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Abstract
Biometrics has emerged as a powerful technology for person authentication in various scenarios including forensic and
civilian applications. Deployment of biometric solutions that use cues from multiple modalities enhances the reliability
and robustness of authentication necessary to meet the increasingly stringent security requirements. However, there are two
drawbacks typically associated with multimodal biometrics. Firstly, the image acquisition process in such systems is not very
user-friendly, primarily due to the time and effort required to capture biometric samples belonging to multiple modalities.
Secondly, the overall cost is higher as they employ multiple biometric sensors. To overcome these drawbacks, we employ a
single NIR sensor-based image acquisition in the proposed approach for hand-vein recognition. From the input hand image,
a palm-vein and four finger-vein subimages are extracted. These images are then enhanced by CLAHE and transformed into
illumination invariant representation using center-symmetric local binary pattern (CS-LBP). Further, a hierarchical non-rigid
matching technique inspired by the architecture of deep convolutional networks is employed formatching theCS-LBP features.
Finally, weighted sum rule-based matching score-level fusion is performed to combine the palm-vein and the four finger-vein
modalities. A set of rigorous experiments has been performed on an in-house database collected from the left and right hands
of 185 subjects and the publicly available CASIA dataset. The proposed approach achieves equal error rates of 0.13% and
1.21%, and rank-1 identification rates of 100% and 100% on the in-house and CASIA datasets, respectively. Additionally,
we compare the proposed approach with the state-of-the-art techniques proposed for vascular biometric recognition in the
literature. The important findings are (1) the proposed approach outperforms all the existing techniques considered in this
study, (2) the fusion of palm-vein and finger-vein modalities consistently leads to better performance for all the feature
extraction techniques considered in this work. (3) Furthermore, our experimental results also suggest that considering the
constituent palm-vein and finger-vein images instead of the entire hand-vein images achieves better performance.

Keywords Vascular biometrics · Hand-vein recognition · Deep matching and finger-vein recognition

1 Introduction

Nowadays, it is important that reliable security solutions
are employed to perform person recognition. The traditional
password and token-based recognition approaches have sev-
eral inadequacies such as the risk of passwords being cracked,
forgotten or divulged or the tokens being stolen or lost.
Therefore, they have been largely replaced by a more effi-
cient alternative namely, biometric authentication, which
uses various physiological or behavioral characteristics of
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a person for establishing or verifying the identity. In the
literature, several biometric traits have been investigated,
including fingerprint, face, ear, iris, palmprint and gait. How-
ever, the unimodal biometric solutions have been shown to
be quite vulnerable to sensor-level attacks such as presen-
tation attacks, which involve presenting a fake copy of the
genuine user’s sample to the biometric sensor. On the con-
trary, multimodal biometric solutions combine information
extracted from several biometric traits, thereby exhibiting
higher resilience against presentation attacks.Moreover, they
also provide better biometric performance and increased
population coverage, which are essential for performing
large-scale recognition. However, multimodal biometric sys-
tems have two major drawbacks: firstly, high overall cost of
the system owing to the multiple biometric sensors and sec-
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ondly, higher degree of user cooperation required to capture
samples belonging to different biometric modalities at the
time of authentication (or enrollment). The above-mentioned
drawbacks, however, can be overcome to a certain extent if
multiple modalities can be acquired from a single body loca-
tion. For instance, palmprint and palm-vein images can be
captured by varying the wavelength of the incident light.

In order to achieve better cost-effectiveness in multimodal
biometric recognition systems, it is desirable to reduce the
number of sensors employed for image acquisition. This is
achievable when the biometric characteristics are in close
proximity. For instance, in the case of a hand image, palm-
print, fingerprint and hand geometry features can be extracted
from an image acquired using a single sensor. Thus, to
enhance user-friendliness, while exploiting the benefits of
multimodal biometrics, we propose to capture the frontal
hand image in such a way that it covers the palm and fin-
ger regions. In particular, we extract the vascular biometric
characteristics from palm and finger regions in the image.

The rest of the paper is organized as follows: In Sect. 2,
we briefly outline the related work. Section 3 describes the
proposed approach in detail. Section 4 presents a compre-
hensive analysis of the experimental results and comparison
with other techniques. Finally, Sect. 5 concludes the paper
with directions for future work.

2 Literature review

The idea ofmultimodal biometric systems has receivedmuch
attention from researchers owing to its enhanced reliability
and performance. Unimodal biometric systems often have
to deal with issues such as limited population coverage
and susceptibility to spoofing. Since multibiometric systems
incorporate information frommultiple biometric traits, these
problems are reduced to a great extent.

