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Abstract
In this paper, we propose a fast and reliable track-before-detect approach to simultaneously detect, track, and identify an
unknown and variable number of resident space objects (RSOs)without any prior information and any explicit detection,which
leads to better space domain awareness. Specifically, we use the point spread function concept to propose a separable likelihood
function as the observation model in the random finite set-based multi-Bernoulli filtering framework. This framework clearly
distinguishes RSOs from any counterfeit objects and detects and tracks them immediately after their respective appearance
in background cluttered telescope imagery data. The extensive experimental results on the TAOS dataset demonstrate the
robustness of the proposedmethod in detecting and trackingRSOswith the average optimal subpattern assignment localization
error less than 2 pixels in image sequences with the signal to noise ratio as low as 9dB and under the conditions of varying
illumination and occlusion.

Keywords Space domain awareness · Resident space objects · Point spread function · Multi-target tracking · Multi-Bernoulli
filtering · Random finite set

1 Introduction

Reliable tracking of Resident Space objects (RSOs) in
electro-optical images has been perceived as one of the most
interesting research topics in space surveillance. RSOs are
small objects in the space circling around the earth and are
often referred to as unresolved objects because they do not
visibly exhibit any physical characteristics. Several methods
have been introduced in recent years to detect and track a sin-
gle RSO in electro-optical image sequences under different
challenges such as low signal to noise ratio (SNR) of targets,
occlusion, and background clutters.

In general, RSO tracking approaches can be classified
into two categories: the detect-before-track (DBT) and the
track-before-detect (TBD). The DBT methods require a spe-
cific detection process to initialize the starting position of
the tracked target before tracking takes place. For example,
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Schildknecht et al. [24] consider a group of pixels above a
pre-defined threshold as the regions of interest (ROIs) for
the tracking task. Yanagisawa et al. [33] incorporate an array
of optical sensors as a ground-based observation system for
monitoring laser electro-optical (LEO) objects. They then
employ a line-identifying technique followed by threshold-
ing and shape-based analysis to identify ROIs. Koblick et al.
[11] apply the phase congruency-based segmentationmethod
to detect RSOs. Flewelling and Sease [4] combine the Har-
ris corner detector and the phase congruency edge detector
to discriminate the RSOs from streaking stars. All these
approaches have successfully tracked RSOs by compress-
ing the information in each frame to a small set of ROIs.
However, they may become computational bottleneck as the
number of images and hypothesized candidates in a track
drastically increase. Furthermore, they may incur an inher-
ent loss of information due to Boolean decisions.

Consequently, the TBD approaches have been proposed
to take intensity information from a track as the input and
simultaneously output the estimated cardinality distribution
along with the joint distribution of the target states condi-
tioned upon the cardinality. The implementation can be a
brute-force search for the motion of RSOs in the image plane
via image stacking [34]. More sophisticated approaches
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involve a Bayesian estimator where the measurement like-
lihood function of RSOs may be determined by a genetic
algorithm [26] or a bank of templates [17] evolved from
partial a priori state information. More recent method [5]
applies the Bernoulli particle filter, which is implemented
by Sequential Monte Carlo (SMC) method with a likeli-
hood function, to simultaneously detect and track one RSO
in images of low SNR. Despite the reliable performance of
these methods in tracking a single RSO, developing a robust
method to detect, track, and identify an unknown and vari-
able number of RSOs in image sequences has been remained
unsolved.

This paper proposes a fast and reliable multi-RSO track-
ing frameworkby employing themulti-targetmulti-Bernoulli
(MeMBer) filter [8,15,28] to simultaneously detect, iden-
tify, and track an unknown and variable number of RSOs
immediately after their respective first appearance in low-
SNR CCD image sequences. The proposed method does
not need any prior information and any explicit detection.
The MeMBer filter is derived from the Random Finite Set
(RFS) and is a tractable solution to the multi-target Bayes
filter, which propagates the multi-Bernoulli parameters of
the multi-target posterior distribution forward in time. To
the best of our knowledge, this paper is the first attempt to
apply the multi-Bernoulli RFS framework in space domain
awareness (SDA) [10] to track multiple RSOs in background
cluttered and low-SNR telescope imagery data.Our contribu-
tions are: (1) introducing a separable likelihood,which is able
tomake a clear distinction betweenRSOs and any counterfeit
objects such as streaking stars, bright stars, and any cos-
mic rays signals in low-SNR frame sequences. (2) modeling
both multi-target states and observations in multi-Bernoulli
RFS framework for efficiently refining and rejecting the
target measurement likelihood function. (3) employing the
multi-Bernoulli filtering approach to propagate the multi-
Bernoulli RFS parameters forward in time for automatically
and quickly detecting and tracking an unknown and variable
number RSOs in unresolved imagery. (4) designing a label-
ing and occlusion management strategy to utilize the history
of the presence or absence of targets and their associated
applicable velocity information for reliably and accurately
identifying each RSO with its unique label even when it is
occluded by any other space objects or background clutter.
(5) developing an adaptive likelihood thresholding method
to utilize the history information for removing the chaotic
noise. The extensive experimental results demonstrate that
the proposed approach is able to robustly detect, track, and
identify multiple RSOs with their own identification IDs in
clutters and in low-SNR telescope imagery data.

The rest of the paper is organized as follows: Sect. 2
reviews the current trend of DBT and TBD approaches in
objects tracking. Section 3 explains four challenges asso-
ciated with detecting and tracking RSOs and defines the

proposed likelihood function to seamlessly address these
challenges. Section 4 describes theMeMBer filteringmethod
that is incorporated in the proposed tracker. Section5presents
the implementation details and the labeling and occlusion
management. Section 6 shows the experimental results on
various tracks captured by the TAOS project and evaluates
the performance of the proposed tracking approach in terms
of the average position estimation error in pixels and the opti-
mal subpattern assignment (OSPA) distance together with
its localization and cardinality errors in pixels. Section 7
draws the conclusions and presents the directions of future
work.

2 Background

In recent years, researchers have been actively studying vari-
ousDBT and TBD approaches to solve the problem of jointly
estimating the number of objects and their states from image
observation. Conventional DBT approaches [2,12,22,35]
attain good performance to track objects with large SNR and
decent size.However, they fail to track objectswith lowSNRs
and tend to detect a large number of outliers or completely
miss the target. Unlike the DBT approaches that declare the
presence of targets at each scan before tracking, the TBD
approaches do not need any explicit detection process to
achieve superior detection performance by jointly processing
multiple consecutive scans [1,9,18,21]. For instance, Buzzi
et al. [1] derive a generalized likelihood ratio test (GLRT) as
an extension to the non-Bayesian approach to achieve better
estimation and tracking accuracy with a lower complexity
in radar images. Prez et al. [21] and Nummiaro et al. [18]
individually propose a color-based SMC framework and an
adaptive color-based particle filtering framework to define a
likelihood function, which compares the color information
of candidates and the target model to address the shading
and illumination effects. These TBDmethods are simple and
robust in solving a wide range of tracking problems. How-
ever, a high-dimensional SMC approximation of integrals is
required to model multi-target Bayes filter and the consistent
maintenance of the multimodality in the target distribution is
deficient due to insufficient measurement and ambiguity of
multiple objects and clutters.

Several Bayesian data association approaches have been
proposed to address the aforementioned dimensionality and
multimodality issues [3,19,27]. One example is the work by
Czyz et al. [3]. They present a hybrid-valued (continuous-
discrete) sequential state estimation algorithm to detect and
track multiple targets of similar color by assuming that the
background is of a sufficiently different color than the tracked
objects. They include a discrete variable representing the
number of targets in their states to simultaneously estimate
the states and cardinality. All these methods address the
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dimensionality and multimodality issues to achieve more
robust tracking performance. However, the required asso-
ciations between targets and measurements may result in
difficulty in its mathematical formulations and lead to com-
binatorial growth in the number of hypotheses.

