 Abbreviations and their definitions

Abbreviation Definition

LoG–DCNN The proposed LoG–DCNN

LoG–DCNN-2 Two separate LoG–DCNNs are used one for spatial SFID and the other for temporal feature image

SVM-P SVM with polynomial kernel

SVM-L SVM with linear kernel

SVM-R SVM with RBF kernel

SURF-S–SFID SURF is used to generate spatial SFID

SIFT-S–SFID SIFT is used to generate spatial SFID

SURF–ST–SFID SURF is used to generate spatial SFID and temporal feature image

SURF–HU–ST–SFID SURF is used to generate spatial SFID and HU moments are used to generate temporal feature
image

SURF-I SURF image

SIFT-I SIFT image

RI Raw image
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Fig. 14 Training versus testing average error curves of some methods used in this research

the deep learning methods, the best performance is achieved
by using LoG–DCNN–SURF–ST-SFID (5.3% testing error)
and for the non-deep approaches, SVM-L–SURF-S–SFID
(9.54% testing error) produced the best accuracy. In gen-
eral, LoG–DCNN gave the best accuracy when any feature
or raw image is used. Moreover, using the SFID resulted in
a remarkable better performance compared to SURF, SIFT,
or Raw image when a deep learning method is used.

In comparison with our proposed statistical fea-
ture images with the LoG–DCNN, the SURF–ST–S-
FID gives the highest performance of 5.37% in aver-

age testing error. LoG–DCNN–2-SURF–ST–SFID and
LoG–DCNN–SURF–S-SFID follow the highest perfor-
mancewith 6.03 and 6.13%, respectively. SURF–HU–ST–S-
FID produces closer results using LoG–DCNN (8.37%) or
LoG–DCNN-2 (9.84%). SIFT–S-SFID resulted in the test-
ing error of 13.74%. In contrast, LoG–DCNN–RI (26.18%),
LoG–DCNN–SIFT-I (25.96%), and LoG–DCNN–SURF-I
(26.45%) achieve significantly lower performance compared
to the statistical feature images.

As with the proposed LoG–DCNN, the proposed SUR-
F–ST–SFID with regular DCNN achieved the highest per-
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Fig. 15 The average testing error of action units for different methods
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Fig. 16 The testing error of 10 action units using different deep learning and feature image approaches

formance of 6.45% testing error followed by the DCNN–2-
SURF–ST–SFID of 6.85%. DCNN–SURF–HU–ST–SFID
caused a testing error of 7.04% which is lower than that
of DCNN–2-SURF–HU–ST–SFID (testing error of 9.42%).
DCNN–SURF–S-SFID resulted in a better performance
with testing error of 14.45% compared to that of DCN-
N–SIFT–ST–SFID (testing error of 14.45%). Using SURF-I,
-SIFT-I, and RI with DCNN gave the testing error of
26.76, 28.01, and 29.40%, respectively, which are remark-

ably higher than the testing errors of the statistical feature
images.

For the methods based on the SVM classifier, SVM–L-
SURF–S-SFID resulted in the highest accuracy with testing
error of 9.54%. SVM–L-SURF–ST–SFID was in the sec-
ond place with testing error of 11.71% that shows that using
temporal features with non-deep methods might not be as
good as with deep methods. SIFT–S-SFID yielded the low
accuracy with SVM classifiers of testing error 37.40, 57.30,
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Fig. 17 AURC values for different methods and action units

and 65.10% for SVM-L, SVM-R, and SVM-P, respectively.
SURF-I and SIFT-I gave close results; the testing errors for
SIFT-I (and SURF-I) are 40.07% (38.37%) with SVM-L,
58.50% (55.32%) with SVM-R, and 70.11% (70.06%) with
SVM-P. Using RI caused the worst performance for SVM-
P and SVM-R (testing errors of 71.20 and 59.70%) and an
average performance for SVM-L (testing error of 34.20%).
The performance of the KNN is shown to be the lowest
with the testing errors for SIFT–S-SFID (69.00%), SURF-I
(70.29%), and SIFT-I (72.55%). Generally, the results show
that SVM-L was the best classifier among the non-deep
methods. Comparing the SVMmethods, the linear SVMper-
formed significantly better than its other variants. This would
be due to linearly distributed nature of the sample population.
Inherently, the results would be an example of SVM’s theo-
retical optimality criterion.

Figure 16 compares the different deep learning approaches
for 10 action units based on the testing error. The results
show that some action units can be recognized significantly
better than others; as an example, AU15, AU14, AU12,
and AU7 were recognized with the highest error than oth-
ers. In most of the cases, the proposed LoG–DCNN and
feature image outperform other classifier and descriptors.
In general, the accuracy was high when the proposed spa-
tial–temporal feature images were used. AU23 had a lowest
error of classification among all the action units. DCNN—
SURF–HU–ST–SFID led to best classification accuracywith
the error 0.10% that is followed by 0.11% achieved by
LoG–DCNN–SURF–S-SFID. For AU23, the worst classi-
fierwas LoG–DCNN–2-SURF–HU–ST–SFIDwith the error
of 1.50%. Similar to AU23, AU17 and AU10 were also

classified with high accuracy. While, the lowest errors for
AU17 and AU10 are achieved by DCNN–SURF–HU–ST–S-
FID with errors of 0.13 and 0.10%, respectively, the highest
errors are obtained by DCNN–2-SURF–HU–ST–SFID with
the error of 4.23 and 7.78%, respectively. In contrast, AU15
had the highest error of classification. While, the best accu-
racy forAU15 is achieved byLoG–DCNN–SURF–ST–SFID
with the error of 11.90% followed by DCNN–SURF–ST–S-
FID with the error of 12.40%, the worst classifier was
DCNN–2-SURF–HU–ST–SFID with the error of 18.89%.
Like as AU23, AU14 and AU12 had high errors of classifi-
cation. The highest errors are obtained using LoG–DCNN-
2–SURF–HU–ST–SFID that were 16.59 and 14.34% for
AU14 and AU12, respectively.