Multimodal biometric systems involve the fusion of
information from multiple biometric traits to achieve a per-
formance superior as compared to the individual modalities.
Multimodal biometric systems vary based on the number
of sensors, traits, feature sets and classifiers employed. But
often, the termmultimodal biometrics is used synonymously
with the scenarios in which multiple biometric traits are
considered for fusion. One of the earliest works in mul-
timodal biometrics was the fusion between the voice and
face biometric traits at the matching score level [1]. Sev-
eral biometric traits have been explored in the literature;
for instance, authors in [2] employ face and ear biometric
traits for biometric recognition, while authors in [3] utilize
iris, fingerprint and face traits. In majority of the reported
works, biometric modalities are obtained from two or more
different locations on the human body. Not only does this
make the process of enrollment and authentication incon-

venient for the users, it also adds to the cost incurred by
the employment of multiple sensors. This makes deploy-
ment of such multimodal systems less appealing for civilian
applications. Thus, the choice of biometric traits for fusion
plays a key role in the usability of the biometric system.
For instance, the authors in [4] make use of the finger-
vein and fingerprint modalities which are acquired from the
frontal finger region making the biometric acquisition pro-
cess more user-friendly. Similar studies have been conducted
for palmprint and palm-vein-based [5], finger-vein and finger
dorsal texture-based [6], palm and hand dorsal vein patterns
[7,8] and finger-knuckle- and finger-vein-based [9] recogni-
tion. Although these approaches require less effort on the
users’ part, the complexity of the associated hardware is
high.

Thus, in order to enhance the user-friendliness and cost-
effectiveness while still enjoying the performance benefits
of multimodal biometrics, single-sensor multimodal biomet-
rics have been investigated in the past. Researchers have
used a single biometric sensor for acquisition of hand images
and have extracted features from palmprint, fingerprint and
hand geometry biometric traits [10–12]. A more recent
study utilizes multiple information from a single image cap-
tured using a single-sensor, specifically, a CCTV camera.
The information includes gait, head and height for crimi-
nal investigation [13]. The hand-based biometric acquisition
is prone to presentation attacks which have been shown
to be highly successful in spoofing palmprint-based [14],
fingerprint-based [15] and hand geometry-based [16] bio-
metric systems. This has led to increased attention towards
vascular biometrics. Besides being unique, the subcuta-
neous vein structures have the added advantage of lying
underneath the skin surface, and thereby, making it less
vulnerable to spoofing attacks [17]. Majority of the recent
works in vascular biometrics explore the line-based and
curvature-based information in the vessel structures present
in the biometric samples. The authors have demonstrated
the effectiveness of these features for palm-vein- [18–22],
finger-vein- [23–27] and dorsal hand-vein-based [28,29]
biometric systems. However, much recent work has been
focused on employing the deep learning techniques in vari-
ous domains, and the field of biometrics is not an exception.
These works have shown that the deep convolutional neu-
ral network (DCNN)-based features perform better than
the handcrafted features for face [30,31] and finger-vein
[32] verification systems. Furthermore, a hierarchical con-
volutional architecture, similar to that of DCNN, has been
employed for improving the matching performance by the
authors in [33]. Encouraged by the recognition performance
in [33], we adopt the matching technique in the proposed
work.
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Fig. 1 Overview of the proposed approach

3 Proposed approach

Figure 1 shows an overview of the proposed approach.
The hand-vein images are segmented to obtain the palm-
vein and the finger-vein regions of interest (ROIs). For
majority of the images, ROIs have been extracted automat-
ically. However, in some cases, manual intervention was
required. ROI extraction is followed by image enhance-
ment using contrast-limited adaptive histogram equalization
(CLAHE). The enhanced images are then transformed using
CS-LBP, a computationally efficient and illumination invari-
ant feature extraction technique used in the literature [34].
Further, a hierarchical non-rigid dense matching technique
[35] inspired by the functioning of deep convolutional net-
works has been employed formatching the resultingCS-LBP
images. Finally, weighted sum rule-based matching score-
level fusion is performed to combine the palm-vein and the
four finger-vein modalities.

3.1 Image preprocessing

As part of the preprocessing, the acquired hand-vein image
is binarized using graylevel thresholding [36] to segment the
hand region. This segmented image is further processed to
separate the palm-vein and finger-vein ROIs.

3.1.1 Palm-vein ROI extraction

In order to extract the palm-veinROI,we locate the contour of
the hand in the binarized image. (The contour is highlighted

in blue in Fig. 2a.) A reference point is then selected near the
base of the hand. Distance between the reference point and
every point on the hand contour are computed and plotted
against the hand contour pixel index starting at the reference
point. The resulting radial distance function is shown in Fig.
2b. Peaks and valleys on this curve [37] correspond to the fin-
ger tips and finger valleys, respectively, as shown in Fig. 2c.
Finally, the valley points closer to the index and little fingers
are joined and at a perpendicular distance of x from the cen-
ter of this line, a square region of size L × L corresponding
to the palm-vein ROI is extracted (Fig. 2d).