To address any target and measurement association-
related issues, the RFSs have been proposed. Mahlers finite
set statistics (FISST), an intuitive and natural representa-
tion of multiple target states and measurements, provides
practical mathematical tools for dealing with the RFSs.
Mahler [15] proposes probability hypothesis density (PHD),
the first-order moment of multi-target posterior, as a practi-
cal alternative to the multi-target optimal filter. To estimate
the cardinality more efficiently, Mahler [13] generalizes the
PHD recursion by relaxing the first-order assumption and
derives a closed-form cardinalized PHD (CPHD) filter. Vo
et al. [30] propose a closed-form solution to CPHD under
linear Gaussian assumptions on the target dynamics and
birth process. In the seminal work [15], Mahler also intro-
duces multi-Bernoulli filter to approximate the multi-target
posterior density and propagate the related parameters in
time. The idea of multi-Bernoulli filter is later employed in
[28] to propose an RFS TBD model and a tractable filter
to track multiple non-overlapping targets with low SNR in
radar images using a separable likelihood function. Hossein-
nezhad et al. [8] derive a separable multi-target color-based
likelihood function in the multi-Bernoulli framework using
camera image observations. They further employ kernel
density estimation [7] to update the background and sub-
tract the learned background from the original frames. It
should be noted that the likelihood function in these meth-
ods has to be separable for the individual targets with the
assumption that each target independently influences the
image observation. This assumption is reasonable when the
objects do not overlap with each other in all the frames.
As one of the most recent approaches, a tractable general-
ized labeled multi-Bernoulli (GLMB) is proposed by Papi
et al. [20] to match the cardinality distribution and the first
moment of the labeledmulti-object distribution. Thismethod
is applicable to not only separable likelihood cases but
also more general cases when multi-target likelihood is not
separable.

Unlike current multi-Bernoulli-based tracking methods
[7,8,28], which are applicable for detecting and tracking tar-
gets in radar or camera images, the proposed method can
be applied on CCD imagery data to track RSOs. It seam-
lessly incorporates the following special properties of CCD
images into the likelihood function: (1) target regions are
significantly blurry; (2) the tracked RSO objects are unre-
solved small objects that do not visibly exhibit any physical
characteristics; (3) there are many spurious moving objects
similar to RSO objects; and (4) the images have cluttered
background in noisy environment.

3 Visual likelihood function for fainted
objects

Providing robust small-sized target detection and tracking
has significant applications in medical, military, SDA, and so
on. In SDA, locating the moving RSO in CCD imagery data,
where RSOs normally have a few pixels in size and have low
contrast compared to the background, is the first step to make
crucial decisions tomaintain the peace of the space.However,
there are several challenges in detecting and trackingRSOs in
the telescope imagery data: (1) low SNR; (2) blurring effect
of the imaging system; (3) similarity between RSOs and the
bright stars or any signals caused by cosmic rays; and (4)
similarity between RSOs and streaking stars.

In this paper, we propose a novel TBD tracking method,
which employs the multi-Bernoulli filtering framework to
model both multi-target states and observations, to address
the four aforementioned challenges to automatically detect
and track multiple RSOs in the noisy cluttered environ-
ment. In the next subsections, we explain the four challenges
in detail and describe the proposed likelihood function for
fainted objects (e.g., RSOs) to address all the four challenges.

3.1 Four challenges in tracking RSOs

We explain each of the four challenges in detail:

1. Low SNR One of the most difficult tasks in visual track-
ing and object recognition is to detect and track the spot
(small) targets, especially when the SNR is low and the
targets are fainted in a sequence of frames. The target can
be correctly detected if we can estimate the image back-
ground and eliminate the noise in the image sequence.
However, it is impossible to accurately estimate the back-
ground and noise in each image frame due to low SNR
values in real applications. Furthermore, the RSO can be
as small as two or three pixels in size and have the low
SNR value of 9 dB as in our telescope imagery datasets.

2. Blurring effect of the imaging systemThe light frompoint
source objects ideally should be at most one pixel in the
corresponding image due to their nature. However, point
sources, when captured by electro-optical (EO) sensors,
appear spread out over an area due to diffraction, aber-
ration, atmospheric turbulence, and other imperfections
in the light path [10]. As a result, their light actually
spreads out in an area more than one pixel, which is
collectively characterized through PSF. Since the sig-
nal of point source objects can be considered as a Dirac
delta function δ(x), the PSF can be defined as an impulse
response of the imaging system. By having the PSF of an
imaging system, the blurred signal of space objects in an
image region is generated by [10]:
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Fig. 1 Illustration of sample regions of (left to right): RSO; cluttered
background; cosmic rays/bright star; and streaking stars

y(i, j) =
M∑

m=1

N∑

n=1

S(m.n)h(i − m, j − n) (1)

where y(i, j) is the blurred imagewhose size isM×N , h
is the PSF (i.e., the impulse response), and S is the signal
of the space object.

3. Similarity between RSOs and the bright stars or any sig-
nals caused by cosmic rays The cosmic rays are energetic
and subatomic particles that hit theCCD to produce sharp
spurious bright signals that are similar to the RSOs and
bright stars. Stars are also naturally source point inputs
that can have a similar signal as the RSOs.

4. Similarity between RSOs and streaking stars There are
other undesirable signals in CCD images due to streak-
ing stars, where each individual star exhibits the similar
characteristics as a RSO.

Figure 1 shows the sample regions for a RSO, a cluttered
background without any specific object, bright star or cos-
mic ray with a peaked signal, and the streaking star with an
elongated signal. It clearly shows that the counterfeit signals
produce the bright pixels, which are similar to the RSO pix-
els. Furthermore, it clearly presents the blurring effects in the
CCD images due to the PSF of the imaging system.

3.2 Likelihoodmeasurement

To provide a robust tracking algorithm for multiple RSOs,
we propose to incorporate a PSF-based separable likelihood
function in the multi-Bernoulli filtering framework to simul-
taneously detect and track RSOs without explicit detection.
The innovative concept behind the proposed likelihood func-
tion is to make a clear distinction among the regions of the
candidates (e.g., individual RSOs and counterfeit objects) by
addressing four aforementioned challenges. Moreover, we
derive a separable likelihood function for multiple RSOs to
update the posterior density of the states of RSOs based on
noisy and background cluttered images and make a proper
distinction between the states of RSOs and the states of spu-
rious objects such as bright stars, the cosmic rays signals,
and streaking stars.

Since the CCD imagery data are blurry in nature, reduc-
ing the blurring effect is crucial in constructing an effective
likelihood function. Suppose that we have the states of two

target candidates x1 and x2 (xi represents a four-dimensional
state vector containing the location and velocity in x and y
coordinates) in frame k, where x1 represents the state of a
RSO and x2 represents the state of a non-RSO pixel in the
noisy background. We define T (x1) and T (x2) as regions in
the original frame Yk for the corresponding candidates x1
and x2, where T (·) is a 9 × 9 window that is centered at the
coordinates of target candidates positions. We use the PSF
[5] to reduce the blurring effect in T (·) regions for the state
of any target candidate in frame k by computing h value for
each pixel mi as follows:

hk(mi ) = I

2πσ 2
h

e

−[(mix−cx )2+(miy−cy )2]
2σ2h (2)

wheremi represents a pixel in T (·) at location of (mix ,miy),
(cx , cy) is the location of state x in frame Yk (i.e., the cen-
ter of T (·)), I is the predefined source intensity, and σ 2

h is
the blurring factor. This computation ensures that the pixels
that are farther away from the center of the T (·) region have
smaller h values. The intensity of each pixel in T (x) in the
context of the observation (frame) Yk is updated by gratio
value as follows:

gratio(Yk; x) = e
[μ0−hk (mi )][μ0−2yk (mi )+hk (mi )]

2σ20 (3)

where yk(mi ) is the original pixel intensity at the location of
pixel mi in frame Yk , μ0 is the noise mean, and σ 2

0 is the
noise variance. This computation ensures that the minimum
value of gratio is 1.

