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Abstract
Sketch-based image retrieval (SBIR) has been studied since the early 1990s and has drawn more and more interest recently.
Yet, a comprehensive review of the SBIR field is still absent. This survey tries to fill in this gap by reviewing the representative
papers studying the SBIR problem. More importantly, this survey tries to answer two important questions which are generally
not well discussed: what are the objectives of SBIR, and what is the general methodology of SBIR? The reviewed papers are
organized in a chronological way and analyzed by answering these two important questions. As a novel trend, fine-grained
SBIR has become the main topic for the recent research. The discussion on it is also integrated. From this survey, we hope
that different perspectives can be observed, common values can be discovered and new ideas can be inspired.
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1 Introduction

Sketching is considered as an intuitive means for expressing
thoughts through human history and sketch-like petroglyphs
can date back to a much earlier time than texts [16]. In
computer vision and computer graphics, sketches also have
many applications, such as sketch recognition, sketch synthe-
sis and sketch-based image retrieval. For sketch recognition,
it solves the recognition of free-hand sketches [16], profes-
sional sketches (e.g., faces) [25,55], symbols [49] and other
line-rich objects [5,48] which can be represented by a sketch-
like format. Sketch synthesis [37] focuses on synthesizing
photos into sketching styles and creating different artistic
effects. As for sketch-based image retrieval, it addresses
the searching difficulty when texts are not convenient or
efficient enough to describe human mind and thus pro-
vides an alternative and complementary searching method.
This survey places a special concentration on sketch-based
image retrieval literature and makes effort to provide a clear
overview of the field.
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Sketch-based image retrieval (SBIR), which allows the
user to search images with a free-hand sketch has been an
active research topic under the field of content-based image
retrieval (CBIR) for a long time [12,46]. Normally, the input
sketch is drawn with a high level of abstraction and just
roughly describes the holistic shape and salient local shapes
of the searched object/scene. On the other hand, the gallery
images are generally realistic photographs or sophisticated
art works, which are dramatically different from the input
sketch. Above all, the core task of SBIR is to find images
which have some object/scene with similar holistic shape
and salient local details as the input sketch. An illustration
of the SBIR system is shown in Fig. 1.

Substantial papers specifically addressingSBIRhave been
published since the 1990s. Yet only a few SBIR surveys
[1,4,24] have emerged until very recently. Although mod-
erate coverage of the literature and the technical details
has been achieved in these works, they share some com-
mon drawbacks: (1) only very recent SBIR works have been
reviewed, i.e., works after 2005, but there were a consider-
able amount of works between 1992 and 2005 which made
distinct contributions to the field; (2) themajor sketch–image
differences are not clearly defined—the objectives of SBIR
are not well defined; (3) a complete and general SBIR frame-
work that comprises all the necessary modules and addresses
the major challenges is absent—the methodology of SBIR is
not well defined. Therefore, in this survey, we try to draw a
clearer picture of the SBIR field by making some comple-
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Sketch query Image gallery Retrieval results 

Fig. 1 The concept of the sketch-based image retrieval system

mentary effort to the previous works. More specifically, we
review a set of 22 papers from 1992 to 2016 which generally
covers the representative SBIR works from the beginning.
The sketch–image differences and the corresponding chal-
lenges are formally defined and discussed to reflect the clear
objectives for SBIR.A general SBIR framework that summa-
rizes all the necessary modules is described, under which the
key techniques, strategies and solutions are better organized
to offer a comprehensive overview of the methodology. How
to use the methodology to achieve the objectives is carefully
discussed as well.

The dramatic differences between sketches and images are
widely acknowledged yet not well defined in the literature.
Various phraseswere adopted to coarsely describe them, such
as “representational gap” [7], “ambiguity” [28] and “cross-
domain” [36,47]. We estimate that finer definitions of these
differences would help us understand the problem better and
thenproposemore purposeful solutions. Therefore,wedefine
the sketch–image differences more specifically as below.