3.1.2 Finger-vein ROI extraction

In this work, we supplement the palm-vein ROIs with the
information extracted from the four finger-vein ROIs to
improve the biometric recognition performance. We exclude
the thumb since it is challenging to acquire the frontal images
of the thumb as well as the four fingers as part of a sin-
gle image. In order to segment the finger-vein ROIs from
the binarized images, three points on each finger contour
are identified including the fingertip denoted by T and two
points on the base of the finger. As described in the previous
section, in the process of palm-vein ROI extraction, the loca-
tions of fingertips and finger valleys on the hand contour are
identified. However, on close observation, it can be observed
that the valley between any two fingers is not a single point.
Instead, it is a wider region comprising several points. For
instance, Fig. 3a, c shows that the points VL and VR both
lie in the same valley region between the index and middle
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Fig. 2 Palm-vein ROI extraction a hand contour localization, b plot of
radial distance function, c finger tips and valleys, d palm-vein ROI

Fig. 3 Finger-vein ROI extraction a right valley VR detection, b cor-
responding radial distance curve, c left valley VL detection and d
corresponding radial distance curve

fingers. They represent the leftmost and rightmost points of
the valley region, respectively. We consider the valley point
that lies closer to a finger as its base point, resulting in two
base points per finger on its either side.

In order to locate the valley points, we employ the same
approach as the one used for palm-vein ROI extraction; how-
ever, with two reference points. Specifically, for a region
along the hand contour between any two consecutive finger-
tips T1 and T2 (highlighted in blue in Fig. 3a, c). One of the
fingertips is considered as the reference point and the other

Fig. 4 Finger-vein ROI extraction: for inner fingers (first row) and for
outer fingers (second row)

fingertip as the end point. The valley point corresponds to the
maximum on the radial distance curve between the reference
and the end points. Refer Fig. 3 where point T1 is considered
to be the reference point to locate VR , and similarly, T2 is
considered to be the reference point to locate VL .
The inner fingers namely, middle and ring have two finger
valleys VA and VB , to their left and right, respectively. VA is
located using radial distance curve with TA and TB as the ref-
erence and end points, respectively. Similarly, VB is located
using the points, TB and TC as the reference and end points,
respectively, as shown in Fig. 4. The line joining the finger-
tip TB with the midpoint of the line VAVB acts as the finger
axis. Figure 4b shows the rotated image with vertical finger
axis. The outer blue rectangle represents the finger boundary,
while the inner red rectangle corresponds to the ROI which is
extracted by iteratively reducing the outer boundary from the
lateral and upper ends, until the background is eliminated.
Outer fingers which include index and little fingers, have
a single valley associated with them. In order to locate the
other end of the finger contour, the contour length l between
the valley VA and the fingertip TA is measured and a point
EndL along the contour at a contour distance of l from TA is
identified, as shown in Fig. 4c. Once the two base points are
located, we perform the same set of operations as for inner
finger-vein ROI extraction. The finger-vein ROI for index
finger is shown in Fig. 4d.

The extracted palm-vein and finger-vein ROIs are then
enhancedusingCLAHEandnormalized to a size of 150×150
pixels and 150×30 pixels, respectively. Due to the variation
in illumination in some of the images, Otsu’s thresholding
[36] does not find the optimum threshold to segment the hand
image from the background.We discuss the treatment of such
images in Sect. 4.
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3.2 Feature Transformation

The enhanced and normalized palm-vein and finger-vein
ROIs contain several curvilinear vessel structures of varying
shapes and sizes. In order to effectively characterize these
structures, we employ CS-LBP [34], a computationally effi-
cient and illumination invariant feature representation used
in the literature for image region description. It captures the
image gradient information by comparing the gray levels of
pixels in a local image neighborhood. The CS-LBP represen-
tation is derived from local binary patterns (LBP) [38] which
is computed by assigning a binary code to each pixel of the
image by thresholding the N neighborhood pixel intensities
with the value of the center pixel and concatenating the N
binary values to obtain a binary string. CS-LBP is a more
compact form of LBP. Instead of comparing the intensities
with the center pixel, pixels located symmetrically about the
center are compared and thresholded based on a preset value
T , which is typically set to 1% of the range of the pixel inten-
sities. Specifically, we considered a neighborhood of 8 pixels
(N = 8 and radius R = 2) centered at the current pixel. In
particular, the difference between the pixel intensities of the
i th and (i + N

2 )th pixels, denoted by gi and gi+( N
2 )
, respec-

tively, is considered and a binary code is assigned to each
pixel in the enhanced ROI I (x, y) based on Eq. 1. This gen-
erates the CS-LBP image which is an encoded template with
decimal equivalent values ranging from0 to 15 and is used for
matching. Figure 5 shows the palm-vein andfinger-veinROIs
and the corresponding CS-LBP and uniform LBP images for
comparison. Although the CS- LBP and the uniform LBP
extract texture features, the resultant images indicate that the
two descriptors characterize the palm-vein image very dif-
ferently.