Figure 2a through Fig. 2d, respectively, presents 9 × 9
windows (shown as the leftmost images) in the original frame
around the locations of four states, namely x1 (state of a
RSO), x2 (state of a non-RSO), x3 (state of a bright star), and
x4 (state of a streaking star), their processed T (·) regions
(shown as the middle images) after applying (2) and (3), and
their updated T (·) regions (shown as the rightmost images)
after applying (4), a statistics-based analysis that will be dis-

Fig. 2 Illustration of the regions around four states (shown at the left),
their processed T (·) regions after applying (2) and (3) (shown in the
middle), and their updated T (·) regions after applying (4) (shown at the
right). Four states are for a RSO; b non-RSO pixel; c bright star; and d
streaking star
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cussed next. The middle images in Fig. 2a through Fig. 2d
clearly show that the blurring effect of the regions of all
four states is effectively reduced. For instance, T (x1) region
contains exactly one brightest pixel in themiddle correspond-
ing to the source point input (e.g., RSO target) whereas the
remaining pixels are set to dark or close to dark. T (x2) region
still spreads out in a small middle region with a few bright
pixels. However, it clears out the remaining pixels as dark or
close to dark. As a result, the processed T (·) regions (i.e.,
reduced blurring regions) are able to make a clear distinction
between the state of RSO and the state of a non-object pixel
in cluttered background. However, we can see from Fig. 2a
that the processed T (x3) region is identical to the processed
T (x1) region and the processed T (x4) region is also similar
to the processed T (x1) region, which demonstrate that the
point source counterfeit signals have similar processed T (·)
regions as the RSO signals.

To solve this problem,we employ statistics-based analysis
to distinguish the counterfeit signals from the RSO signals
using the updated gratio values of the T (·) region, which
are computed based on the results from the kurtosis-based
and student-t-based normality hypothesis tests. The use of
these two hypothesis tests is mainly motivated from the fol-
lowing two observations: (1) pixels in CCD images for the
RSO signals have a normal distribution compared to the pix-
els for the signals of the bright stars or cosmic rays, which
appear to be leptokurtic (peaked) on CCD images; and (2)
pixels in CCD images for the RSO signals are distributed
more based on the normal distribution rather than the t-
distribution compared to the streaking stars, which appear to
be elongated on CCD images. Specifically, we conduct the
kurtosis-based normality hypothesis test for the eight pixel
intensities in the original frame along each horizontal scan-
line within the 9 × 9 T (·) region to distinguish RSOs from
bright stars. The pixel corresponding to the maximum gratio
value along each horizontal scanline is not involved in this
computation. Similarly, we conduct the student-t normality
hypothesis test for the same eight pixel intensities along each
horizontal scanline to distinguish RSOs from streaking stars.
If the kurtosis value (i.e., ku) of a horizontal scanline is larger
than a pre-defined kmin value (e.g., 6), the signal is consid-
ered to be “peaked” due to cosmic ray or bright stars. If
the student t test value (i.e., tt) of a horizontal scanline is
smaller than a pre-defined tmax value (e.g., 0.01), the sig-
nal is considered as more spread out due to a streaking star.
The final gratio for each horizontal scanline is updated as
follows:

gratio(Yk; x) =
{
N [Yk; 0, σ 2

0 ] if (tt < tmax or ku > kmin)

gratio(Yk; x) otherwise

(4)

where N [Yk; 0, σ 2
0 ] represents an operation on each gratio

value along a selected horizontal scanline so the distribution
of the newly updated gratio values follows a normal distri-
bution with the mean of 0 and the variance of σ 2

0 . In other
words, if either the kurtosis value or the t test value indi-
cates the inconsistency with the expected distributions of the
RSO signals, we will update the corresponding gratio values
to follow a normal distribution.

The rightmost images in Fig. 2a through Fig. 2d, respec-
tively, present the updated T (·) regions of four different
objects, namely RSO, non-RSO, bright star, and streaking
star, after applying (4). They clearly demonstrate that these
updated T (·) regions are distinct from each other. It should
be noted that this statistics-based analysis method changes
the gratio values in the processed T (·) regions of states x3 and
x4 and keeps the gratio values in the processed T (·) regions of
states x1 and x2 intact. This further illustrates the effective-
ness of using kurtosis-based and student-t-based normality
hypothesis tests to distinguish the two kinds of point source
counterfeit signals from the RSO signals.

The likelihood parameter (i.e., g f ) for the state of a target
candidate (i.e.,x̌) in an image Y can then be obtained by:

g f (Y; x̌) = ζ
∏

mi∈T (x̌)

mi (5)

where ζ is a normalization factor to ensure that the likeli-
hood function integrates to one for all the observations in the
observation space given a target state and mi is the value of
gratio at the location of (mix ,miy) in the T (·) region, which
is computed by (4).

Given an image Y in a frame sequence and a multi-target
state X̌ = [x̌1, . . . , x̌n], we can derive the multi-target mea-
surement likelihood function g(Y|X̌) . Since the RSOs do
not overlap with each other in all the image frames, we can
safely assume that the signals of individual RSOs on the
image observation are independently distributed and each
RSO does not considerably affect other RSOs’ T (·) regions.
Moreover, the background pixels are assumed to be inde-
pendently distributed based on the normal distribution with
the mean of 0 and the variance of σ 2 (N (:, 0, σ 2)). These
two assumptions are valid since the source signal of each
RSO is independent and the regions occupied by each RSO
are represented as a group of pixels, which are less proba-
ble to completely slide on each other throughout the frame
sequence. Following these two assumptions, the likelihood
function for multi-target state is formulated as follows:

g(Y|X̌) = gb(Y)

n∏

i=1

g f (Y; x̌i ) (6)

where gb(Y) = ∏
s N (Y(s), 0, σ 2) is the likelihood value of

the sth background pixel in the frame Y, g f is the likelihood
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value calculated from (5) for the target x̌i in the multi-target
state X̌, and n is the number of targets. This likelihood func-
tion is separable since it can be written as a product of
functions gb(Y) and g f (Y; x̌i ), where gb(Y) is independent
of the target states and g f (Y; x̌i ) depends only on one of the
target states in the multi-target state X̌ and is independent
of the background pixels. This separable form of the like-
lihood function will be used later in Sect. 4 to update the
multi-Bernoulli parameters.

4 Multi-Bernoulli filtering technique

We employ the Bayesian-based multi-target filtering tech-
nique to compute the joint estimation of the number of targets
and states using observations and propagate the multi-target
posterior density recursively in time. To this end, we model
bothmulti-target states and observations asRFSs.RFSs oper-
ate on unordered finite sets and therefore are fully specified
by the distribution of the number of elements in the set (cardi-
nality) and the joint distribution of the elements conditioned
upon the cardinality [6]. As such, we use Bernoulli RFS fil-
ters to explicitly account for the birth and death of multiple
RSOs in some measurement arc to achieve TBD via SMC
implementation.

Suppose that there are Nk targets and Mk observa-
tions at time k, the states of these targets are represented
as x̌k,1, . . . , x̌k,Nk and the observations are represented as
y̌k,1, . . . , y̌k,Mk in the multi-target state space X̌ and the
multi-target observation space Y̌ , respectively. The multi-
target states and observations at time k can be cast as two
Bernoulli RFSs [14,32]:

X̌k = {x̌k,1, . . . , x̌k,Nk } ⊂ X̌ (7a)

Yk = {y̌k,1, . . . , y̌k,Mk } ⊂ Y̌ (7b)

The Bernoulli RFS X̌k can be further defined by two
Bernoulli parameters: rk and pk , where rk is the probability
of being singleton whose only element (target) is distributed
according to its probability density pk defined on X̌ (e.g.,
rk · pk(x̌)). In addition, the Bernoulli RFS X̌k has the prob-
ability of 1 − rk to be an empty set (i.e., contains no target)
and has the probability of 0 to contain two or more targets.
Mathematically, the probability of the Bernoulli RFS X̌k is
defined as follows [32]:

π(X̌k) =

⎧
⎪⎨

⎪⎩

1 − rk if X̌k = ∅
rk · pk(x̌) if X̌k = {x̌}
0 otherwise

(8)

Amulti-Bernoulli RFS is defined as a union of a fixed number
of independent Bernoulli RFSs such as X̌i

k with (r (i)
k , p(i)

k )

for i = 1, . . . , Mk , i.e., {(r (i)
k , p(i)

k )}Mk
i=1 . The prediction

and update steps are iteratively employed to propagate the
multi-Bernoulli parameters of multi-target posterior forward
in time [16,28,31,32].

