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Abstract
The primary motivation of computer vision in the robotics field is to obtain a perception level that is as close as possible
to human visual system. To achieve this, the inclusion of large datasets is necessary, sometimes involving less-frequent
and seemingly irrelevant data to increase the system robustness. To minimize the effort and time in forming such extensive
datasets from real world, the preferred method is to utilize simulation environments, replicating real-world conditions as
much as possible. Following this solution path, the machine vision problems in robotics (i.e., object detection, recognition,
and manipulation) often employ synthetic images in datasets and, however, do not mix them with real-world images. When
the systems are trained only using the synthetic images and tested within the simulated world, the tasks requiring object
recognition in robotics can be accomplished. However, the systems trained using this procedure cannot be directly used in the
real-world experiments or end-user products due to the inconsistencies between real and simulation environments. Therefore,
we propose a hybrid image dataset including annotated desktop objects from real and synthetic worlds (ADORESet). This
hybrid dataset provides purposeful object categories with a sufficient number of real and synthetic images. ADORESet is
composed of colored images with the dimension of 300 × 300 pixels within 30 categories. Each class has 2500 real-world
images acquired from the wild web and 750 synthetic images that are generated within Gazebo simulation environment.
This hybrid dataset enables researchers to implement their own algorithms for both real-world and simulation environment
conditions. ADORESet is composed of fully annotated object images. The limits of objects are manually specified, and
the bounding box coordinates are provided. The successor objects are also labeled to give statistical information and the
likelihood about the relations of the objects within the dataset. To further demonstrate the benefits of this dataset, it is tested in
object recognition tasks by fine-tuning the state-of-the-art deep convolutional neural networks such as VGGNet, InceptionV3,
ResNet, and Xception. The possible combinations regarding the data types for these models are compared in terms of time,
accuracy, and loss values. As a result of the conducted object recognition experiments, training with all-real images yields
approximately 49% validation accuracy for simulation images. When the training is performed with all-synthetic images
and validated using all-real images, the accuracy becomes lower than 10%. If the complete ADORESet is employed for
training and validation, the hybrid dataset validation accuracy reaches approximately to 95%. This result proves further that
including the real and synthetic images together in the training and validation sessions increases the overall system accuracy
and reliability.
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1 Introduction

Recent advancements in technology made intelligent robotic
systems indispensable for people to sustain daily tasks and
activities. The aspiration of most robotic applications is to
advance the perception, movement, and cognition system
as close as possible to the capabilities of a human. The
key element to achieve this in robotic perception is largely
related to computer vision. As a crucial part in visual per-
ception, computer vision in robotics is mainly employed for
object detection, recognition, segmentation, and manipula-
tion. The conventional computer vision approach involves
feature matching process using a detector and descriptor.
Furthermore, these fundamental techniques may require
additional steps such as scale-space representation, key
point localization at different scales, assigning an orien-
tation to the key points, and acquiring the description of
the key points. All these steps absorb a great amount of
computational capacity while yielding only insignificant per-
formance increases in terms of accuracy and reliability.
Due to their inadequate capabilities regarding the accuracy
and speed that affects real-time performance, the feature
detector and descriptor methods are currently not favored
in real-time robotics applications [9]. In recent works,
there has been a massive trend toward deep convolutional
neural network models because of their relative advan-
tages in both real-time requirements and accuracy [38,41].
Although the rise of deep convolutional neural networks
(CNN) structures has happened, this revolution in machine
learning comes with two requirements to be met success-
fully: (i) specific hardware that enables their implementation
in parallel processing and (ii) large and labeled image
datasets with appropriate number of images in each class
for training, validation, and testing of the resultant net-
works.

The large image dataset necessity of the deep CNNs
has been answered by many research groups with real and
synthetic images. The primary reason behind this necessity
is to train the deep CNN models with as much as possi-
ble various images for the same class to learn maximum
possible distinctive features. In other words, the weakness
caused by the rotation and scale dependence of deep CNNs
unlike classical feature matching techniques is overcome by
large number of training data samples and data augmenta-
tion. The robotics community has started forming and using
these datasets to train their object recognition systems based
on deep CNN structures. However, most of the studies use
these two groups of images (i.e., real world and simulation)
separately [26,32].Namely, the object recognition system
trained using only real-world images is tested in the simula-
tion environment or the systems trained using only synthetic
images are tested in real-world applications [10,11,36]. As
a result of the inconsistencies in two data groups, most of

such robotic applications based on object recognition are not
functioning at their highest possible performance. On the
other hand, there exists some exceptional studies, which are
trained and tested on the same type of data domain regard-
ing real-world [12,21,22,24,28] and simulation environment
[3,6,14].

Instant object recognition is a process of calling knowl-
edge about object identities that are stored as prior infor-
mation, which is previously mapped to consistent memory
segments. In computer vision, the efforts behind clarify-
ing the questions of where the object of interest is in the
image or what exists in the whole frame in terms of local-
izing and recognizing have become obsolete so that the
current situation implies further endeavor to extract mean-
ingful information from data utilizing various approaches.
The latest improvements in hardware, algorithms, and soft-
waremake it possible for robots to acquire semantic relations
and generate inferences by learning from data with deep
neural networks. Achieving semantic intelligence enables
the machines to answer the content, function, and loca-
tion of the object. However, the object localization and
class information by itself are not sufficient for robots to
extract semantic knowledge and object-based relationships.
For this reason, additional object attributes beyond class
labels play an important role for semantic content extraction.
Moreover, the successor object information among the main
objects in the images prepares the framework for establish-
ing the relationships between objects. Thus, the successor
objects contribute to the acquirement of semantic knowl-
edge as well as increasing the existent object recognition
performance.