CS − LBPR,N ,T (x, y) =

(
N
2

)
−1∑

i=0

s

(
gi − g

i+
(
N
2

)
)
2i ,

where

s(p) =
{
1, if p > T

0, otherwise
(1)

3.3 Matching

Subsequently, in order to compare the gallery (Ig) and probe
(Ip) feature templates obtained in the previous step, we
employ a robust image matching technique, known as deep
matching [35]. It performsnon-rigid densematchingbetween
the images in two stages namely, bottom-up and top-down.
The bottom-up stage consists of a pipeline similar to the
architecture of DCNNs. In particular, it contains the con-
volutional layer along with max-pooling, subsampling and
rectification layers. However, the weights of the filters used

Fig. 5 Illustration of textural differences between CS-LBP and LBP
images: palm-vein and finger-vein ROIs (first row), corresponding CS-
LBP images (second row) and uniform LBP images (third row)

for convolution operations are not learnt as in DCNNs;
instead, the image patches of the first image act as convolu-
tion filters for the second image. Specifically, Ig is partitioned
into non-overlapping patches of size n × n where n = 4.
These patches act as convolution filters which when con-
volved with Ip result in level-1 correlation maps which form
the bottommost layer of the correlation map pyramid. These
correlation maps represent the similarity scores between the
image patches. LetCN ,p denote the correlation maps created
using image patches of Ig having size N ×N and centered at
p. Further, let CN ,p(p′) denote the similarity between patch
of Ig centered at p with the patch of Ip centered at p′.

Further, in order to perform comparison at multiple image
scales, recursive aggregation of correlation maps is per-
formed in a bottom-up manner. A multilevel correlation
pyramid is formed as shown in Fig. 6. Specifically, four
smaller quadrants in the correlation maps for image patches
of size N

2 × N
2 in the lower layer are aggregated to form

correlation maps corresponding to larger image patches of
size N × N . The aggregation involves the operations as such
as max-pooling, sub- sampling, shift and nonlinear rectifica-
tion as in a deep convolutional framework . Furthermore, the
four children quadrants (C N

2 ,pi
)with centers pi for i = 1...4

are allowed to move in the local neighborhood. Max-pooling
and subsampling denoted by P ◦ S are performed on the chil-
dren quadrants to select the best match using kernel size of
3 × 3 and stride of 2. Subsequently, a translation of 1 pixel
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Fig. 6 Bottom-up stage of deep matching inspired by the architecture of DCNNs: building the correlation map pyramid

Fig. 7 Aggregation performed at each layer in the bottom-up stage

and averaging is performed followed by nonlinear rectifica-
tion for contrast enhancement of the correlation maps. The
parameters used in this work for all the aggregation tasks are
the same as in [35]. Figure 7 shows the sequence of aggrega-
tion operations performed on the correlation maps resulting
in the correlation map pyramid.

The finalmatching score between gallery and probe image
is computed by backtracking along the correlation map pyra-
mid constructed in the bottom-up manner. This process is
shown in Fig. 8. The entry point is determined based on
the maxima in the topmost pyramid level. Further, Eq. 2 is
employed recursively to undo the aggregation operations to
identify the matching patches. Finally, the matching score is
defined as the number of matches that fulfill the deformation
tolerance constraints, which include scaling factors between
[ 12 ,

3
2 ] and the value of rotation angles between [−30, 30]

degrees.

di = arg max
d∈{−1,0,1}2

C N
2 ,pi (p′

i+d)
(2)

where d denotes the local neighborhood of p′
i and di corre-

sponds to the quadrant with the highest value.

3.4 Score-level fusion

Subsequently, in order to supplement the palm-vein bio-
metric trait with the additional information from finger-vein
images, matching score-level fusion is performed using the
weighted sum rule. Prior to fusion, the matching scores are
normalized using the Tanh normalization [39].

4 Experiments and results

In order to evaluate the effectiveness of the proposed
approach, we performed extensive experiments on two
datasets, considering verification and identification scenar-
ios. In particular, we have performed three sets of experi-
ments. In the first set of experiments, we have compared the
performance of the proposed approach with several exist-
ing feature extraction techniques that have been shown to
be effective for palm-vein- and finger-vein-based biometric
recognition systems in the literature. In the second set of
experiments, we assessed the improvement in performance
of the palm-vein biometric system on fusion with the finger-
vein images at the matching score level. Additionally, in the
third set of experiments, we have compared the performance
of the proposed approach with a related work that performs
matching of the entire hand-vein images [40]. In this sec-
tion, we describe the datasets used in this work and discuss
the results obtained from the three sets of experiments.

4.1 Database description

There are three publicly available datasets for research on
palm-vein biometrics namely, The Hong Kong Polytech-
nic University Multispectral Palmprint Database (PolyU
database) [41], the Idiap Research Institute VERA Palmvein
Database (VERA palmvein dataset) [42] and CASIA Mul-
tispectral Palmprint Image Database (CASIA dataset) [43].
Since our approach utilizes vascular information from the
entire hand, we required hand-vein images having full frontal
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Fig. 8 Top-down stage of deep matching: finding the matching correspondences in the images

Fig. 9 Imaging setup employed for hand-vein image acquisition

hand coverage with complete palm and finger areas. Since
the hand-vein images in the PolyU and VERA palm-vein
datasets contain only partial finger-vein areas, these datasets
are not suitable for our study. On the other hand, the images
in the CASIA dataset cover the whole hand area. Thus, we
used the CASIA dataset for evaluating our approach. This
dataset consists of 6 images per hand acquired from left and
right hands of 100 subjects. In addition to this, we collected
a larger in-house dataset (IITI hand-vein dataset), consisting
of 6 samples per hand acquired from left and right hands of
185 subjects.