4.1 Prediction step

Following Mahlers notation in [6,13], if the posterior multi-
target density at time k − 1 is a multi-Bernoulli of the form
πk−1 = {(r (i)

k−1, p
(i)
k−1)}Mk−1

i=1 , the predicted multi-target den-
sity is also a multi-Bernoulli consisting of newborn and
surviving RFSs [28,32]:

πk|k−1 = {(r (i)
Γ ,k, p

(i)
Γ ,k)}MΓ ,k

i=1 ∪ {(r (i)
P,k|k−1, p

(i)
P,k|k−1)}Mk−1

i=1

(9)

where

r (i)
P,k|k−1 = r (i)

k−1 < p(i)
k−1, pS,k > (10)

and

p(i)
P,k|k−1(x̌) = < fk|k−1(x̌|·), p(i)

k−1 pS,k >

< p(i)
k−1, pS,k >

(11)

Here, subscript Γ represents the newborn RFSs, subscript
P represents the persistently existing RFSs, < α, β >=∫

α(x)β(x)d(x), pS,k is the survival probability of target at
time k given the previous state, and fk|k−1(·|·) is multi-target
transition density from time k − 1 to k . The prediction of
multi-Bernoulli parameters computed in (10) and (11) is used
as a prior for calculation of the update step in the filtering
process.

4.2 Update step

Following Corollary 3 in [28], we denote the predicated

multi-target density πk|k−1 = {(r (i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1 at

time k as a prior, where Mk|k−1 = MΓ ,k + Mk−1 . The

posterior multi-target density πk = {(r (i)
k , p(i)

k )}Mk
i=1 can be

defined by using the separable likelihood function in (6) as
follows:

r (i)
k = r (i)

k|k−1 < p(i)
k|k−1(x̌), g f (x̌,Y) >

1 − r (i)
k|k−1 + r (i)

k|k−1 < p(i)
k|k−1(x̌), g f (x̌,Y) >

(12)

p(i)
k (x̌) = p(i)

k|k−1(x̌)g f (x̌,Y)

< p(i)
k|k−1(x̌), g f (x̌,Y) >

(13)

It should be noted that the integrals in both the prediction and
the update steps are intractable and cannot be solved analyti-
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cally. As a result, we use the SMC method to implement this
filter, whose details will be provided in Sect. 5.

5 Implementation

Implementation of the proposed tracker contains three main
steps that are performedoneach frameof a sequence.Thefirst
step is to computemulti-Bernoulli filtering and likelihood for
generating and updating themulti-Bernoulli RFSs forward in
time. The second step is tomanage labeling and occlusion for
labeling the identity of each target throughout the sequence
and recognizing the occluded targetwith its known identity at
the estimated location. The third step is to decide the adaptive
threshold to remove some noisy pixels.

5.1 Multi-Bernoulli filtering and likelihood
computation

The aim of this step is to use the SMC method to implement
the prediction and update steps of multi-Bernoulli parame-
ters to address the intractable integration issues. Suppose that
the multi-Bernoulli posterior πk−1 = {(r (i)

k−1, p
(i)
k−1)}Mk−1

i=1 at
time k − 1 is given for i = 1, . . . , Mk−1 Bernoulli RFSs.
Each p(i)

k−1 can also be represented as a set of weighted par-

ticles {(w(i, j)
k−1 , x̌(i, j)

k−1 )}L
(i)
k−1

j=1 , whose number equals to L(i)
k−1.

Here, the lower subscript of w(i, j)
k−1 and x̌(i, j)

k−1 represents time
(or frame) k − 1, the first element in the tuple of the upper
subscript of w(i, j)

k−1 and x̌(i, j)
k−1 represents the i th index num-

ber for Mk−1 Bernoulli RFSs, and the second element in the
tuple of the upper subscript of w(i, j)

k−1 and x̌(i, j)
k−1 represents

the j th index number for L(i)
k−1 particles. In the prediction

step, the multi-Bernoulli parameters, the particles, and their
corresponding weights for the existing RFSs are propagated
forward in time as follows[28]:

r (i)
P,k|k−1 = r (i)

k−1

L(i)
k−1∑

j=1

w(i, j)
k−1 pS,k(x̌

(i, j)
k−1 ) (14)

x̌(i, j)
P,k|k−1 ∼ fk|k−1(·|x̌(i, j)

k−1 ) (15)

w(i, j)
P,k|k−1 = w(i, j)

k−1 (16)

For thenewbornRFSs {(r (i)
Γ ,k, p

(i)
Γ ,k)}MΓ ,k

i=1 ,multi-Bernoulli
parameters are given by the birth model, the particles are
propagated randomly, and their corresponding weights are
initialized. Using the predicted multi-target density, πk|k−1,
which is the union set of predicted existing RFSs and new-

bornRFSs, theweights of the particles are then updated based
on the likelihood value g f [28]:

w(i, j)
k = w(i, j)

k|k−1g f (Yk; x̌(i, j)
k|k−1)

Q(i)
k

(17)

whereQ(i)
k = ∑L(i)

k|k−1
j=1 w(i, j)

k|k−1g f (Yk; x̌(i, j)
k|k−1) . Theseweights

are further used to compute the updated Bernoulli parameters
by:

r (i)
k = r (i)

k|k−1Q
(i)
k

1 − r (i)
k|k−1 + r (i)

k|k−1Q
(i)
k

(18)

p(i)
k =

L(i)
k|k−1∑

j=1

w(i, j)
k δ

x̌(i, j)
k|k−1

(x̌) (19)

The updated particles in each RFS are resampled based on
their corresponding weights and replicated proportionally.

Since RSOs can appear in any frame of the sequence,
we consider a constant birth model for generating newborn
Bernoulli RFSs in all the frames to detect the RSOs immedi-
ately after they infiltrate. At any frame k, a multi-Bernoulli
RFS, which contains four Bernoulli RFSs with their indi-
vidual probability of existence being 0.25, is generated
(i.e.,{(r (i)

Γ ,k, p
(i)
Γ ,k)}4i=1 with r (i)

Γ ,k = 0.25). Based on SMC
implementation of the multi-Bernoulli filter, Lmax number
of particles for each of the Bernoulli RFSs is initiated. The
number of particles is restricted in the range of [Lmin, Lmax]
as suggested in [7,8] to avoid the high computational cost.
Each particle is a four-dimensional vector containing the
position of the candidate state (x, y) and velocities of the
particle in x and y directions (vx , vy). The locations of par-
ticles in each RFS are uniformly distributed in any quarter
of the image plane, and their velocities in x and y directions
are randomly initiated in the range of [−2, 2] and [−7, 7],
respectively. Since some Bernoulli RFSs may persistently
exist till frame k, we cast them into an existing multi-
Bernoulli set {(r (i)

P,k|k−1, p
(i)
P,k|k−1)}Mk−1

i=1 . The particles of the
birth and existing multi-Bernoulli RFSs are integrated and
processed in the likelihood function to calculate g f (·; x̌(i, j)

k|k−1)

using (5). The likelihood parameter is then used to update
the existence probability of each RFS using (18) and (19).
To limit the growing number of Bernoulli RFSs, we keep
the updated Bernoulli RFSs πk = {(r (i)

k , p(i)
k )}Mk

i=1, whose

r (i)
k is larger than a pre-defined threshold. Since an exist-
ing singleton RFS and a newborn RFS might represent the
same target in a frame, we merge them into one RFS if the
Euclidean distance between the average position of particles
in the singleton RFS and the average position of particles in
the newborn RFS is less than a pre-defined threshold (e.g.,
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ten pixels). The merged RFS contains the particles of high
probability from both RFSs, where the number of particles in
the merged RFS is the minimum of Lmax and the total num-
ber of the particles in both sets. The r value of the merged
set is the minimum of 1 and the summation of r values of
both set. The p value of the merged set is the summation of
p values of all the particles in the merged set.