Firstly, according to whether the user is sketching the
whole scene of the image or an(several) object(s) in the
image, we sort the SBIRworks into two types: sketching-the-
scene type and sketching-the-object type. Then, we define
sketch–image differences on three aspects:

1. Visual cue imbalance sketches only have the holistic
shape and salient local shapes (and sometimes symbolic
colors), while images have abundant details on shape,
color and texture;

2. Content imbalance sketches normally contain no back-
ground, while images can have cluttered background;

3. Abstraction gap even when a sketch and an edge map
are depicting exactly the same object/scene, they still
have dramatically different abstraction levels. Accord-
ing to the causes, the abstraction gap can be further
decomposed into 3 subaspects: random distortion (the
randomness in sketch strokes), simplification (missing

details) and unrealistic disproportion (caricatured parts
being unrealistically bigger or smaller).

The visual cue imbalance and the abstraction gap exist
in both SBIR types, while the content imbalance is majorly
related to the sketching-the-object type. We argue that these
three aspects of differences are the main objectives of SBIR
and should be addressed accordingly.

When we review each paper, we mainly discuss about two
dimensions:

– the strategies of addressing the sketch–image differences,
– the general SBIR framework.

Under the defined three aspects of sketch–image differences,
the different views of the SBIR objectives are revealed and
unified.Thegeneral SBIR framework is developed incremen-
tally and normally not explicitly discussed in the literature.
This survey tries to unfold its developing timeline and sum-
marize all the important modules.

The rest parts of this survey are organized as follows:
Sect. 2 reviews all the selected papers in a chronological
way, focusing on the strategies of addressing sketch–image
differences and the general SBIR framework. Section 3
summarizes the strategies of addressing the sketch–image
differences, and Sect. 4 summarizes the general SBIR frame-
work. Section 5 talks about the datasets and evaluation
metrics. Finally, Sect. 6 offers some conclusions and some
thoughts on the future work.

2 The history of sketch-based image
retrieval

The research on SBIR can be traced back to the early 1990s.
While the basic concepts are generally consistent across time,
the specific research content is highly affected by the corre-
sponding techniques of each period. As a result, we decide
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to organize the reviewed works in a chronological way. From
this, we hope the developing trends of the SBIR field can be
revealed and the promising future directions can be inspired.
Based on the shared perspective of the SBIR problem, we
divide the time period from 1992 to 2016 into 4 eras and
introduce them separately.

On the other hand, as mentioned in the introduction, we
analyze all the works through two dimensions: the strate-
gies of addressing sketch–image differences and the general
SBIR framework. Along with the strategies of addressing
sketch–image differences, we also discuss each work’s type
and its abilities to address invariances on translation, scale
and rotation. There are two types of SBIR in general: the
sketching-the-scene type and the sketching-the-object type.
Each type is oriented to a specific type of applications.
Invariances on translation, scale and rotation affect the user’s
experience and should be decided according to the applica-
ble scenario. Figuring them out helps us to make clear the
designing goals of the SBIR system. For better clarity, we
divide the general SBIR framework into two phases: image
gallery population phase and sketch retrieval phase. The for-
mer phase is the preparation phase and the latter phase is the
applying phase.

In the end of the review of each era, tentative summary
is provided for the era. A particular focus is imposed onto
the strategy to address the abstraction gap as we think it is
the most important challenge in SBIR. The timeline of the
general SBIR framework is also emphasized to highlight the
system evolution.

2.1 First era

The first era came in 1992, when Hirata and Kato [26] raised
the termof content-based image retrieval for the first time and
established a general framework that used sketches to retrieve
art paintings. Another version of the same project was pub-
lished concurrently by Kato et al. [31] which made a clearer
manifesto for their framework: “a sketch retrieval method”.
And they named their whole concept as “QVE (query by
visual example)”.

To address the visual cue imbalance, [26,31] proposed
edge extractionmodule and represented all the gallery images
with their edge maps in preprocessing. This module is hence
adopted by almost all the followingworks to tackle the visual
cue imbalance. To compare the similarity between a sketch
and an image edge map, they firstly divided the normal-
ized sketch and edge map into the same number of blocks
and then compared the block to block correlations which
were computed on raw pixel values directly without extract-
ing any feature. We categorize this kind of metric which
compares raw pixel values directly as pixel-based metric.
The similarity comparison based on the similarity metrics
is then another module. The blocks were shifted within a

small range during the comparison, so the similarity metric
tolerates translation and random distortion to some extent.
After using the similarity metric to compare the query sketch
with all the gallery images, they reordered and displayed the
gallery images according to their similarities to the sketch in
descending order, and we define this procedure as the gallery
displaying module. As for the SBIR type, QVE had chosen
the sketching-the-scene type.