4.1.1 Imaging setup

There are two modes in which NIR illumination can be
employed for image acquisition namely, the transmission and
the reflection modes. In the transmission mode, NIR light is
transmitted through the biometric sample and the biometric
capture device is on the other side of the light source, as in
most of the finger-vein acquisition devices [43]. On the other
hand, in the reflection mode, both the light source and cam-
era are placed on the same side of the biometric sample, as

Fig. 10 Hand-vein images of left and right hands of three subjects from
the IITI hand-vein dataset
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Fig. 11 Two binary images showing the segmentation failure cases in
our database

in case of palm-vein image acquisition [18]. In this work, we
acquired the hand-vein images using the latter scheme (Fig.
9). The imaging setup used for collecting the database con-
sists of a wooden box, covered from all sides except the front
side through which the subject places his hand on the floor
of the box, as shown in Fig. 9a. An NIR sensor (mvBlue-
fox IGC) mounted on the top of the box was connected to
a laptop in order to acquire the images of the hand. Infrared
LEDs having peak wavelengths of 850 and 940 nm were
placed alternately to form arrays of LEDs. Specifically, three
arrays of LEDs were employed. Two arrays were placed on
the box ceiling to illuminate the hand, and the third array
was placed at a lower elevation on the front wall of the box
in order to illuminate the finger regions. The NIR illumina-
tion arrangement employed for image acquisition is shown
in Fig. 9b. Hand images were collected from the left and
right hands of 185 subjects in an unconstrained and contact-
less manner. Some of the images collected using our setup
are shown in Fig. 10. The vein patterns in palm-vein images
are denser compared to the finger-vein images and are more
clearly visible. Nevertheless, the information extracted from
the finger-veins can be employed to enhance the performance
of the palm-vein biometric system, as shall be demonstrated
through the experiments.

4.1.2 ROI extraction

For some of the hand-vein images in the database, automatic
hand segmentation using the threshold determined by Otsu’s
method did not produce the desired results. It led to either
inclusion of parts of the background or exclusion of parts
of the hand-vein region, mostly the finger regions (Fig. 11).
This may be due to adverse effect of non-uniform illumina-
tion in some of the samples. Besides, since the images were
acquired in an unconstrained manner, fingers in some of the
images were not well separated, leading to incorrect hand
contour localization. As a result, subsequent employment of
radial distance curve for identifying the finger tips and val-
leys did not work correctly. Figure 11 shows two examples
of failed ROI extraction in which finger-vein regions are not
segmented correctly. Overall 4.12% of the total number of
images had incorrect hand segmentation. In all such cases,

Fig. 12 Palm-vein and finger-vein ROIs extracted from the hand-vein
images of 3 subjects from the IITI hand-vein database

we extracted the ROIs manually in order to evaluate the per-
formance of the proposed approach on the entire dataset. The
ROIs (palm-vein and finger-vein) extracted from the images
are shown in Fig. 12.

4.2 Performance evaluation in unimodal framework

In the first set of experiments, we performed a comparative
evaluation of the proposed approach with several existing
feature extraction techniques that have been shown to be
effective for palm-vein and finger-vein biometrics in the
literature. In particular, we assessed the performance for
palm-vein and finger-vein modalities individually (without
score-level fusion). For comparison, we employed neighbor-
hood matching radon transform (NMRT) [20] and Hessian
phase [20] approaches, which have yielded promising results
for palm-vein biometrics. Additionally, we employed the
maximumprincipal curvature (MPC) [44], wide line descrip-
tor (WLD) [26] and repeated line tracking (RLT) [25]
techniques, which have been shown to be effective for
finger-vein biometrics. Table 1 shows the values selected for
the parameters used in these feature extraction techniques.
Figures 13 and 14 show the feature templates extracted
from palm-vein and finger-vein ROIs, respectively, using the
above-mentioned and CS-LBP feature extraction techniques.
These encoded feature templates created using the above-
mentioned techniques were used for matching. In order to
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Table 1 Parameter settings for
feature extraction using the
existing techniques

Technique Parameter Value

Palm-vein Finger-vein

MPC [44] Sigma, σ 3 3

WLD [26] Radius, r 9 9

Threshold, t 1 1

Global threshold, g 100 100

RLT [25] Number of iterations, N 3000 3000

Cross-sectional width, W 11 11

Radius, r 1 1

NMRT [20] Lattice size, L 16 16

Hessian phase [20] Sigma, σ 0.5 0.8, 1.2 1.8 2.5 0.5 0.8, 1.2 1.8 2.5

compute the matching scores between the biometric feature
templates extracted using MPC, WLD and RLT techniques,
we adopted the maximal matched pixel ratio (MPR) as a
measure of similarity. In order to perform translation and
rotation invariant matching, feature templates Fg and Fp

extracted from the gallery and probe images, respectively,
were compared. In particular, Fg was compared with Fp and
its translated and rotated versions which constitute F ′

p with
the translation offset of 10 pixels and rotation offset of 4◦,
both with increments of 2. For each pair of Fg and a tem-
plate in F ′

p, ratio of the number of matched pixels to the total
number of pixels in the feature templates was computed and
the maximum value corresponds to MPR.