5.2 Labeling and occlusionmanagement

The aim of this step is to accurately label the identified target
as either one of the existing targets or a new target regardless
of occlusion. In the case of occlusion (two RSOs slide on
each other or one RSO is occluded by other objects), our
goal is to re-identify the occluded RSO based on the history
information. In other words, we aim to identify that a TBD
result in the current frame k is the successor of an existing
target in the previous frame k−1 or a new target that appears
in the current frame k. Suppose that we have Mk RFSs in
frame k and Mk−1 singleton RFSs in frame k − 1. We have
also assigned Mk−1 labels such as l1k−1, . . . , l

Mk−1
k−1 to each

singleton RFS in frame k−1 and assigned Mk−1 scores such
as s1k−1, . . . , s

Mk−1
k−1 to each associated singleton RFS in frame

k − 1. The label is the identification ID for a target, and the
score is the total number of times that a target exists in the
past k−1 frames. We design a labeling management scheme
to assign the labels and scores to the Mk RFSs in frame k
by assuming that RSOs do not have any significant position
changes between two consecutive frames. To this end, we
first compute the pairwise Euclidean distance between the
average position of all particles in an investigated RFS in
frame k with the position of each singleton RFS in frame
k − 1. We then choose the singleton RFS that has the closest
distance to the investigated RFS in frame k. If this closest
distance is less than a pre-defined threshold (e.g., ten pixels),
we consider the chosen singleton RFS in frame k−1 and the
investigated RFS in frame k as the predecessor and successor
pair. Consequently, we assign the investigated RFS the same
label as the chosen singleton RFS in the previous frame and
assign it a score, whose value is the score value of the chosen
singleton RFS plus 1. Otherwise, we assign the investigated
RFS a new label and assign its score as 1. This labeling and
score assignment is summarized as follows:

l jk =
⎧
⎨

⎩
lθk−1 if min

1≤i≤Mk−1
{d(Tar(i)k−1,Tar

( j)
k )} ≤ 10

l jk otherwise
(20)

s jk =
⎧
⎨

⎩
sθ
k−1 + 1 if min

1≤i≤Mk−1
{d(Tar(i)k−1,Tar

( j)
k )} ≤ 10

1 otherwise
(21)

where d(Tar(i)k−1,Tar
( j)
k ) is the Euclidean distance between

the average position of all particles in the i th singleton RFS
in frame k − 1 and the average position of all particles in
the j th RFS in frame k, and θ is the index of the singleton
RFS in frame k − 1 that has the minimum distance less than
ten pixels to the j th RFS in frame k. In other words, θ =
arg( min

1≤i≤Mk−1
{d(Tar(i)k−1,Tar

( j)
k )} ≤ 10).

Since CCD imagery data are background cluttered and the
RSOs have small SNR, occlusions often happen throughout
the frame sequence and significantly decrease the r value
of an existing Bernoulli RFS. The decreased r values may
lead to the elimination of the existing Bernoulli RFS even
when it has been present in the past for a while. The newborn
RFSs can eventually detect the occluded RSO right after the
occlusion disappears. However, the detected RSO will be
considered as a new target and therefore will be assigned a
new label, which is undesirable. To address the issues related
to the occlusion,wedesign anocclusionmanagement scheme
to employ the history information such as labels and scores
obtained in the previous frame to transfer the RFS of an
occluded target to a location in the current frame where the
target is likely to reappear.

To this end, we check the s value of a target in the previous
framewhen the r value of the target is significantly decreased
and therefore leads to its removal possibly due to occlusion. If
this s value ismore than a pre-determined threshold (e.g., five
repeated times), we keep the RFS of the target in the current
frame and transmit this RFS to the next frame by updating
the particles and their weights in time. We only repeat this
transmission process up to two times if the r value of the
target is significantly decreased and its associated s value in
the previous frame is bigger than the pre-determined thresh-
old. This setting ensures that the proposed tracking method
can effectively label the occluded RSO at the estimated loca-
tion when the occlusion is abruptly caused by noisy pixels,
a common scenario occurred in the CCD imagery data.

It should be noted that the labeled RFS is also used to
produce labeled multi-target tracks. Some pertinent exam-
ples of labeled RFS include labeled Poisson RFS, labeled
multi-Bernoulli (LMB) RFS, and GLMB RFS [20,23,29].
In general, LBM and GLBM filter are more principled
approaches than unlabeled multi-Bernoulli filter to track and
identify targets in a frame sequence. However, the proposed
unlabeled multi-Bernoulli coupled with labeling manage-
ment has demonstrated a good performance in detecting,
tracking, and identifying the RSOs. It assigns accurate labels
to the targets that do not have abrupt and drastic changes.
Moreover, labeling management is fused with occlusion
management, which records history information such as
labels and scores, to effectively label the occluded RSOs at
the estimated locationswhen the occlusion is abruptly caused
by noisy pixels.
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5.3 Noise removal

The aim of this step is to remove the noise captured by a de
facto empty RFS, where the likelihood value of each particle
representing a noisy pixel is small but their cumulative like-
lihood value as computed in (18) is big enough to make the
existence probability of this empty RFS comparable to the
existence probability of a singletonRFS representing a target.
In other words, the de facto emptyRFSwith the high cumula-
tive likelihood value yet small likelihood value for individual
particle canbemistakenly considered as a target insteadof the
noise. To solve this problem, we employ an adaptive likeli-
hood thresholdingmethod to remove such noise by assuming
that this kind of noise is chaotic in nature and normally does
not repeat itself near its current location in the next frame. To
this end, we first compute the likelihood value for each RFS
identified in the current frame. We then find all the targets
whose s values are larger than 2 (i.e., find all the targets that
have been continuously present in the sequence formore than
two times) and obtain theminimum likelihood value for these
targets. This minimum likelihood value represents the pos-
sible dimmest target till the current frame, which normally
is higher than the likelihood value of the noise pixel. We
finally compute the adaptive likelihood threshold (e.g., Tadp)
by multiplying this minimum likelihood value by 10−3 and
remove all RFSs, whose likelihood value is smaller than this
adaptive threshold, from the tracking results. This adaptive
likelihood thresholding method ensures that all the targets
that are repeated more than twice are kept in the tracking
results, some potential new targets that are dimmer than our
targets will be kept in the tracking results, and the noise pix-
els that are significantly “dimmer” will be removed from the
tracking results.

5.4 Algorithm overview

The algorithm overview of the proposed method for tracking
multiple RSOs using multi-Bernoulli filtering is summarized
in Algorithm 1.

6 Simulation result

We evaluate the proposed multi-Bernoulli RSO tracking
method by conducting experiments on various image
sequences provided by National Central University Lulin
Observatory in Taiwan. These sequences of Earth-orbiting
satellites were taken from a ground-based telescope at Lulin
Observatory. They were output from a one-megapixel CCD
sensor at 16-bit intensity depth. Since the satellites were
rate-tracked based on a priori information, they appear as
point detections, whereas celestial objects in the background
appear as streaks. The sensor consists of 50 cm aperture tele-

Algorithm 1 The algorithmic overview
Input:

– A CCD frame sequence
– Tmax : The maximum number of targets
– Lmin : The minimum number of particles in a RFS
– Lmax : The maximum number of particles in a RFS
– T1: A predefined probability threshold
– T2: A predefined distance threshold

Output: Tracking results

1. Define each particle as [x, y, vx , vy], where x and y are its location
and vx and vy are its initial velocity at x and y directions.

2. Set birth RFSs as {(r (i)
Γ ,k , p

(i)
Γ ,k)}4i=1 with r (i)

Γ ,k = 0.25 for each
quarter of frame k.

3. For the first frame (k = 1)

(a) {x̌(i, j)
k−1 )}Lmax

j=1 ← Randomly generate Lmax particles for each
birth RFS

(b) {w(i, j)
k−1 )}Lmax

j=1 ← Uniformly initialize the weights of the parti-
cles.

(c) Calculate the likelihood values of the particles g f (Y; x̌(i, j)
k|k−1)

using (5).

(d) w(i, j)
k ← Update the weights of the particles using (17).

(e) {r (i)
k , p(i)

k } ←Recalculate the multi-Bernoulli filtering param-
eters using (18)-(19)

(f) Resample the particles and restrict the number of particles in
the range of [Lmin, Lmax ].

(g) if r (i)
k < T1
– Discard i th RFS.

(h) Tar(i)k ← Calculate the average position of particles in the
remaining RFSs as target position.

(i) if d(Tar(i)k ,Tar( j)k ) ≤ T2
– Merge RFSs i and j .

(j) Keep the first Tmax RFSs as potential targets.
(k) lik ← Assign each target a label using (20).

(l) sik ← Assign each target a score using (21).
(m) Calculate the likelihood value for each target position

g f (Y; Tar(i)k ) using (5).
(n) Compute the adaptive likelihood threshold Tadp as explained

in Sect. 5.3.
(o) if g f (Y; Tar(i)k ) ≥ Tadp

– Tracking results ← Tar(i)k

4. do

(a) Update the particles of the existing Bernoulli RFSs from the
previous frame.