In this work, we introduce a hybrid image dataset to allevi-
ate this problem increasing the accuracy rates and reliability
of the object recognition algorithms. We propose ADORE-
Set, which contains data from both real-world and simulation
environment, and it helps to eliminate the inconsistency
problems when the researcher goes from simulation envi-
ronment to real world or vice versa for development and
testing purposes. ADORESet has 2500 real and 750 synthetic
images for each category of 30 classes, and all of them are
colored images with the dimension of 300×300. Our exper-
iments are composed of training and test sessions for only
real images, only synthetic images, and lastly using hybrid
images, separately byfine-tuningVGGNet [19], InceptionV3
[20], ResNet [8], and Xception [3] models. The performance
results are compared in terms of accuracy, training and test
periods, and model size. Moreover, all images of our dataset
are properly labeled and the bounding boxes of the main
objects for each class are manually specified. ADORESet
images are ready to be used for supervised learning tasks such
as object recognition and localization. The dataset objects
are selected so that they can be commonly found on office
desktops or indoor environments. The selection process also
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included the group of objects that are movable and can
be the natural focus of interaction with humans in daily
life.

This paper is organized as follows: First, the previous
studies with the similar aim are reviewed and the motivation
behind building the hybrid image dataset is given in Sect. 2.
Then, in Sect. 3, the technical properties of ADORESet are
explained in detail with preprocessing tools. Next, statisti-
cal analysis of the hybrid dataset and the semantic relation
between different objects are given in Sect. 4. In Sect. 5, the
testing of the dataset using most accepted deep CNN struc-
tures and relevant performance results are presented. Finally,
in Sect. 6, the conclusions are drawn and the future work is
presented.

ADORESet and additional information can be found at:
http://adoreset.itu.edu.tr/.

2 Motivation and related work

Image datasets can be considered in two categories: labeled
and unlabeled/raw, which are relevant for supervised learn-
ing (classification) and unsupervised learning (clustering)
tasks, respectively. Furthermore, semi-supervised and rein-
forcement learning algorithms can be applied to both types
of datasets. Additionally, much more effort is required to
obtain labeled image datasets than unlabeled ones. Robotics
research problems involving machine vision are generally
carried out using real and simulation images, separately. The
main motivation for ADORESet, as a hybrid image dataset
containing both real and synthetic images, can be summa-
rized as follows:

(i) A task-specific and context-specific image database is
much needed in robotics community to obtain bet-
ter object localization, recognition, and manipulation
algorithms that can be trained for higher accuracy and
real-time performance.

(ii) Most of the available databases have either real-world
images or synthetic images. The robotics community
needs a hybrid image database so that the trained
algorithms canwork reliably in both simulated and real-
world environments and scenarios.

(iii) Most of the available databases are not well anno-
tated, and simple preprocessing tools are not provided.
There are often no semantic or probabilistic connec-
tion/relation maps provided for the images.

In this section, the motivation for proposing ADORESet
and related preprocessing tools is justified by two separate
literature reviews. First, to locate the hybrid image database
ADORESet among already existing large image databases,
a brief overview of similar databases is given in Sect. 2.1.

Secondly, as the large image databases are almost always
used for training deep CNN structures and their utility is
tested usingmachine learning algorithms, another subsection
is devoted to informing the reader on the state-of-the-art deep
NN research in Sect. 2.2.

2.1 Overview of existing image datasets

The two important arguments, why deep neural networks
have been skyrocketed in recent years, can be traced back to
the development at hardware (especially GPUs) and various
datasets which consist a huge amount of data. Consequently,
new algorithms and applications have arisen which have
revolutionized the ways that we evaluate the data. One of
the most popular datasets in the last years, particularly in
the field of deep neural networks, is ImageNet [30], which
is related to a competition called ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) organized every
year under the topics of object localization , object detec-
tion, object detection from video, scene classification, and
scene segmentation. ImageNet is constructed according to
WordNet [25] hierarchy, and the nouns in this word dataset
are employed to label the objects. Even though ImageNet
has many more images and categories, 1.2 million images
and 1000 categories are used for the challenges as standard.
Similar to ImageNet, another competition is run annually
using Microsoft Common Objects in Context (MS COCO)
[23] dataset including features such as object segmentation,
recognition in the context, multiple objects per image by
having more than 300,000 images, for 2 million instances,
80 object categories, and 5 captions per image. PASCAL
Visual Object Classes (VOC) [7] is another dataset, which
was held from 2005 to 2012 as a yearly challenge, assess-
ing performance on object class recognition. Caltech 101 [8]
and Caltech 256 [13] consist 101 and 256 classes, respec-
tively, and each class includes various numbers of labeled
images ranging about 40 to 800. CIFAR [18] is derived
from 80 million tiny images dataset [35] by labeling 60,000
for 10 classes called CIFAR-10, and another 60,000 for
100 classes, which are composed of 5 classes under 20
superclasses called CIFAR-100. One of the biggest publicly
available image datasets [35] contains approximately 80mil-
lion colored images with the dimension of 32 × 32 pixels
with weak labels which are listed within WordNet hierarchy.
Yale–CMU–Berkeley (YCB) [2] dataset presents 77 classes
of objects relevant to robotic manipulation research. YCB
contains 600 high-resolution colored images, 600 colored
depth images, and five sets of textured three-dimensional
geometric models with mass values of objects per cate-
gory. ModelNet [37] consists of 151,128 3D computer-aided
design (CAD) models belonging to 660 categories, which is
created by downloadingmodels from theweb. In conjunction
with being a purely synthetic dataset, each class ofModelNet
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Fig. 1 Comparison of datasets in logarithmic scale according to total number of images, average number of images per class, and total number of
classes

has numerous instances. Additionally, Places [43], Places2
[42], and LabelMe [31] datasets are created using outdoor
images which contain labeled, weak labels logarithmically
scaled 3D space. In Fig. 1, the comparisons of the given
datasets are illustrated, where the vertical axis shows the total
number of images and the horizontal axes display the average
number of images per class and the total number of classes,
respectively.