Right after this thread of works, the QBIC (Query By
Image Content) project [21,42] was published by IBM
research. As another early and important work in content-
based image retrieval, the QBIC project comprised SBIR,
yet also included image retrieval from color and tex-
ture indications and silhouette shape retrieval. Free-hand
sketches/shapes, various colors and synthesized textures
could be drawn/selected from an interface. The QBIC
project’s sketch retrieval pipeline was directly derived from
the QVE works [26,31] with no modifications.

Summary The first era lasted from 1992 to 1994 and the
symbols are the establishment of some basic modules of
the general SBIR framework, the employment of pixel-based
metric and the unity on sketching-the-scene type. The only
strategy in the first era to address the abstraction gap is the
block-shifting scheme. It can tolerate the random distortion
but cannot address the other two subaspects.

By the end of the first era, the early works had drawn a
preliminary picture for the general SBIR framework which
can be summarized as follows:

– Population phase: (1) edge extraction;
– Retrieval phase: (1) similarity comparison, (2) gallery
displaying.

2.2 Second era

From the second era, researchers started to putmore thoughts
into the SBIR objectives, i.e., the sketch–image differences.
Del Bimbo et al. published several relevant papers [13–15]
to describe an elastic matching approach, which deforms the
query sketch according to the image object and uses both
the deformation energy and the matching extent between the
deformed sketch and the image (the overlapping between the
sketch pixels and the image edge pixels) to perform sim-
ilarity comparison. The elastic matching was expected to
approximate the human visual perception, and during the
deformation process both random distortion and unrealistic
disproportion could be addressed. Del Bimbo et al. [14] was
the first work in the literature to study the sketching-the-
object type, and they added another module to the general
SBIR framework which is object localization (yet only
necessary for the sketching-the-object type). They [13–15]
manually selected some rectangular interesting areas in the
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images which were the bounding boxes of the objects. Multi-
object query was considered by using a signature file for each
sketch and each image to encode the rough spatial relation-
ships between the objects. Corresponding interesting areas of
the sketch and the imagewould be comparedonly if the signa-
ture files of the sketch and the image hadmatched. Due to the
use of rectangular interesting areas, their method is invari-
ant to translation and handles the content imbalance (only
interesting objects were selected and compared). They also
achieved invariance on scale by normalizing the sketch and
image objects’ rectangles to the same size. It is worth noting
that Del Bimbo and Pala [13] for the first time quantitatively
evaluated sketch’s ability to rank similar images using ranked
image list constructed from human rated sketch–image pairs.

So far, all the reviewed works have employed pixel-based
similarity metrics. But a pixel-based metric usually is com-
putationally costly and still too rigid to address random
distortions.Being aware of this, the feature extractionmodule
was consequently raised by the follow-up works to extract
various types of features which were robust to edge varia-
tions and more efficient to compare with. Chans et al. [9]
believed that the users tended to ignore details when draw-
ing the sketches, and therefore proposed a curvelet model
to extract and encode the prominent edge segments of the
images. The curvelet representation was intrinsically robust
to random distortion and simplification. It was also designed
to be invariant to translation within a region. Rajendran and
Chang [45] employed a multi-scale representation for edge
maps to address the variations of the level of detail of human
sketches. Namely, coarser scales of the representation were
used to encode only long and prominent edges correspond-
ing to the holistic structure, but finer scales were used to
encode also short and weak edges depicting the details. They
believed that some combination of the scales could contain
the similar amount of details as the query sketch. Invariances
on translation, scale and rotation were achieved by using a
curvature-direction representation. Nevertheless, their algo-
rithm is just suitable for the sketches of simple shapes and
the images with dominant object(s) and clean background.
Chalechale et al. [8] proposed an angular partitioning of
abstract image (APAI) representation to bridge the abstrac-
tion gap. Firstly, the abstract images were obtained which
would keep the strong edges in the image and derive a thinned
version from the sketch, thus addressing the simplification
and sketch denoising. The angular partitioning feature was
then extracted by covering the abstract image with a sur-
rounding circle and separating the circle into even angular
partitions (slices). The number of the edge points in each
partition was used to represent that partition. This feature
is actually a naive version of the shape context [2] without
radial bins. This angular partitioning feature is scale invariant
and is further made rotation invariant by calculating its 1-D
discrete Fourier transform. However, the rotation invariance