Figure 17 compares the different methods for 10 action
units based on the area under ROC curves (AURC). For
AU1, all the methods resulted in acceptable performance
with the range between the minimum AURC of 0.92
achieved by DCNN-2–SURF–ST–SFID and the maximum
AURC of 0.99 achieved by LoG–DCNN–SURF–HU–ST–S-
FID and LoG–DCNN–SURF–S-SFID. For AU4, DCNN–2-
SURF–ST–SFID resulted in the highest performance (AURC
of 0.99). The second and the third were DCNN–SUR-
F–ST–SFID (AURC of 0.95) and DCNN–SURF–S-SFID
(AURC of 0.94). LoG–DCNN–2-SURF–HU–ST–SFID
(AURC of 0.77) and LoG–DCNN–SURF–S-SFID (AURC
of 0.79) were the worst methods for classifying AU4.
For AU 6, LoG–DCNN–SURF–ST–SFID resulted in the
highest performance (AURC of 0.99) while DCNN–2-
SURF–HU–ST–SFID, DCNN–SURF–HU–ST–SFID and
LoG–DCNN–2-SURF–HU–ST–SFID gave the lowest one
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Fig. 18 ROC curves and AURC of different action units for the method DCNN_2_SURF_HU_ST_SFID

(AURC of 0.88). For AU7, just as AU1, the perfor-
mances were high using any method with the range
between the minimum AURC of 0.93 and the maximum
AURC of 0.97 achieved by DCNN–2-SURF–HU–ST–SFID
and DCNN–SURF–ST–SFID, respectively. For AU12,
only LoG–DCNN–SURF–ST–SFID (AURC of 0.89) and

LoG–DCNN–SURF–S-SFID (AURC of 0.85) resulted in
the acceptable performance. AU14 was the most chal-
lenging action units since only LoG–DCNN–SURF–ST–S-
FID resulted in a fair performance (AURC of 0.88),
while LoG–DCNN–SURF–S-SFID was the worst classi-
fier (AURC of 0.69). Figure 18 shows the ROC curves
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and AURC values of different action units for the method
DCNN_2_SURF_HU_ST_SFID.

4 Conclusion

In this paper, we proposed an image content representation
SFID and adaptive LoG-based DCNN structure to classify
multi-view facial action units. The proposed representation
utilizes the spatial–temporal statistical content of the video
stream. We compared SIFT and SURF descriptors from
which the SFID is constructed. Our results show that SUR-
F–SFID outperforms SIFT–SFID. Secondly, to handle the
variation of full pose change of face images, we proposed to
add an adaptive Laplacian of Gaussian layer into the tradi-
tional DCNN structure. The parameters of the LoG layer are
determined by the mixture of Gaussian models. The results
showpromisingperformance compared to the rawdata, SIFT,
SURF as well as regular DCNN, SVM models, and KNN.

We aim to improve data collection scheme for better
description of action units. An automatic detection of action
unit areas would improve classification performance when
un-related regions of the face are masked out in the prepro-
cessing stage.

Appendix

An example of obtaining SFID (Figs. 19, 20, 21, 22).
Assume that K �4, L �5, N �10, and D is given as

D �

⎡

⎢⎢⎢⎢⎣

0.55 0.48 0.07 0.94 0.73 0.19 0.69 0.78 0.43 0.06
0.43 0.17 0.76 0.09 0.81 0.17 0.43 0.56 0.14 0.09
0.01 0.04 0.38 0.86 0.03 0.40 0.18 0.03 0.56 0.02
0.69 0.97 0.02 0.32 0.99 0.76 0.54 0.09 0.07 0.65
0.31 0.02 0.01 0.19 0.42 0.81 0.19 0.21 0.87 0.33

⎤

⎥⎥⎥⎥⎦

Then, we get Pr4 � (20, 40, 60, 80).
The percentile values of the first row S �
(0.55, 0.48, 0.07, 0.94, 0.73, 0.19, 0.69, 0.78, 0.43, 0.06),
values of the first dimension, in D is calculated as
Per1(S) � 0.07, Per2(S) � 0.43, and so on. The
final SFID will be

SFID4 �

⎡

⎢⎢⎣

0.07 0.09 0.02 0.07 0.02
0.43 0.17 0.03 0.32 0.19
0.55 0.43 0.18 0.65 0.31
0.73 0.56 0.4 0.76 0.42

⎤

⎥⎥⎦

AU6 AU7

Raw 
Image

SIFT-
SFID

SURF-
SFID

Fig. 19 Examples of SFIDs for AU6 and AU7 (SFID images are transposed)
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AU10 AU12

Raw 
Image

SIFT-
SFID

SURF-
SFID

Fig. 20 Examples of SFIDs for AU10 and AU12 (SFID images are transposed)

AU14 AU15

Raw 
Image

SIFT-
SFID

SURF-
SFID

Fig. 21 Examples of SFIDs for AU14 and AU15 (SFID images are transposed)
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AU17 AU23

Raw 
Image

SIFT-
SFID

SURF-
SFID

Fig. 22 Examples of SFIDs for AU17 and AU23 (SFID images are transposed)
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