The content and statistical information about the existing
image datasets and ADORESet are given in Table 1.

Moreover, [16] provides a synthetic image generator and
introduces a pipeline to achieve better results than real-
world data when using only synthetic images. However, [16]
compares the results solely for vehicle detection tasks. Sim-
ilarly, [29] contains only synthetic outdoor images, which
are obtained from a virtual world with pixel-level labels.
The results in [29] show that hybrid dataset approach also
contributes to semantic segmentation of objects. With its
hybrid and robust structure, ADORESet provides possibili-
ties of transition and flexibility for real-world and simulation
environment applications. As a consequence, having richly
annotated 3250 images per category and containing an equal
number of real (2500) and synthetic (750) images individu-
ally per category puts ADORESet one step forward among
others.

2.2 Overview of current deep convolutional neural
networkmodels

Deep NNs for machine learning are not very different from
the previous methods in terms of the necessary steps. These
are: (i) gathering data, (ii) processing raw data in view of
cleaning and putting into desired order, (iii) building the
model by selecting the best algorithm after evaluation, and in
the end (iv) transforming algorithm outputs into presentable
results, as seen in Fig. 2. When a specific classification or
recognition problem is defined, we collect raw data, prepro-
cess, and then ameliorate existing algorithms by fine-tuning
methods [27,39] depending on data to acquire plausible
results. Our study differs with its labeled successor objects
and the relationships between object classes in preparation
and representation of the dataset, respectively. Antecedent
deep learning methods and the related applications are
explained in [20], which gives deeper insight mostly on the
subject of CNNs considering object detection/recognition.
Additionally, it gives brief information about recurrent neural
networks (RNNs) and its usage areas mainly in text process-
ing. [20] states that CNNs are more appropriate for image,
video, speech, audio processing applications, and RNNs are
for text and speech processing. AlexNet [19] is accepted as
one of themilestones in deep learning applications in terms of
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Table 1 General specifications of the image datasets

Name # Total images # Categories # Images per category Label type Dimension

Caltech 101 8765 101 Various (40–800) Labeled 300 × 200

Caltech 256 30,607 256 Various (At least 80) Labeled 300 × 200

CIFAR-10 60,000 10 6000 Labeled 32 × 32

CIFAR-100 60,000 100 600 Labeled 32 × 32

ImageNet 14,197,122 21,841 Various Labeled, unlabeled Various

ILSVRC ∼1,200,000 1000 Various Labeled Various

LabelMe 30,369 183 Various Weakly labeled Various

MS COCO Detection (200,000) 80

Key point (250,000) – Various Labeled Various

Segmentation (55,000) 91 + 1

PASCAL VOC 11,530 20 Various Labeled Various

Places 2,448,873 205 Various (5000–30,000) Categoric labels Various

Places2 ∼8,000,000 365 Various (4000–40,000) Categoric labels Various

80 MTI 79,302,017 75,062 Various Weakly labeled 32 × 32

ADORESet Real (75,000) 30 2500 Densely labeled 300 × 300

Synthetic (22,500) 30 750

Fig. 2 The general process flow
of machine learning systems

object detection/recognition/localization. The importance of
this study comes from winning ILSVRC12 for the first time
with aCNNarchitecture.Until then thewinner algorithms are
based on handcrafted (or hand-engineered) features. Dropout
method has been introduced at the same study which pro-
poses to prevent overfitting by randomly eliminating the
units and their weights during training. AlexNet has 8 hid-
den layers, 5 of them are convolutional layers, and the rest
are fully connected (FC) layers. ZFNet [40] is constructed
based on AlexNet architecture which proposes a new tech-
nique to visualize the behaviors of the hidden layers in order
to achieve a better understanding of CNNs. This studymakes
it possible to see how features act during training. Thismodel
helps us to have a better intuition about working principles
of CNNs. ZFNet uses deconvolutional network (deconvNet)
architecture to reconstruct the input image from feature acti-
vations to pixel space. They used ImageNet, Caltech 101,
Caltech 256, and PASCAL VOC2012 for their experiments.
One of the winners of ILSVRC14 is the team GoogleNet

with the architecture called Inception [34] by having 12 times
fewer parameters than AlexNet. The architecture submitted
to ILSVRC14 is composed of 22 layers excluding 5 pool-
ing layers. The aim of the Inception architecture is to obtain
sparse structures from dense components of CNN features.
This is achieved by concatenating the independent convo-
lutional and/or pooling blocks. In ILSVRC14, they got the
winner title by 6.67% error rate for top-5 predictions for
classification task and for detection task the method had
43.9% mean average precision (mAP). Another winner of
ILSVRC14 is VGGNet [33] as they claim because they real-
ized their architecture gives better results than [34] after
submitting it to the competition. They have 5 CNNs with
different layer numbers from 11 to 19. Their intention is to
investigate the effects of the depth to the improvement of the
results in terms of accuracy. Therefore, they fix the parame-
ters of the CNNs and the depth is increased by adding 3× 3
convolutional filters. Once the improvement is achieved by
small sized filters and strides, then this is densely trained and
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Table 2 Performance results for VGGNet, ResNet, InceptionV3, and
Xception