is only valid when the rotation angle is an integral multiple of
the partition angle. The feature is also robust against random
distortion since the distortion would not dramatically change
the edge points number in the partition given a decent parti-
tion angle. Its translation invariance is achieved by obtaining
the bounding boxes of the sketch content and the image con-
tent and just comparing the contents in the bounding boxes.

Summary The second era was approximately between 1994
and 2005, and the symbols are the considerations of both the
abstraction gap and the invariances on several properties.
Also in this era, the researchers started to study the SBIR of
the sketching-the-object type. Contrasting to the first era, all
the three subaspects of the abstraction gap were addressed
in the second era.

– For the random distortion, the elastic matching [13–15]
tried to reverse the distortion with an edge deforma-
tion method; the curvelet model [9] reduced the random
distortion in the process of extracting the salient edge
segments; by just counting the pixel number in each bin,
the APAI [8] had achieved invariance on random distor-
tion inside each bin, but also had lost quite a lot of local
structures.

– For the simplification, bothChans et al. [9] andChalechale
et al. [8] kept the salient edges as the simplified represen-
tation for the images, yet Chans et al. [9] focused more
on this process and proposed several steps to regulate
the extracted edges while Chalechale et al. [8] just used
the thresholds to control the amount of the edges. Rajen-
dran and Chang [45] particularly employed a multi-scale
representation to simulate different levels of human sim-
plification.

– For the unrealistic disproportion, only the elastic match-
ing [13–15] could address the situation when the sketch
is a contour, but it may not be effective when the sketch
has more complicated inner structures.

In the end of the second era, the general SBIR framework
appeared as:

– Population phase: (1) object localization (for sketching-
the-object type), (2) edge extraction, (3) feature extrac-
tion;

– Retrieval phase: (1) feature extraction, (2) similarity com-
parison, (3) gallery displaying.

2.3 Third era

In the third era, influenced by the explosion of the Internet
data volume, the community favored to employ large-scale
datasets and investigate features and schemes suitable for
processing these datasets efficiently. Eitz et al. [17,18] evalu-
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ated histograms of oriented gradients (HOG) [11] and Tensor
descriptor [33] against angular radial partitioning (ARP) [8]
(yet we think this is a misinterpreted version from Eitz et al.,
since as introduced earlier, the APAI proposed by Chalechale
et al. [8] does not have radial bins) and edge histogram
descriptor (EHD) [40], all in a global feature fashion (the fea-
ture that represents the whole image). The results concluded
that as global features, HOG and Tensor significantly out-
performed ARP and EHD, with Tensor being slightly better
than HOG. Another two interesting comparisons were also
conducted in this work. Firstly, a binary query-specific mask
was employed to get rid of the image features whose loca-
tions corresponded to the blank area of the query sketch. The
retrieval performance using descriptors with masks signif-
icantly outperformed the performance without masks. And
this is the direct support to the importance of addressing the
content imbalance. Secondly, they compared traced sketches
(traced on top of the image) with memory sketches (sketched
from memory without the image), and proved that the traced
sketches obtained better retrieval results. This conclusion is
expectable, but we would like to argue here that studying the
retrieval with memory sketches is more desirable since the
users of a search engine normally have no images to trace
on. To cope with the large-scale datasets, another module
was added to the general SBIR framework in this era: gallery
indexing. A k-means tree [23] and best-bin-first strategy [41]
were employed for indexing the descriptors. The k-means
tree recursively subdivides the descriptors into k clusterswith
k-means clustering and thus forms a hierarchy of clusters.
All the images in one leaf cluster share similar appearances,
which could facilitate coherent image retrieval. The best-bin-
first strategy is an approximate approachwhich greedily finds
the nearest cluster. Although not generating global optimal
results, the combination of k-means tree and best-bin-first
strategy could accelerate the retrieval by several orders of
magnitude. Due to the global feature fashion, this work can-
not cope with translation, scale and rotation (except the ARP
which is invariant to rotations of certain degrees). Yet with
the grid division scheme in feature computation, random dis-
tortion could be tolerated in each grid cell, since the overall
statistics of the visual cues in each cell would not change
too much given that a moderate level of random distortion
is present. Right after, by including both the global features
and several popular local features, Eitz et al. [19] proposed
a benchmark for SBIR. The local features included shape
context (SC) [2], spark feature [19] and HOG. Bag-of-words
(BOW) representation [51] was used to encode the features.
For indexing, the standard inverted index that indexes images
by the visual words [60]was directly employed. In their com-
parison, although the local feature SHOG (HOG computed
on the slightly blurred Canny [6] edge map) obtained the
best performance, the other local features were outperformed
by the global features. It is noteworthy that, in this work,