MPR(Ig, Ip) = max
F∈Fp′

∑
x,y 2 ∗ Fg(x, y) ∗ F(x, y)∑
x,y(Fg(x, y) + F(x, y))

(3)

In case of NMRT- and Hessian phase-based approaches, we
adopted the patch-based hamming distance for matching as
proposed by the authors in [20]. Overlapping patches of
size 25 × 25 pixels with an overlap of 3 pixels between the
patches were considered, and the hamming distances for the
corresponding patches were summed up to form the final dis-
similarity score. The results of the experiments in verification
and identification scenarios are presented in the following
sections.

4.2.1 Verification experiments

In order to perform experiments, we considered the left- and
right- hand samples from a subject as belonging to separate
individuals, effectively resulting in 200 and 370 subjects in
CASIA and IITI datasets, respectively. Thus, there are six
hand images per subject in both IITI and CASIA datasets.
Each of these images yields a palm-vein and four finger-vein
images. For each biometric modality, we considered the first
three samples of each subject as gallery and the remaining
as probe. Matching scores between the gallery and probe

Fig. 13 Feature templates extracted from the palm-vein ROIs using a
MPC, b WLD, c RLT, d NMRT, e Hessian phase and f CS-LBP

Fig. 14 Feature templates extracted from the finger-vein ROIs using a
MPC, b WLD, c RLT, d NMRT, e Hessian phase and f CS-LBP
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Table 2 Performance of the individual modalities in the verification framework

EER (%)

IITI CASIA

Approach Palm Index Ring Middle Little Palm Index Ring Middle Little

WLD [26] 3.25 6.01 6.51 5.10 10.19 6.08 14.08 12.98 13.99 19.14

MPC [44] 2.47 4.69 5.22 4.19 7.29 4.54 12.06 12.59 11.55 15.96

RLT [25] 8.96 8.16 12.37 7.64 20.14 17.17 17.17 28.79 28.92 30.87

NMRT [20] 6.18 6.76 6.78 6.38 9.44 9.57 19.17 17.72 19.33 20.68

Hessian phase [20] 7.16 9.16 9.73 8.98 13.49 9.39 22.66 21.26 23.23 22.91

Proposed 0.40 2.54 3.12 2.98 4.12 2.61 6.24 7.23 6.23 10.97

Bold indicates the best performance

Table 3 Performance of the individual modalities in the identification framework

Rank-1 identification rate (%)

IITI CASIA

Approach Palm Index Ring Middle Little Palm Index Ring Middle Little

WLD [26] 98.83 97.39 97.20 97.12 94.50 97.50 90.50 88.83 91.33 84.17

MPC [44] 99.19 97.38 97.03 97.03 94.50 97.17 89.00 89.83 90.50 81.67

RLT [25] 93.51 95.76 87.39 95.86 73.60 83.00 76.17 59.50 61.33 51.54

NMRT [20] 94.86 94.68 94.32 94.50 91.08 93.50 74.83 73.33 74.67 63.33

Hessian phase [20] 93.42 90.18 90.45 91.26 86.39 92.33 65.50 64.83 64.17 57.00

Proposed 100 98.28 98.19 98.29 97.20 98.00 91.33 94.50 94.00 85.30

Bold indicates the best performance

samples were computed, resulting in 1800 and 3330 genuine
scores as well as 358,200 and 1,228,770 impostor scores for
CASIAand IITI datasets, respectively. Based on these scores,
two error rates, false match rate (FMR) and false non-match
rate (FNMR), were computed. The decision threshold was
determined to be the operating point at which FMR equaled
FNMR. Finally, the equal error rates (EERs) for palm-vein
as well as four finger-vein modalities are reported in Table 2.
The EER values corresponding to the best performance for
each modality have been highlighted in boldface.

Two observations can be made from the results presented
in Table 2. Firstly, the proposed technique clearly outper-
forms the other techniques with minimum EER values for
palm-vein and finger-vein modalities on both the datasets.
EER values of 0.40 and 2.61% were obtained for palm-vein
matching on IITI and CASIA datasets, respectively. These
values are lower than the EER values achieved by the other
techniques. Secondly, the performance of palm-vein modal-
ity was better than that of finger-vein modalities. This may
be attributed to the fact that the features extracted from the
palm-vein are more discriminatory compared to the features
extracted from the finger-veinmodalities owing to the latter’s
sparser vascular networks.Among thefinger-veinmodalities,
the best EER values of 2.54 and 6.23% were achieved by the
index andmiddle fingers of IITI and CASIA datasets, respec-

tively. Both of these values are higher than the EER values
obtained for palm-vein. The little finger performs poorly, as
it contains the least amount of vascular information. It may
also be noted that the performance of all the approaches is
better on IITI dataset as compared to theCASIA dataset. This
could be due to the higher degree of hand-pose variations in
terms of rotation and scale in CASIA hand images. Neverthe-
less, the merit of the proposed technique is evident since the
results obtained are consistently better than the other tech-
niques for each modality on both datasets.