Top-1
pred acc
%

Top-5
pred acc
%

mAP % # of params

VGGNet 71.5 90.1 84.00 144.3M

ResNet 77.0 93.3 83.80 60.2M

InceptionV3 78.2 94.1 93.50 23.6M

Xception 79.0 94.5 93.22 22.9M

tested on thewhole image. VGGNet also obtains good results
on the other benchmarking datasets. ResNet [15] is the win-
ner for both detection and localization tasks of ILSVRC15
and MS COCO with the deepest architecture comparing the
previous CNNs with 152 layers but it has fewer parame-
ters than VGGNet. Even though it is thought that the deeper
the network the better the results, in this study the degra-
dation problem is addressed to the depth of the network.
ResNet solves degradation by shortcuts which perform iden-
tity mappings to some layers by adding them to the outputs
of the stacked layers. As being an expansion of modified
Inception [34] model called InceptionV3 (42-layered CNN),
Xception [4] (48-layered CNN which is composed of 36
convolutional layers along with pooling and optional FC lay-
ers) architecture changes Inception modules with depthwise
separable convolutions by having same number of param-
eters as Inception and taking over its performance slightly
in ImageNet dataset. These state-of-the-art base models are
mostly fine-tuned to detect and classify objects in particu-
lar tasks using smaller datasets. Further applications such as
[44,45], which are fine-tuned by training classifiers on top of
base models [34] and a combination of [19,33,34], respec-
tively, to recognize objects using particular datasets, achieve
successful accuracy rates higher than 90%. In Table 2, the
performance results of [4,15,33,34] are presented that are
achieved at ILSVRCs.

In this study, images are gathered from wild web and
Gazebo simulation environment (GSE). After labeling all
images, object recognition performance measures are pre-
sented as the outputs of models. Our main contributions are
as follows;

(i) A new richly annotated hybrid dataset, ADORESet, is
introduced, which consists of 97,500 colored images
for 30 categories. It contains 75,000 real-life images
and 22,500 synthetically generated simulation images.
Real images are acquired from wild web by querying 7
image search engines with 390 words/word pairs.

(ii) ITUrkGUI (image annotationwith bounding box speci-
fying tool for large number of images) and synthetically
generated images are provided.

(iii) Statistical analysis of the dataset and semantic relations
between objects is given.

(iv) Performance results of CNN models on ADORESet
including accuracy and loss values (i.e., negative log-
likelihood and residual sum of squares for classification
and regression, respectively), time per epoch for combi-
nations of real images and synthetic images in terms of
being training and testing images are evaluated, which
reveal the importance of hybrid dataset.

3 ADORESet

Even if the emphasis inmachine learning field is often toward
algorithm development, the quality of data has a great influ-
ence on resulting models and their performance. The factors
affecting the quality of the datasets can be related to the
quantity, labeling procedures, missing samples, variations,
noise, outliers, invalid instances. Therefore, it is important
to form datasets that have the minimum number of such
problems. As an answer to this quest, densely annotated
ADORESet provides a satisfactory number of images for
each class for machine vision-based problems in robotics
such as object detection, recognition, localization, tracking,
and manipulation. This dataset contains real and synthetic
images maintaining flexibility in terms of developing mod-
els for both real world and simulations. This enables, in turn,
the fast and direct deployment of algorithms developed in
simulation to the real-world experiments. ADORESet should
be of interest to the field of robotics researchers by means
of its hybrid form and its suitability to robotics applications
such as detection, recognition, localization, grasping, and
dexterous manipulation of objects. To construct ADORE-
Set, we start by downloading instances obtained using image
search engines. Afterward, an adequate number of images
of relevant classes are generated within the simulation envi-
ronment. The annotated and resized data obtained from both
sources are processed using ITUrk graphical user interface
(GUI). The successor objects are also labeled to retrieve sta-
tistical information about the probabilistic relations between
the objects in terms of coexistence in the same context
within the dataset. For example, the relation between moni-
tor, keyboard, and mouse can be directly inferred using this
information. Figure 3 presents the flowchart of the construc-
tion process for the ADORESet.

3.1 Gathering images fromwild web and
preprocessing

The object categories in ADORESet, which are given in
Table 3, are specified considering the robotics applications.
It is unquestionable that these objects have been part of
everyday life in the last three decades. With the ambition
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Fig. 3 ADORESet construction pipeline

Table 3 Object categories of
ADORESet 1 Ashtray 2 Bag 3 Book 4 Bottle 5 Bowl

6 Can 7 Candlestick 8 Clock 9 CookingPot 10 Cup

11 DeskLamp 12 Eyeglass 13 ForkSpoonKnife 14 FryingPan 15 HeadWear

16 Keyboard 17 Laptop 18 Monitor 19 Mouse 20 Pen(cil)

21 PhotoFrame 22 Shoe 23 SmartPhone 24 Speaker 25 Teapot

26 Telephone 27 Vase 28 Wallet 29 WebCam 30 WristWatch

of building this dataset using the wild web, we utilized about
390 query word(s) or word pairs via seven image search
engines. Principally, the multi-language wild web search
is performed according to the brand, gender, model, type,
color, age, season, material, state, and relation. In the next
step, inappropriate raw images are eliminated manually with
regard to the parameters such as the light effects and condi-
tions, noise, distance and angle, visibility which determine
the dataset quality. Then, the rest of the images are labeled
with the following rule: The first three numbers indicate
the category starting with 0, and the last five digits dis-
play the index number of the image in that category starting
with 0, e.g., 01700754 is the 754. image of the laptop class.
Then, all images are resized to the same dimensions. As a
result, ADORESet is a new richly labeled dataset consist-
ing of 75,000 colored real images with the dimension of
300 × 300 pixels for 30 classes including the bounding box
coordinates of all objects. Real images that hold approxi-
mately 1.3 gigabytes in the hard drive are stored in JPEG
compression format.