the sketch’s power to rank similar images was quantitatively
evaluated again afterDelBimbo andPala [13]. Ranked image
list constructed frommanually rated sketch–image pairs was
used for retrieval evaluation. The involvement of the BOW
representation brings the invariance on translation. The grid
division scheme of the features could offer invariance on
random distortion as discussed before, and the quantization
procedure of the BOW also could offer invariance on ran-
dom distortion since similarly deformed feature variants are
quantized into the sameword. Simplification is considered in
this work through controlling the thresholds for generating
the edge map and employing slightly blurred version of the
edge map.

In the meantime, Hu et al. [27] was doing a similar evalu-
ation for local features and the BOW representation, yet with
a slightly different set of features. Specially, they proposed to
compute a gradient field image for the edge map in advance
of computing theHOG feature, and named this feature as gra-
dient field HOG (GF-HOG). The gradient field is composed
of interpolations of edge pixels, so essentially, it expands the
influences of the prominent edges and increases the gener-
ality of the representation. In a later journal version [28],
Hu and Collomosse increased their feature set which finally
included GF-HOG, HOG, scale-invariant feature transform
(SIFT) [38,39], self-similarity descriptor (SSIM) [50], SC
and Tensor descriptor (global feature). Their results con-
firmed that local features, especially GF-HOG and HOG,
were obviously better than global features in SBIR. How-
ever, their evaluation was category level retrieval, which did
not take care of the visual similarity between the sketch and
the image, so it provided relatively limited insights on the
visual similarity discrimination power of different features.
The k-d tree [3] was mentioned in their work for indexing,
which organizes the k-dimensional points by partitioning the
space and is an important data structure for nearest neigh-
bor search. Nonetheless, the k-d tree scheme can only work
with Minkowski distance [3], which is not ideal when other
distance metrics are desired. This work could also cope with
invariances on translation and random distortion as the fea-
tures employed and the BOW representation. The gradient
field has the effect of simplifying the edgemaps andmake the
edge maps closer to the sketches. Continuing the evaluation
of the local features, Hu et al. [29] also considered the content
imbalance. Since the desired object could be contained in a
cluttered scene, they employed a hierarchical segmentation
algorithm to decompose the image into coarse-to-fine regions
in a recursive way. And they assumed that one of the regions
might contain the just right region of the object without too
much cluttered background involved. BOW representations
were computed for the sketch query and all the regions of
each image, and in each image the region with the small-
est distance to the query sketch was chosen to represent that
image in the retrieval. Significant performance improvement
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was reported comparing to the approaches without region
segmentation.