4.2.2 Identification experiments

The rank-1 identification rates obtained for each of the
modalities are reported in Table 3. The cumulative match
characteristic (CMC) curves on the IITI and CASIA datasets
are presented in Figs. 15 and 16, respectively. The results
presented in the identification scenario are consistent with
those achieved in the verification scenario, in which it was
found that the proposed technique consistently outperforms
the other techniques considered in this study. Rank-1 iden-
tification rates greater than 97% were achieved for all the
modalities on IITI dataset with the best performance of 100%
for palm-vein and the worst performance of 97.20% for lit-
tle finger-vein. On the CASIA dataset, palm-vein achieves
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Fig. 15 Performance of the individual modalities in the identification framework on IITI hand-vein dataset

an accuracy of 98%, while the best performance among the
finger-veins was achieved by the middle finger with a recog-
nition rate of 94.50%. Next, we present the results in the

multimodal framework for biometric recognition in which
palm-vein and finger-vein modalities are combined.
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Fig. 16 Performance of the individual modalities in the identification framework on CASIA dataset

4.3 Performance evaluation in themultimodal
framework

The second set of experiments were performed in order to
analyze the performance upon fusion of the palm-vein and

finger-vein modalities. In particular, we assessed the effect
of augmenting the vascular information present in the palm-
vein with that in the finger-veins at the matching score level
for all the techniques considered in the previous section. All
possible combinations of finger-veins were considered for
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Table 4 Recognition
performance on IITI and CASIA
datasets upon matching
score-level fusion in the
verification scenario

EER (%)

Dataset IITI CASIA

Approach P P+1F P+2F P+3F P+4F P P+1F P+2F P+3F P+4F

WLD [26] 3.25 2.27 2.37 2.25 2.34 6.08 6.11 5.43 6.15 5.23

MPC [44] 2.47 2.52 1.19 0.90 0.73 4.54 4.92 3.59 3.26 3.32

RLT [25] 8.81 8.79 6.79 6.48 8.79 17.17 18.56 16.23 14.44 13.98

NMRT [20] 6.18 4.12 3.09 2.61 2.25 9.58 7.88 6.58 6.08 6.06

Hessian phase [20] 7.16 6.10 4.97 4.17 3.91 9.39 9.09 8.27 7.60 7.24

Proposed 0.40 0.39 0.30 0.17 0.13 2.61 1.98 1.68 1.37 1.21

Bold indicates the best performance

Table 5 Rank-1 identification
rates for IITI and CASIA
datasets upon matching
score-level fusion in the
identification scenario

Rank-1 identification rate (%)

Dataset IITI CASIA

Approach P P+1F P+2F P+3F P+4F P P+1F P+2F P+3F P+4F

WLD [26] 98.83 99.00 99.17 99.28 99.50 97.5 97.5 97.64 98.12 98.37

MPC [44] 99.19 99.09 99.32 99.55 99.72 97.17 98.33 98.08 98.25 98.50

RLT [25] 93.51 96.13 97.46 98.04 98.38 83.85 74.45 78.5 81.91 84.17

NMRT [20] 94.86 97.00 98.26 98.69 99.00 93.50 94.29 95.86 96.46 96.83

Hessian phase [20] 93.42 94.59 95.84 96.50 97.39 92.33 93.13 94.03 94.67 95.67

Proposed 100 100 100 100 100 98.00 98.83 99.47 99.83 100

Bold indicates the best performance

fusion with the palm-vein. P+nF denotes the combination of
the palm-vein with n finger-veins where n ∈ [1, 2, 3, 4]. The
score-level fusion of the normalized scores was performed
using the weighted sum rule. We present the performance
evaluation in the verification and identification scenarios in
the following sections.

4.3.1 Verification experiments

Table 4 shows the average EER values for each of the P+nF
cases on IITI and CASIA datasets. It can be observed that
for all the techniques, including the proposed technique, the
multimodal case achieves better performance than the uni-
modal (palm-vein only) case. This shows that the information
from finger-vein images supplements the palm-vein images
and enhances the biometric performance. As seen in the pre-
vious experiment, the finger-vein modality by itself is not
a very rich source of vein patterns. Nevertheless, fusing the
finger-vein information with the palm-vein leads to better
overall performance. It can also be observed that among all
the techniques listed in the table, the proposed technique is
the best and achieves an EER of 0.13%when the scores from
all the finger-veinswere fusedwith that of the palm-vein. The
best fusion performance among all the combinations (P+nF),
for every technique, is highlighted in boldface. The results
suggest that the best values were obtained for a higher value
of n, i.e., when either three or four finger-veins were fused
with the palm-vein. The proposed approach achieves a per-

formance improvement of 67.5%, from 0.40% when only
palm-vein is employed to 0.13% on fusion of all finger-veins
with the palm-vein (P+4F). Similarly, the average improve-
ment of 45.62%and30.82%wasobtainedon IITI andCASIA
datasets, respectively.