3.2 Image generation from simulation world

Similar to the process of gathering the real images, image
generation from simulation world starts with downloading
computer-aided design (CAD) models of the objects from
the wild web. For each object class, five different CADmod-
els are downloaded and their file formats are converted to
STL which is also appropriate to use together with univer-
sal robot description files (URDF). Since they are acquired
from various sources, their orientation, scale, and origins are
not properly defined. Initially, every model has oriented in a
way that normal vector of the meaningful side of the object
is parallel with the z-axis. Next, the objects are scaled to
their real-world dimensions. Lastly, the origins are relocated
to bottom centers of the CAD models. The textures are not
attached to the models, and the colors are allowed to change
with the color of the simulation world light source. After this
compilation, ADORESet includes 750 synthetically gener-
ated images per category having the same properties as real
images. There are two important variables in the simulation
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Fig. 4 Schematic view of simulation environmentwith frames and vari-
able definitions

world which affects variations and the quality of the images,
light color and 6D pose of the camera. In GSE, the light
is adjusted with a light source model. Thirty images cap-
tured for each light source–object couple. After completing
the image acquisition, old light source model is deleted and
a new one with random color values is created. The sec-
ond factor, 6D camera pose, consists of three position and
three orientation variables. It is assumed that two virtual half
spheres are created around the object with radius of r and R
and the camera is located between their surfaces. Therefore,
the distance between the camera and the object is similar for
each object class depending on its average dimensions. For
instance, the minimum distance (r ) between the camera and
the object is set to 0.2 m for wristwatch, while it is 0.4 m for
bowls. The environment with half sphere is drawn schemat-
ically in Fig. 4.

To calculate a random point on the half sphere surface,
a random unit vector s is defined as given in Eq. 1 where
rand denotes the random function between given argument
values. It isworth to note that z vector is restricted for positive
numbers which restrains the position of the camera on the
upper half of the sphere.

s = [rand(−1, 1), rand(−1, 1), rand(0, 1)]T (1)

The position vector of the camera p can now be easily
calculated by using known values of r and s as in Eq. 2. The
constant c1 defines themaximumdistance between the object
and the camera R.

p = (c1rand(−1, 1) + r) · s (2)

The opposite direction of the position vector defines the
pointing direction of the camera orientation xc. To use the
vector in frame definition, normalization is applied as in Eq.
1.

xc = − p
‖p‖ (3)

Because the calculated xc vector guarantees that the object
is on the image plane, other orientation vectors can be
selected as any arbitrary vectors meeting orthonormal con-
dition. So yc is calculated ensuring the dot product with xc
results zero as in following equation. Three components of
the xc vector are denoted with xcx , xcy and xcz .

yc = [c2xcy + c3xcz,−c2xcx ,−c3xcx ]T (4)

Last vector to form the orientation or rotation matrix is
zc. It has to be a perpendicular vector to the other two and is
calculated as given in Eq. 5.

zc = xc × yc (5)

Random light source spawning and 6D pose generation
are implemented in a ROS node. Every image is acquired
from a unique 6D pose. The light source is changed for every
30 images because of the low speed of light source deleting
and spawning. Five different CAD models are used for each
object which gives total 750 image for each object class.
Example pictures of every class are shown in Fig. 5.

3.3 ITUrk GUI

Although the wild web supplies an excessive amount of data,
it may cause problems when it is used with deep learn-
ing algorithms directly due to lack of quality. In fact, many
images tagged with inconsistent keywords or indistinguish-
ably tiny sized objects exist within images. To overcome
these obstacles, in most situations, crowdsourcing tools are
employed to label the data. There are such mechanisms
that are produced for a more general social experimental
task which are also known for annotating data called Ama-
zon Mechanical Turk (AMT) [1]. Furthermore, the aforesaid
software can be arranged to collect a more wide range of
information than only labeling, so that the gathered informa-
tion can be extended to have a knowledge of the position of
the tagged object in the image plane and specify successor
objects. In this work, a simple GUI is designed and imple-
mented toobtain annotationof thedata samples, the bounding
box position, and the successor object category.

The GUI is designed to have 24 images on a page to
increase the processing speed while keeping them visible
enough for the user. Each object class is loaded to GUI first.
Then, the user is asked to delete irrelevant images about the
object class by selecting them on delete buttons over the
images. At the same time, user clicks on the related object
name if a successor object exist. Three most expected suc-
cessor names are readily given as the buttons. However, the
user can add more related items by writing the name of it to
the text box placed under the given successor names. After
completing the elimination and labeling successor objects,
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Fig. 5 Example images for all object categories generated in GSE

the continue button starts the bounding box selection pro-
cess. The user selects the left/top uppermost bounding point
with the mouse left click. Similarly, the right/bottom upper-
most bounding point is chosen with the right mouse click and
it finishes the bounding box selection for the active image.
The active images are marked with red delete buttons. When
the bounding box selection of an image is finished, the next
undeleted image becomes active. Finally, completing bound-
ing box selection starts a new page with new 24 images. The
GUI is implemented inMATLAB. The screenshot of theGUI
is given in Fig. 6.

In total, 75000 real images belonging to 30 object classes
are filtered through ITUrk as convenient images for deep
learning algorithms. Images are resized to a dimension of
300 × 300 pixels which is same with the images from sim-
ulation world. The user can process 24 images in one page
within two minutes. First 40 s is spent in annotating and suc-
cessor labeling part and remaining time is spent for bounding
box selection.Moreover, perspectives and cylindrical objects
may reduce the speed of process and cause the failure of the
human bounding box specifiers. Example images from each
of the object classes are shown in Fig. 7.