Differently, another pixel-based metric was proposed in
this era by Cao et al. [7]. They proposed a similarity compari-
sonmethod based on oriented Chamfermatching (OCM) [7].
The OCM seeks the nearest edge pixel (edgel) in the sketch
for each edgel in the image, requiring the quantified orienta-
tions of both pixels being the same. The distances between
these kinds of edgel pairs were accumulated and normal-
ized to be the final distance. Their indexing scheme was like
the inverted index scheme but used edgels instead of feature
visual words as entries to index images. All the sketches and
images were normalized to the same size, and each edgel
entry (with a specific position and a specific edge direction)
indexed a list of images which contained that edgel. A Hit
map was generated for each sketch as the final representation
used for retrieval, and it essentially expands the width of the
strokes. By this means, the random distortion is tolerated.
However, due to the rigidity of Chamfer matching (which
is discussed in [56]) and the normalization needed for the
indexing, the system could only retrieve objects at almost
the exact position as the sketch and only small extent of local
random distortions could be allowed. A very similar work to
Chans et al. [9] was proposed by Parui and Mittal [44] that
also encoded prominent edge segments in the images. In their
work, the salient contours were extracted and decomposed
into straight line-like segments which were again formed
into a set of long chains. Each chain was encoded by the
length ratios and the joint angles of the adjacent segments,
and this representation is invariant to translation, scale and
rotation. Finally, a fast dynamic programming-based approx-
imate substring matching algorithm was used to match two
chains. The similarity between a sketch and an image was
accumulated from the scores of the matched chain pairs.
And a geometric consistency check for the matched chain
pairs was further performed to enforce the holistic structure
similarity between the sketch and the image. A hierarchical
k-medoids tree was used to index the images. This struc-
ture highly resembles the k-means tree, and was adopted
to cope with the variable lengths of the chains through k-
medoids clustering [43]. In each leaf cluster, the images have
at least one chain close to themedoid chain of that cluster. The
extracted salient contours are estimated to have a high chance
of belonging to an object boundary, and thus could address
the content imbalance and the simplification. The process of
forming the chains has the regularization effect and could
tackle the random distortion. However, the straight line-like
segments used to compose the chains and the simple repre-
sentation employed for the chains have lost a considerable
amount of local shape information, so the visual similarity
between the query sketch and the retrieved images may not
be ideal.

Summary The third era started from 2009 and lasted to 2014.
Its most significant symbols are the evaluation of various
features and the effort ofworking toward large-scale datasets.
Gallery indexingwas proposed for thefirst time in this era and
many different indexing schemes were explored by different
works. In addition, two subaspects of the abstraction gap
were addressed in the third era.

– For the randomdistortion, several strategies existed in the
third era. The grid division scheme of the features [17–
19,27–29] could tolerate moderate random distortion
in each cell, while the BOW representation [19,27–29]
could further merge the similarly distorted stroke vari-
ants. The gradient field [27,28] and the Hit map [7] both
have big potential to address the random distortion since
the widths of the sketch strokes are essentially expanded
to tolerate the distortions. Finally, the regulated chains
(salient edge segments) [44] were used again like in the
second era for the random distortion.

– For the simplification, two strategies were inherited from
the second era. The first one which was also the most
common one [19,27–29] still used the thresholds of the
edge detection to control the quantity of the edges. And
the second one [44] achieved simplification through the
regulated salient edge segments extraction process.

The third era had completed the general SBIR framework as:

– Population phase: (1) object localization (for sketching-
the-object type), (2) edge extraction, (3) feature extrac-
tion, (4) gallery indexing;

– Retrieval phase: (1) feature extraction, (2) similarity com-
parison, (3) gallery displaying.

2.4 Fourth era

The emerging fourth era has begun since 2014. In the SBIR
literature introduced so far, the sketches’ superior power
to distinguish intra-category shape variations as opposed to
texts was generally ignored except in [13] (Eitz et al. [19]
also considered this yet did not focus on the intra-category
scenario). However, in [13], Del Bimbo and Pala just exper-
imented with 3 sketch bottle variations without explicitly
discussing this particular ability of the sketches. Li et al. [36]
first noticed this and raised the concept of “fine-grained”
SBIR to highlight the value of using sketches to distinguish
intra-category object variations. And the concentration on
fine-grained SBIR and the sketching-the-object type have
hereafter become the symbols of the fourth era.