(b) Repeat step 3(a) to produce birth RFSs in current frame.
(c) Repeat steps 3(b) to 3(o) for the newborn RFSs and the existing

RFSs.

until the end of the frame sequence

scope and 2k × 2k cooled CCD with the field of view of
1.74◦ × 1.78◦, which is equivalent to 3 arcsec/pixel reso-
lution. More information about our data set can be found
in [26]. All computations are performed in MATLAB using
Intel®-CoreTM i7-3370 (3.4 GHz) systemwith 16 GBRAM.

We conduct the experiments on ten image sequences,
wherein the experts provide the ground-truth information
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Fig. 3 TBD results for deb020, where each frame is sequentially shown in the raster scan order. The mean of each RFS is highlighted with crosshair.
The red rectangle shows the tracking results for the RSO. The non-red rectangles represent the false objects that the algorithm detects (color figure
online)

for each RSO. Three of these ten sequences (e.g., deb020,
deb021, and deb024) contain exactly one RSO. The remain-
ing seven image sequences (e.g., deb059, deb032, deb029,
deb030, deb033, deb043, and deb045) contain multiple
RSOs, which might enter into, leave from, or move around
at any frame of the sequences. In this section, we provide
the detailed information and both quantitative and qualitative
analyses for three image sequences titled deb020, deb059,
and deb032. In addition, we provide the quantitative results
for other image sequences in terms of the number of parti-
cles, the average running time, the average estimation error,
the average OSPA distance, the average localization error,
and the average cardinality error.

We present the experimental results for “deb020” to eval-
uate the performance of the proposed method to detect a
single RSO without knowing this explicit information. The
frames in this sequence are cropped from their original data
to contain exactly one RSO. The size of each cropped frame
is 301×301, and there are 28 images in the sequence. In
this cropped image sequence, the dim RSO is of the aver-
age SNR value of 9.0095 dB and appears in the first frame
and occluded by the noise in the 26th frame. We initialize
Lmax =2500 number of particles for each Birth Bernoulli
RFS, and the number of particles is constrained between
Lmin =1000 and Lmax =2500 later on to avoid high compu-
tational cost, as summarized inAlgorithm1. The particles are

resampled in each iteration when processing this sequence.
The implemented method processes two frames per minute.
Figure 3 presents the tracking results for each frame in this
cropped image sequence, where the average position of par-
ticles in each Bernoulli RFS that might contain a target (i.e.,
its RFS component with a probability of existence above the
adaptive likelihood threshold computed in Sect. 5.3) is plot-
ted in different colors on top of each frame. It can be easily
inferred that theBernoulli RFS containing theRSO ismarked
in red since it is present in all frames with the expected tra-
jectory. The proposed tracking method successfully handles
the occlusion occurred in frame 26 and continues tracking
the same object as marked in red in the remaining frames.
The tracking method also detects some objects as potential
targets due to its similarity to the RSO or the relative high
likelihood value totaled from the small likelihood values of
all particles within a RFS. The mean position values of all
the particles in the associated RFSs for these potential targets
are shown as crosshairs of the rectangles in different colors.
Since they are not RSOs, the tracking method does not track
these counterfeit objects.

We present the experimental results for “deb059” to eval-
uate the performance of the proposed method to detect
two RSOs without knowing this explicit information. This
sequence contains 28 frames with the size of 1024 × 1024
pixels for each frame. The two RSOs appear in this sequence
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Fig. 4 TBD results for deb059, where each frame is sequentially shown in the raster scan order. The mean of each RFS is highlighted with crosshair.
The red rectangle shows the tracking results for the first RSO. The blue rectangle shows the tracking results for the second RSO (color figure online)

with the average SNR value of 18.023 dB and 19.027 dB,
respectively. The first RSO appears in all frames with partial
occlusion at the fourth frame, and the secondRSOcompletely
comes into view in the tenth frame and survives till the end
of sequence with occlusion occurred at the 25th frame. Each
RSO has different average velocities throughout the time,
and the second RSO has higher velocities at both directions.
Since the size of each frame in this data set is approximately
11 times larger than the size of each frame in the first data set,
we initiated Lmax =25,000number of particles for eachof the
birth Bernoulli RFSs and constrained the number of particles
between Lmin =1000 and Lmax =25,000 to ensure enough
coverage of the potential targets. Similarly, the particles are
resampled in each iteration when processing this sequence.
The implemented method processes 0.5 frame per minute
for this range of number of particles. Figure 4 presents the
tracking results for each frame in “deb059” sequence, where
the average position of particles in each Bernoulli RFS that
might contain a target is plotted in different colors on top of
each frame. It can be easily inferred that the Bernoulli RFS
containing the first RSO is marked in red since it is present in
all frames with slower movement. The Bernoulli RFS con-
taining the second RSO is marked in blue since it shows
up in the tenth frame based on the birth RFS and is consis-
tently present in the remaining frames based on the existing
RFS. The proposed method successfully handles the occlu-

sion occurred at the different frames and continues tracking
the same RSOs with their associated labels as marked in red
and blue in the remaining frames. Similar to the first track,
the tracking method also detects some objects as potential
RSOs as shown in frames 1, 2, 6, 8, 9, 10, 16, 25, and 27.
Since they are not RSOs, the tracking method does not keep
track of them. In addition, these non-RSO objects do not
repeatedly appear in the sequence since they are represented
in different colors. As a result, we can safely say that the pro-
posed tracking system succeeds in simultaneously detecting
and tracking the two RSOs, which have different velocities
in x and y directions, even when there are drastic changes in
background and target intensity across images.

We present the experimental results for “deb032” image
sequence to evaluate the performance of the proposedmethod
to detect two RSOs without knowing this explicit infor-
mation. This sequence contains 28 frames with the size of
1024×1024 pixels for each frame. The two RSOs appear
in this sequence with the average SNR value of 18.042 and
19.016 dB, respectively. The first RSO appears in the first
frame and exists throughout the image sequence with occa-
sional occlusion at frames 5, 16, and 24. The second RSO
completely appears in the ninth frame and exists till the end
of the sequence. The twoRSOs have different velocities com-
pared to each other. Their velocities are also different from
the velocities of the RSOs in the previous two tracks. We
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Fig. 5 TBD results for deb032, where each frame is sequentially shown in the raster scan order. The mean of each RFS is highlighted with crosshair.
The red rectangle shows the tracking results for the first RSO. The blue rectangle shows the tracking results for the second RSO (color figure online)

use the same setting in the second experiment to constrain
the number of particles for each of the Bernoulli RFSs and
resample the particles in each iteration. Figure 5 presents the
tracking results for each frame in “deb032” sequence, where
the average position of particles in each Bernoulli RFS that
might contain a target is plotted in different colors on top of
each frame. It can be easily inferred that the Bernoulli RFS
containing the first RSO is marked in red since it is present
in all frames. The Bernoulli RFS containing the second RSO
is marked in blue since it shows up in the ninth frame based
on the birth RFS and is consistently present in the remaining
frames based on the existing RFS. Although the first RSO is
occluded in some frames and the second RSO moves along
the border of the images, the proposed tracking method suc-
cessfully handles these situations and continues tracking the
same RSOs with their associated labels as marked in red
and blue in the remaining frames. As expected, the track-
ing method also detects some objects as potential RSOs and
does not keep track of them. Therefore, we can safely say
that the proposed tracking system succeeds in simultaneously
detecting and tracking the two RSOs, which have different
velocities at x and y directions.

We use the distance between the locations of inlier
estimated RSOs and the locations of their corresponding
ground-truth RSOs to compute the location estimation error
since the localization error is important in the SDA applica-

tions. Figure 6 shows the accuracy of the tracking results for
each frame of the deb020, deb059, and deb032 sequences in
terms of the location estimation error in pixels. It clearly
shows that the tracking location estimation error for the
deb020 sequence is much smaller and less fluctuated com-
pared to the tracking location estimation error for the other
two sequences, which contain two RSOs. For example, 25
frames in the deb020 sequence have the location estimation
error less than one pixel, two frames have the location esti-
mation error between one and two pixels, and one frame has
the location estimation error around five pixels. However, for
the other two sequences, most frames have the location esti-
mation error less than two pixels with approximately a half
of these frames having the location estimation error less than
one pixel.