3.4 Distinctive properties of ADORESet

The underlying philosophy behind the machine learning sys-
tems requires having a dataset which has as many variations
as possible and then to build intuition using supervised, unsu-
pervised, or reinforcement learning algorithms from the data.
As an applied field of such learning systems, the robotics for
non-industrial daily use and humanoid robots are increasing

in the last years. Both real and simulation world trials of
such robotic systems give successful results in perception,
recognition, gripping, grasping, moving, and manipulating
of the objects. To make these systems more intelligent and
robust, the training datamust be compatiblewith the environ-
mentswhere the test sessionswill be conducted.Accordingly,
taking these requirements into account, ADORESet is com-
posed of hybrid images for 30 object classes, which may
exist mostly on desktops and indoor environments. Follow-
ing the labeling and elimination operations, some images
are exposed to distortions because of resizing that provided
extra variations for the dataset which is one of the desired
properties as long as the deep CNNs are not robust to scale
and rotation invariance. Because there is enough number of
images per category, each class of ADORESet is also con-
venient for sub-category classification. Unlike the datasets
mentioned before, which consist of single and centered
objects per image, ADORESet contains complicated images
including multiple objects, which makes it a more challeng-
ing dataset, besides comprising different forms of objects that
have been transformed in decades. In addition, our dataset
includes a sufficient number of centered and salient images
that can be easily separable from the background. Moreover,
ADORESet is richer than the existing datasets because it pro-
vides information about the probabilistic relations between
different objects in couples. Thus, the relation information
between objects enables the machine vision systems to con-
struct a further perception than only recognizing or localizing
objects in the scene. This type of information could be par-
ticularly useful in semantic recognition.
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Fig. 6 ITUrk GUI with the images from eyeglass category

Fig. 7 Resized and labeled wild web images with instances from all categories

4 Statistical analysis of ADORESet and
semantic relation between objects

The object classes, which are included in the ADORESet,
are chosen from commonly used items in everyday life
and mostly located around or on desktops. In addition to
this, the objects are related with each other depending on
their usage area, appearance similarity, and typical loca-

tions. Some of them are used for similar or completely same
purposes. For instance, an old dial-based telephone and a
smartphone are used for communication objectives, and a
pot is used for cooking like a pan. Additionally, some tasks
include multiple objects which completes each other, such as
mouse–keyboard, cup–teapot, cup–bottle. Besides, the physi-
cal appearance is another important issue, and for someobject
class couples, it is occasionally indistinguishable as in the
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Fig. 8 Relations between object categories (darker color means more relationship between objects)

case of bowl–vase and pan–pot. Furthermore, specific items
are generally placed close to each other. For example, it is
strongly probable that a fork may be seen near to a bowl or a
cup in the dining table context. It is worth to consider that the
object classes consist of not only one object but also multi-
ple very similar objects. For example, the cutlery item object
class has Fork/Spoon/Knife, which aggregates three eating
utensils. The successor objects are detected in randomly col-
lected images from the wild web to identify the semantic
relations between them. It may provide useful information to
researchers from the robotics field particularly in semantic
recognition and manipulation planning. To present the infor-
mation, existence frequencies of successors for each object
class are illustrated as a color matrix in Fig. 8.

The main object classes are given in row entities, and their
successor images are given in columns in Fig. 8. Since the
object is not a successor for itself, the appearance frequency
is assumed to be zero. The columns and rows are arranged in
an order so that themostly related objects are closely aligned.
All values are standardized along the rows to emphasize the
relations. Using this standardization, relation scores of the
objects are colored according to colorbar given on the left
side of Fig. 8. Thus, for example, the bowl is the most fre-
quent object in the cup images. On the other hand, it is worth
to notice that the graph is not necessarily symmetrical. There-
fore, the cup is not the most existent object for the bowl class.
Using this type of information as semantic cues, a robot can

interpret that if a cup is in the scene probably a bowl can be
seen, probably a bowl can be seen; however, if a bowl is seen
in an image, it cannot be said that a cup is in the area.

The statistical analysis helps to represent the relation
between the object classes in numbers. Robots empowered
with vision make use of this much required information to
enhance the intuitive capabilities of object search, having an
artificial anticipation function. In addition, it can contribute
toward the accuracy of object detection under the influence
of poor lighting or occlusion. The vision algorithmsmay esti-
mate where to look for a certain object in a large operation
space. An occluded object can be identified more precisely
with the assist of detected successor objects. The analysis
facilitates manipulation and planning tasks by the means of
clustering similar objects as well. The statistical results can
be also employed as a guide for the robot to place the com-
plementary items together in a meaningful way.

5 Performance evaluation of CNNs

The way for detecting and recognizing objects in deep neural
networks is through training for many times with a suffi-
cient amount of data until reaching the redefinedperformance
criteria. In this section, to reveal the benefits of the hybrid
dataset on object recognition task, the performance results
of all possible combinations of real and synthetic images
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Table 4 Data configurations for
experiments using ADORESet
including data types and number
of images

Type of training data # Images Type of validation data # Images

Real images 1775 Real images 725

Real images 2000 Real + synthetic images 500 + 500

Real images 1500 Synthetic images 750

Synthetic images 750 Real images 375

Synthetic images 600 Real + synthetic images 150 + 150

Synthetic images 500 Synthetic images 250

Real + synthetic images 750 + 750 Real images 750

Real + synthetic images 1775 + 500 Real + synthetic images 925 + 250

Real + synthetic images 375 + 375 Synthetic images 375

Table 5 Performance results if training data consist of only real images

Model Data type and amount Train acc (%) Val. acc (%) Time per epoch (s) Batch size