4.3.2 Identification experiments

Table 5 shows the average rank-1 identification rates achieved
on fusion of the finger-veins with the palm-vein at the match-
ing score level. It can be seen from the table that there
is definite performance improvement when all finger-veins
were used for fusion, for every technique considered in this
study. Figures 17 and 18 exhibit an ascending trend in recog-
nition rate as n increases. In particular, the rank-1 and rank-10
identification rates are higher for n = 3 or 4 as compared to
the palm-vein-only case (P) on IITI and CASIA datasets. It
may also be noted that the identification rate is 100% on both
IITI and CASIA datasets upon score-level fusion for the pro-
posed method. Thus, it can be concluded from the results
presented in this section that the fusion of information leads
to improved performance (Fig. 19).

4.4 Comparison with existing approach

In the previous experiment, we observed that supplement-
ing the palm-vein with the finger-veins leads to increased
performance. Another way of utilizing the vascular infor-
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Fig. 17 Cumulative match characteristics showing the improvement in identification performance on IITI dataset when fusion is performed with
finger-vein modalities using a MPC, bWLD, c RLT, d NMRT, e Hessian phase and f proposed approach

mation present in the finger-vein regions is by considering
the whole hand-vein image at once instead of separating
them into palm and finger regions, as was done in [40]. In
this section, we compare the performance of the proposed
approach with the multimodal framework presented in [40].

The hand-vein images were enhanced using the difference of
Gaussian technique followed by histogram equalization. On
the enhanced hand-vein images, RootSIFT algorithm [44]
was applied for feature extraction and matching. In order
to increase the accuracy of keypoint matching, neighbor-

123



Single-sensor hand-vein multimodal biometric recognition using multiscale deep pyramidal approach 1283

Fig. 18 Cumulative match characteristics showing the improvement in identification performance on CASIA dataset when fusion is performed
with finger-vein modalities using a MPC, bWLD, c RLT, d NMRT, e Hessian phase and f proposed approach

hood andLBP-basedmismatch removal techniques [44]were
employed. Finally, the number of matches was considered to
be the similarity score. Table 6 shows the EER and rank-1

identification rates of this set of experiments. The results sug-
gest that the proposed approach achieves better performance
than the approach in [40].
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Fig. 19 Cumulative match characteristics showing the recognition performance of the proposed approach and the approach in [40] on a IITI and
b CASIA datasets

Table 6 Comparison with an existing approach

EER (%) Rank-1 identification rate

Approach IITI CASIA IITI CASIA

RootSIFT [39] 0.67 2.29 99.90 93.67

Proposed 0.13 1.21 100 100

5 Conclusion

Multimodal biometric systems have been shown to provide
reliable biometric performance. In this paper, we have pre-
sented a single-sensor multimodal approach for hand-vein-
based biometric recognition. From the acquired hand-vein
image, the constituent palm-vein and four finger-vein ROIs
were extracted. After the preprocessing center-symmetric
local binary pattern (CS-LBP) technique was employed to
transform the extracted ROIs into CS-LBP image repre-
sentations. Subsequently, a hierarchical non-rigid matching
technique inspired by the architecture of deep convolutional
neural networks was employed for matching the CS-LBP
images. Finally, in order to utilize the information present in
the finger-vein regions, weighted sum rule-based matching
score-level fusion was performed to combine the palm-vein
and the four finger-veins. An in-house databasewas collected
from the left and right hands of 185 subjects. In order to eval-
uate the proposed approach, three sets of experiments were
performed on the in-house and the publicly available CASIA
datasets. The results of the first experiment suggest that the
proposed approach consistently achieves better performance
than the existing techniques considered in this study. In par-
ticular, the proposed approach achieves equal error rates of
0.13 and 1.21%, and rank-1 identification rates of 100 and
100% on the in-house and CASIA datasets, respectively.

Results of the second set of experiments suggest that there is
considerable performance improvement when the palm-vein
is supplemented by finger-veins for all the feature extraction
techniques considered in thiswork. Further,we compared our
technique with an existing technique that extracts features
from the entire hand-vein image. The experimental results
suggest that considering the constituent palm-vein andfinger-
vein images instead of the entire hand-vein image achieves
better recognition performance. As part of the future work,
we plan to utilize hand geometry features to further improve
the recognition performance of the proposed system. The in-
house database and the extracted palm-vein and finger-vein
ROIs will be made publicly available on http://www.iiti.ac.
in/people/~kvivek/index.html to further the research in this
area.
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