Figure 7 shows the accuracy of the tracking results for
each frame of the deb020, deb059, and deb032 sequences
in terms of the estimation error between the velocity of the
inlier estimated RSOs at both x and y directions and the
actual velocity of their corresponding ground-truth RSOs. It
clearly shows that the tracking velocity estimation error for
the deb020 sequence ismuch smaller and less fluctuated com-
pared to the tracking velocity estimation error for the other
two sequences. All but one frame in the deb020 sequence
have the velocity estimation error of less than 0.5 pixel per
frame at the x direction and less than one pixel per frame at
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Fig. 6 Tracking estimation error in RSO location for each frame in three image sequences. First column: one RSO in deb020; second column: two
RSOs in deb059 (RSO1 in red and RSO2 in blue); third column: two RSOs in deb032 (RSO1 in red and RSO2 in blue) (color figure online)

Fig. 7 Tracking estimation error in RSO velocity for each frame in
three image sequences at x direction (top row) and y direction (bottom
row). First column: one RSO in deb020; second column: two RSOs in

deb059 (RSO1 in red and RSO2 in blue); third column: two RSOs in
deb032 (RSO1 in red and RSO2 in blue) (color figure online)

the y direction. Most frames in the other two sequences have
the velocity estimation error of more than 0.5 pixel per frame
at the x direction and more than one pixel per frame at the y
direction.

To further evaluate the proposed method, we provide the
quantitative results for all image sequences in Table 1. This
table summarizes the maximum number of particles for each
Bernoulli RFS, the average running time, the average estima-
tion error in pixels between the locations of inlier estimated
RSOs and the locations of their corresponding ground-truth
RSOs, and the average estimation error in pixels per frame
between the velocity of inlier estimated RSOs at both x and
y directions and the velocity of their corresponding ground-

truth RSOs for all experiments. Similar to the cropping of
deb020, the frames in the sequences deb021 and deb024
are intentionally cropped from their original data to con-
tain exactly one RSO. The size of each cropped frame is
301 × 301, and the number of frames in the sequence is 28.
The other seven sequences contain 28 frames with the size of
1024× 1024 pixels for each frame. As shown in Table 1, the
average running time for processing the deb020, deb021, and
deb024 sequences is four times faster than the average run-
ning time for processing the other seven sequences mainly
due to the significantly smaller number of particles per RFS.
The average estimation error for the single RSO location in
the three sequences (deb020, deb021, and deb024) is less
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Table 1 Summary of the ten experiments in terms of the particle numbers, the average running time, and the average estimation errors

Image
sequence name

# of Particles
Per RFS

Average running
time (Frames/s)

RSOs Average estimation errors

Location
(Pixels)

x-velocity
(Pixels/Frame)

y-velocity
(Pixels/Frame)

deb020 2500 2 One RSO 0.7642 0.1116 0.2837

deb021 2500 2 One RSO 0.8431 0.2512 0.3315

deb024 2500 2 One RSO 0.9545 0.2121 0.4549

Average 2500 2 0.8539 0.1916 0.3567

deb059 25,000 0.5 RSO1 1.4052 0.7742 1.3248

RSO2 1.1096 0.8305 2.7045

deb032 25,000 0.5 RSO1 1.5661 0.8535 2.0686

RSO2 1.3549 0.7876 3.0080

deb029 25,000 0.5 RSO1 1.5613 0.8112 1.9156

RSO2 1.1567 0.7876 3.0080

deb030 25,000 0.5 RSO1 1.1286 0.5154 1.7815

RSO2 0.9859 0.6371 2.0963

deb033 25,000 0.5 RSO1 1.0593 0.9845 1.8215

RSO2 1.1575 1.1852 2.5989

Average 25,000 0.5 1.2485 0.8167 2.2328

deb043 25,000 0.5 RSO1 0.8565 0.7893 1.5496

RSO2 1.2678 0.8979 2.1315

RSO3 1.5657 0.9613 2.7545

deb045 25,000 0.5 RSO1 1.3215 0.9652 1.3315

RSO2 1.5416 0.9313 2.0215

RSO3 0.7634 0.6895 1.1543

Average 25,000 0.5 1.2194 0.8724 1.8238

than one pixel while the average estimation error for the
locations of both RSO1 and RSO2 in the five sequences
(deb059, deb032, deb029, deb030, and deb033) is less than
two pixels. The average estimation error for the locations
of RSO1, RSO2, and RSO3 in the two sequences (deb043
and deb045) is less than two pixels. The average estimation
errors in terms of x velocities and y velocities for all RSOs in
the ten sequences are less than one pixel per frame and two
pixels per frame, respectively. The small location and veloc-
ity estimation errors indicate the efficiency of the proposed
tracker to accurately detect and track multiple RSOs while
not knowing any explicit a priori information.

We further use the OSPA distance [25] between the states
of the estimated RSOs (including both inliers and outliers)
and the states of the ground-truth RSOs in each of the ten
frame sequences to provide supplementary evaluation of the
proposed multi-RSOs tracking framework. The OSPA dis-
tance is ameaningfulmathematicalmetric to jointly calculate
differences in cardinality and localization between the states
of individual targets in two finite sets. For two finite sets
X = {x1, . . . , xnx } ⊂ X and Z = {z1, . . . , znz } ⊂ Z , a dis-
tance between a target xk ∈ X and a target zk′ ∈ Z is defined
as d(c)(xk, zk′) = min(c, ‖xk − zk′ ‖), where c is an empir-

ically determined cutoff positive value and ‖ · ‖ represents
the Euclidean distance. The OSPA distance metric [25] for
the finite sets X and Z is computed as follows:

d̄(c)
p (X , Z) =

(( 1

nz
( min
π∈Πnz

nx∑

i=1

d(c)(xi , zπ(i))
p+cp(nz −nx )

)) 1
p

(22)

when nx ≤ nz . If nx > nz , d̄
(c)
p (X , Z) = d̄(c)

p (Z , X). If

nx = nz = 0, d̄(c)
p (X , Z) = d̄(c)

p (Z , X) = 0. Here, p is a
positive value greater than or equal to 1 and determines the
sensitivity of d̄(c)

p to outlier estimates, and Πnz is the set of
permutations on {1, 2, . . . , nz} for any positive integer nz .
For the multi-target filtering cases, the OSPAmetric [25] can
be interpreted as a pth order “per-object” error, consisting of
two components, which separately justify the “localization”
and “cardinality”, as follows:

ē(c)
p,loc(X , Z) =

( 1

nz
( min
π∈Πnz

nx∑

i=1

d(c)(xi , zπ(i))
p
) 1

p
(23)

ē(c)
p,card(X , Z) =

( 1

nz
(cp(nz − nx )

) 1
p

(24)
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Fig. 8 OSPA distance together with its localization and cardinality components. First column: deb020 (c = 30, p = 1); second column: deb059
(c = 60, p = 1); third column: deb032 (c = 60, p = 1)

Table 2 Summary of ten
experiments in terms of the
average OSPA distance, the
average localization error, and
the average cardinality error (all
in pixels)

Image sequence name Average OSPA distance Average localization error Average cardinality error

deb020 6.32 0.60 5.71

deb021 7.15 0.72 6.43

deb024 8.78 0.85 7.93

deb059 8.18 1.04 7.14

deb032 15.27 1.13 14.13

deb029 9.76 0.92 8.84

deb030 10.52 1.01 9.51

deb033 8.27 1.01 7.26

deb043 12.59 1.08 11.51

deb045 14.19 1.21 12.98

Average 10.10 0.95 9.14

when nx ≤ nz . If nx > nz , ē
(c)
p,loc(X , Z) = ē(c)

p,loc(Z , X)

and ē(c)
p,card(X , Z) = ē(c)

p,card(Z , X).
In our calculation, we choose the order of p as 1 to

facilitate a direct interpretation of the OSPA metric and its
localization and cardinality components. The value of cut-
off c determines the relative weights of the components of
the localization error and the cardinality error as a part of
the total error. The smaller value of c mostly emphasizes
the localization error and makes the OSPA metric less sen-
sitive to the cardinality error. On the other hand, the larger
value of cmostly emphasizes the cardinality error and makes
the OSPA metric less sensitive to the localization error. We
employ different c values for the image sequences based on
the size of the images. Specifically, we use c = 30 pixels for
the deb020, deb021, and deb024 image sequences and use
c = 60 pixels for the other seven image sequences as mod-
erate choices to maintain a balance between the localization
and cardinality errors.