Train Validation

VGGNet R 1775 R 725 84.82 80.44 435.40 32

R 2000 R 500 + S 500 98.32 50.86 660.66 32

R 1500 S 750 98.23 9.30 483.88 32

InceptionV3 R 1775 R 725 96.81 86.54 1634.7 32

R 2000 R 500 + S 500 97.17 50.97 2657.4 32

R 1500 S 750 98.23 10.77 872.16 32

ResNet R 1750 R 750 97.00 86.01 472.9 32

R 2000 R 500 + S 500 97.72 49.54 1094.2 32

R 1500 S 750 97.85 7.87 415.02 32

Xception R 1775 R 725 97.44 85.64 1706.50 32

R 2000 R 500 + S 500 97.67 49.46 2667.60 16

R 1500 S 750 97.61 7.04 1974.90 32

R stands for real images, and S stands for simulation images. The numbers near R and S denote the number of images

as being training and validation data are given. These com-
binations with regard to the types of data for training and
validation with the number of images are given in Table 4.
Hence, 36 performance results are obtained for nine types of
data and four deep CNN methods in terms of time, accuracy
and loss values. The number of frozen layers, which are kept
same with the weight values of base models, of deep CNNs
[4,15,33,34] is varied depending on the number of data. The
number of epochs is fixed to 50, which ensures the conver-
gence of performance measures to stable values. Rectified
linear unit (ReLU) function is chosen as the activation func-
tion for all configurations. Stochastic gradient descent [5]
is used as optimization method while fine-tuning [33], and
Adam [17] is used for the rest of the architectures. To calcu-
late the probability of the output in the classification layer,
softmax regression is applied to all models. The batch size
is varied with respect to the memory capacity of the system
running on 64-bit Ubuntu 14.04 equipped with an NVIDIA
GTX 1080 GPU, an Intel i7 CPU 920@2.67GHz × 8, 6GB
RAM, and 1TB hard drive spins at 7200RPM.

5.1 Experiments with real-world images as training
data

The first three experiments are performed using only real
images as training data and combinations of real and syn-
thetic images as validation set. The performance results are
given in Table 5. In addition to general performance of the
recognition experiment, the progress of accuracy and loss
values throughout 50 epochs of training and validation is
given in Fig. 9. As can be seen from both Table 5 and Fig. 9,
the highest validation accuracy rates are achieved when the
real images are used for the training and validation. Incep-
tionV3 is slightly better regarding the validation accuracy
than other models, while VGGNet is trained in the shortest
time. The batch size of all configurations is set to 32, except
the case that the real and synthetic images are used for valida-
tion by Xception model because of the memory issue, which
is handled by setting the batch size to 16 for this configura-
tion. The training accuracy values for all methods in all data
pair cases give acceptable results at around 95%, but not in
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Fig. 9 Progress of performance parameters during training and validation sessions. Training data are composed of only real images. a Real images
for validation, b real and simulation images for validation, c simulation images for validation

the validation accuracy values. It can be observed that the
similar training and validation data types result in high accu-
racy rates for all models, as seen in Fig. 9a. Nevertheless, the
usage of incompatible data pairs yields unsatisfactory valida-
tion accuracy values. A poor performance using mixed type
of data as validation set is presented in Fig. 9b. When the
training data consist of only real images, but the validation
set has mixed data type, the recognition rate is approximately
50%.Moreover, the worst case is observed when the training
images were completely from real world and the validation
set was drawn from purely synthetic images. The validation
accuracy rate of allmodels fluctuates around10% in theworst
case, as seen in Fig. 9c.

5.2 Experiments with synthetic images as training
data

In this set of experiments, only the synthetic images gen-
erated in GSE are fed into the networks as training data

while the validation data are varied as real-world, hybrid,
and synthetic images. The resulting performance parameters
are displayed in Table 6. The progress during the training and
validation sessions is given in Fig. 10. Similar to the previ-
ous results, the selected data types for training and validation
greatly affect the performance metrics. The batch size values
for all cases are set to 32. The validation accuracy values
for the case of having the same data types in training and
validation sessions are the highest throughout all cases. The
decrease at validation accuracy rates is distinct when the real
images are fed into the model as validation data. One might
easily say that the data type incompatibility is explicit in the
resulting low accuracy rates, when the data type configura-
tion is set to utilize synthetic images as training data and
real images as validation, as seen in Table 6 and Fig. 10. In
other words, variations in the synthetically generated images
were not adequate to resemble the variations available in the
real images; therefore, the validation results in poor accuracy
values. The deep learning algorithms were not able to cope
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Table 6 Performance results if training data consist of only simulation images

Model Data type and amount Train acc (%) Val. acc (%) Time per epoch (s) Batch size

Train Validation

VGGNet S 750 R 375 98.87 5.01 185.92 32

S 600 R 150 + S 150 98.11 53.80 175.56 32

S 500 S 250 97.03 95.92 164.44 32

InceptionV3 S 750 R 375 89.93 5.71 492.53 32

S 600 R 150 + S 150 97.61 51.63 484.94 32

S 500 S 250 98.78 97.58 475.64 32

ResNet S 750 R 375 93.49 7.85 299.37 32

S 600 R 150 + S 150 96.13 49.41 284.41 32

S 500 S 250 98.49 95.53 275.82 32

Xception S 750 R 375 97.37 5.05 745.85 32

S 600 R 150 + S 150 96.91 47.00 687.17 32

S 500 S 250 97.67 95.27 666.00 32

R stands for real images, and S stands for simulation images. The numbers near R and S denote the number of images

Fig. 10 Progress of performance parameters during training and validation sessions. Training data are composed of only real images. aReal images
for validation, b real and simulation images for validation, c simulation images for validation
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Table 7 Performance results if training data consist of both real and simulation images

Model Data type and amount Train acc (%) Val. acc (%) Time per epoch (s) Batch size

Train Validation

VGGNet R 750 + S 750 R 750 95.49 85.37 427.96 32

R 1775 + S 500 R 925 + S 250 98.08 90.50 717.18 32

R 375 + S 375 S 375 96.48 93.06 194.2 32

InceptionV3 R 750 + S 750 R 750 96.54 86.03 495.85 32

R 1775 + S 500 R 925 + S 250 98.15 89.97 1685.51 32

R 375 + S 375 S 375 95.76 93.54 432.26 32

ResNet R 750 + S 750 R 750 95.88 86.70 427.64 32

R 1775 + S 500 R 925 + S 250 97.02 87.54 609.44 32

R 375 + S 375 S 375 95.05 91.60 212.72 32

Xception R 750 + S 750 R 750 99.54 90.41 497.44 16

R 1775 + S 500 R 925 + S 250 97.74 89.00 2408.61 16

R 375 + S 375 S 375 98.01 96.27 645.00 32

R stands for real images, and S stands for simulation images. The numbers near R and S denote the number of images

with the variations in the real images because they were not
adequately trained to infer the intrinsic information.

5.3 Experiments with hybrid images as training data

In the experiments so far, only one type of images is used
as the training data that was either real or synthetic. In this
experiment, various numbers of hybrid data depending on the
validation data type are fed into the models as the training
data. Additionally, the available total number of images for
training and validation images is the highest in this experi-
ment configuration. As a result of larger data size, the time
spent during the training andvalidationoperations is the high-
est as canbe seen fromTable 7.All fine-tunedmodels succeed
in outperforming the results of the base models by using both
real and synthetic images as shown in Fig. 11. The batch size
for all models is adjusted to 32 other than the cases of real
and real-synthetic images as validation data combinations
for Xception model, which are fixed to 16. Thus, the mem-
ory requirement of Xception is higher than other models that
depends on the number of layers updated during fine-tuning
and the natural structure of model itself. The performance
evaluations show that the hybrid format of ADORESet is
able to give highest validation accuracies independent of the
validation data type selected.

6 Conclusion and future work

Object detection and recognition for robotics research in the
context of dexterousmanipulation, grasping, tracking are still
challenging research topics. Even though the classical com-
puter vision approaches provided some progress, the deep

learning-based methods usually outperform them supported
by the recent hardware developments and available large
dataset. In current technology, it has become feasible to run
deep learning algorithms within acceptable time spans and
use the resulting net in real-time recognition tasks.

As an important part of the development in deep learning
algorithms, the datasets have become the focus and enabler
of the relevant robotic research involving object recogni-
tion, localization, and segmentation. The quality and the
properties of such datasets determine how successful the
learning algorithms can be trained to operate in implementa-
tions. Whether labeled or unlabeled, several image datasets
with millions of images for thousands of categories exist.
However, not all of them consider the parameters defin-
ing their quality such as number of images per category,
image types and formats, object classes, dimensions. From
this point of view, ADORESet considers these parameters
and provides a dependable data source for computer vision
and robotics community. Because of its hybrid structure, it
allows researchers to implement their algorithms in both real-
world and simulation environment conditions, enabling the
transitions in between. The auxiliary tools provided with
ADORESet contain ITUrk GUI and make it possible to
label, eliminate, and resize the large number of images. Fur-
thermore, the relationships between object categories are
identifiedwith the annotations of the successor objects. Thus,
giving this type of semantic information between object cat-
egories depending on their existence puts ADORESet one
step ahead among other image datasets that only give images
and annotations. To the best of our knowledge, our study
provides one of the most comprehensive detailed experimen-
tal performance results for state-of-the-art CNNs, besides a
new densely labeled hybrid dataset. Despite the fact that the
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Fig. 11 Progress of performance parameters during training and validation sessions. Training data are composed of only real images. aReal images
for validation, b real and simulation images for validation, c simulation images for validation

incompatible data pairs result in deep CNNweights that can-
not be further used, the performance results clearly reveal
that usage of real and synthetic images together as training
data gives satisfactory validation accuracy rates indepen-
dent of the selected validation data. It has to be emphasized
that our reproducible results indicate the significant power
of training–validation data types. We carefully divided the
whole data into training and test sets for satisfactory results
to avoid overfitting. (Approximately 67% of the images are
employed for training, and 33% of the images are used
for cross-validation.) Since all the models are trained using
dropout and are tested with the sufficient number of images
(ADORESet consists of more labeled images per category
than most of the existing relevant datasets as explained ear-
lier in this study and all of our experiments are conductedwith
enough data compared to the similar studies), our results are
not due to overfitting. Furthermore, the progresses of accu-

racy and loss values during training and validation sessions
for all scenarios illustrate the prevention of overfitting.On the
other hand, the unsuccessful results are due to underfitting as
expected because of the inconsistency between training and
testing images.

In essence, once a CNN model is obtained using a hybrid
dataset such as ADORESet, it can be applied to real and
simulation images together or separately. ADORESet is suit-
able for developing novel algorithms, which can be CNNs
or classical methods, intended to detect and/or recognize
objects. Moreover, combining fine-tuned object recognition
CNN models with additional inputs such as tactile informa-
tion and depth of the object may allow development of better
grasping and manipulation in robots. As future work, the
real-time robotics experiments will be conducted using this
object recognition algorithms in real implementation on a
robotic arm.
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