For each image in the ten frame sequences, we cal-
culate the OSPA metric (i.e., d̄(c)

p , ē(c)
p,loc, and ē(c)

p,card)

between the estimated locations of objects and the loca-
tions of ground-truth RSOs. In Fig. 8, we only provide the
diagram of OSPA distance (i.e., d̄(c)

p ) (in blue), the local-

ization error (i.e., ē(c)
p,loc) (in red), and the cardinality error

(i.e., ē(c)
p,card) (in black) per frame for the three sequences

(i.e., deb020, deb059, and deb032). The average OSPA dis-
tance is 6.32 pixels for deb020, 8.18 pixels for deb059, and
15.27 pixels for deb032. The average localization error is
0.60 pixels for deb020, 1.04 pixels for deb059, and 1.13
pixels for deb032. The average cardinality error is 5.71 pix-
els for deb020, 7.14 pixels for deb059, and 14.13 pixels for
deb032.

Table 2 summarizes the average OSPA distance d̄(c)
p , aver-

age localization error ē(c)
p,loc, and average cardinality error

ē(c)
p,card for the ten image sequences. The average OSPA

distance, the average localization error, and the average cardi-
nality error for all RSOs in the ten image sequences are 10.10
pixels, 0.95 pixels, and 9.14 pixels, respectively. It clearly
shows that the proposed tracking method has significantly
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Table 3 Comparison of the proposed method with P-TBD and Bernoulli-P-TBD methods in terms of the average location, the average x-velocity,
and the average y-velocity

Methods name Average estimation error

Location (Pixels) x-velocity (Pixels/Frame) y-velocity (Pixels/Frame)

deb020 deb021 deb024 deb020 deb021 deb024 deb020 deb021 deb024

P-TBD [26] 1.2415 1.1582 1.196 0.3014 0.2632 0.4001 0.4018 0.4534 0.5191

Bernoulli-P-TBD [5] 1.015 1.0961 1.012 0.2082 0.2207 0.3001 0.3173 0.3012 0.5093

Proposed method 0.7642 0.8431 0.9545 0.1116 0.2512 0.2121 0.2837 0.3315 0.4549

small average localization error, which indicates the robust-
ness of the method in localizing the RSOs. The proposed
tracking method yields relatively larger OSPA distance and
large cardinality errors in some frames mainly due to detec-
tion of counterfeit point objects similar to RSOs. However,
the proposed algorithm does not keep track of these fake tar-
gets throughout the sequences. It should be noted that the
cardinality error is 0 in most frames, which means that all
the RSOs are correctly identified and no more counterfeit
objects are identified. As a result, the OSPA distance is small
in these frames. In summary, we conclude that the proposed
tracking method achieves accurate localization performance
in all frames and accurate cardinality performance in amajor-
ity of frames.

To the best of our knowledge, this is the first attempt
to apply the multi-Bernoulli RFS framework in SDA to
track multiple RSOs in clutters in telescope imagery data
with low SNR. State-of-the-art RSO tracking algorithms
[5,26] are only applicable for detecting and tracking a single
RSO instead of multiple RSOs in frame sequences. Roughly
speaking, the proposed multi-RSOs tracking method (i.e.,
multi-Bernoulli-TBD) is a robust extension of the single
RSO tracking methods (i.e., P-TBD [26] and Bernoulli-P-
TBD [5]). It can be reliably applied to track both single RSO
and multiple RSOs without knowing any prior information
about the number of RSOs and their initial locations in the
sequences. Uetsuhara and Ikoma [26] and Fujimoto et al.
[5] use the same settings as our experiments to evaluate the
performance of their proposed methods to track the single
RSO in three datasets (e.g., deb020, deb021, and deb024).
Specifically, the P-TBD method needs the initial location
of the single RSO in all three image sequences to track the
single RSO. Similarly, the Bernoulli-P-TBD method needs
the initial location of the single RSO in deb021 and deb024
sequences to track the RSO while tracking the RSO in the
deb020 sequence without knowing its initial location. The
proposed method does not need the initial location of each
RSO as prior information since it uses the multi-Bernoulli
filter with birth RFSs to automatically detect the target as
it appears in any location of each frame. We simulate the
P-TBD and Bernoulli-P-TBD methods in MATLAB and

run them on the three datasets (e.g., deb020, deb021, and
deb024) using the same parameters described in their respec-
tive research papers. Table 3 compares the performance of the
proposed method, the P-TBD method, and the Bernoulli-P-
TBDmethod in terms of the average location estimation error
in pixels and the average estimation error of velocity in pixels
along x and y directions per frame.We show the smallest esti-
mation error for each dataset in bold. It clearly shows that the
proposed method achieves the best performance in terms of
the average location estimation error for all three sequences.
It also yields the best performance in terms of the average
x-velocity estimation error and the average y-velocity esti-
mation error for deb020 and deb024 sequences. For deb021
sequence, the proposed method achieves the second best per-
formance in terms of the average x-velocity estimation error
and the average y-velocity estimation error. The best per-
formance is achieved by the Bernoulli-P-TBD method with
the known initial position of the single RSO. It should be
mentioned that the suggested number of particles is 104 in P-
TBD, which approximately processes one frame per second
for each of the three frame sequences. The Bernoulli-P-TBD
processes two frames per second with 104 particles. In this
method, the suggested number of particles is different for
each of CCD frame sequences. For deb020, deb021, and
deb024, the number of particles is 104, 2×104, and 2×104,
respectively. Consequently, themethod processes two frames
per second for deb020 sequence and one frame per second for
deb021 and deb024 sequences. Our proposed method does
not require any prior information about the initial locations
of the RSOs in the sequences and processes two frames per
second for each of the deb020, deb021, and deb024 frame
sequences, which is faster than the two other comparedmeth-
ods.

All the experimental results clearly demonstrate that the
proposed multi-Bernoulli-TBD method, without knowing
any prior information about the number of RSOs, is able
to successfully track multiple RSOs in clutters in imagery
data with low SNR. When tracking a single RSO, the pro-
posed method, without knowing any prior information about
the initial location of the RSO in the sequences, achieves bet-
ter performance than the two state-of-the-art RSO tracking
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methods, which are applicable for detecting and tracking a
single RSO by using the initial location of the RSO in the
first frame.

7 Conclusions

In this paper, we propose a fast and reliable TBD approach
to simultaneously detect, track, and identify an unknown
and variable number of RSOs without any prior information
and any explicit detection. We evaluate the proposed track-
ing method on ten frame sequences provided by National
Central University Lulin Observatory in Taiwan. The experi-
mental results clearly show that the proposed tracking system
succeeds in simultaneously detecting and tracking multi-
ple RSOs with different velocities at x and y directions.
To quantitatively evaluate the performance of the proposed
multi-RSO tracker, we compute the location estimation error
in pixels and the OSPA distance together with the OSPA
localization error and the OSPA cardinality error in pixels
for each frame in the frame sequences. The extensive exper-
imental results demonstrate that the proposed multi-RSO
tracking method achieves accurate localization performance
in all frames and accurate cardinality performance in amajor-
ity of frames. In summary, our contributions are:

– Introducing a PSF-based separable likelihood function
that is capable ofmaking an articulate distinctionbetween
RSOs and any spurious signals in background cluttered
CCD imagery data.

– Implementing the RFS-based multi-Bernoulli filtering
framework by using the SMCmethod to refine and reject
the measurement likelihood function for simultaneously
detecting and localizingmultiple RSOswithout any prior
information.

– Incorporating the likelihood function in the observation
model to update the multi-Bernoulli parameters forward
in time and decide which RFS contains a target based on
the updated parameters.

– Designing a labeling and occlusionmanagement strategy
to find the predecessor and successor pairs between the
previous and current frames and transmit the RFS of an
occluded target forward to the next frame to address the
occlusion issues.

– Employing an adaptive thresholding method, which uti-
lizes the history information of the presence or absence
of a target to remove the chaotic noise.

We will further improve the likelihood function by using
computer vision techniques to detect and track RSOs with
smaller SNR values. In addition, we will parallelize the fil-
ter to reduce the computational time to handle an immense
number of targets. We will also investigate the employment

of machine learning techniques or an appropriate adaptive
threshold in the merging process to relax false positive
merging events. Finally, we will consider implementing the
multi-Bernoulli filtering using the Gaussian mixture model
instead of the SMCmethod to reduce the computational time.
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