To perform reliable object localization and address the
abstraction gap, the deformable part-based model (DPM)
[22] was adopted by Li et al. The DPM served as both an
object detector and a representation to bridge the abstraction
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gap. Each DPM had a two-layer structure: the root and the
parts. While its root layer was exploited to encode the holis-
tic pose and address the simplification (as it was computed
in lower resolution), its part layer was utilized to encode the
configuration and the appearances of the parts. The HOG
feature employed in DPM offered their method the ability to
copewith local random distortions. The detection function of
DPM made their method invariant on translation and scale,
and capable to address content imbalance. However, since
theywere usingDPMswithout part supervision, the obtained
parts varied a bit in different domains (sketch parts were not
totally the same as the image parts). Graph matching was
employed to solve the part correspondences between DPMs
from two domains, and a similarity metric that considered
both the root and the parts was used for similarity compar-
ison. In the experiments, Li et al. defined the fine-grained
similarity between a sketch and an image as 4 aspects: view-
point, zoom, configuration and body feature. A cross-domain
dataset that was merged from the TU-Berlin dataset and the
very challenging PASCALVOC [20] image dataset was used
for evaluation. Sketch–image pairs from a small portion of
that dataset were manually annotated for fine-grained simi-
larity based on the 4 aspects. Similar to Del Bimbo and Pala
[13] and Eitz et al. [19], they also quantitatively evaluated
sketches’ ability to rank similar images, yet with a scoring
scheme.

Two more works [47,58] have adopted the fine-grained
SBIR concept, and both of them have used deep learn-
ing techniques (specifically triplet network [57]). A very
strict fine-grained similarity definition that assumes for each
sketch there is only one correct image instance has been
utilized by both of them, and it has been named as fine-
grained instance-level retrieval. Yu et al. [58] have proposed
a dataset containing 716 sketch–image pairs from 2 cate-
gories (shoes and chairs) and 32,000 annotated triplets. In
their triplet network architecture, all the 3 branches have
shared the same set of weights and each branch has been
initialized into a state-of-the-art sketch recognition network
improved from Sketch-a-Net [59]. Consecutively, a pre-
training on automatic generated triplets and a fine-tuning
on human annotated triplets have been conducted to train
the final triplet model. They have compared their model to
Siamese network with contrastive loss [10] and RankSVM
[30] with multiple features and have proved their proposed
triplet architecture worked best. In the convolutional neural
network (CNN) [34], the convolutional layers and max-
pooling layers together can cope with random distortion and
translation, and the max-pooling layers can also address the
simplification by offering abstraction for the objects in the
pooling. Sangkloy et al. [47] have done a very similar work
concurrently,which yet still has had somedifferenceswithYu
et al. [58]. Firstly, they have proposed a much larger dataset
that contained 75,471 sketches and 12,500 images from 125

categories (with 100 images for each category and more than
5 sketches corresponding to each image). Secondly, the clas-
sification loss has been combined with triplet ranking loss in
their optimum setting. Thirdly, while Yu et al. have been
employing a customized version of AlexNet architecture
[34] called Sketch-a-Net [59] specifically tailed for sketches,
Sangkloy et al.’s best model has been directly employing a
standard GoogLeNet architecture [54] which is much deeper
than AlexNet. Fourthly, Sangkloy et al. have generated each
triplet with a sketch, a matching image and a non-matching
image from ground truth, but Yu et al. have used both triplets
automatically generated according to feature distances and
triplets manually annotated by human subjects. Therefore,
Sangkloy et al.’s triplets overall are more faithful while Yu et
al.’s triplets contains more fine-grained supervision. Excep-
tionally in the literature, Sangkloy et al. has not employed any
explicit edge detector, as they have argued that the detected
edges might not represent the human sketching results well
and the deep networks could learn such a transformation from
data. Although this is an interesting hypothesis, more sup-
porting experiments are needed to verify it.

Very recently, Song et al. [53] have introduced attributes
into SBIR, which is an alternative path to cross the abstrac-
tion gap from a semantic perspective. By integrating the
CNN model, they have proposed a multitask ranking net-
work that updates the triplet network constructed in [58].
Apart from the triplet ranking main task, two new tasks—
attribute prediction and attribute ranking—have been added
to accomplish the final triplet ranking. The three tasks share
the same triplet network and contribute together to the over-
all loss function. An automatic triplet generation strategy that
utilizes attribute similarity and ImageNet CNN features has
also been proposed to ease the burden of massive triplets
generation.

Summary The most profound symbols of the fourth era are
the fine-grained SBIR and the exploitation of deep learn-
ing. The fine-grained SBIR emphasizes on distinguishing
intra-category variations, which is a very valuable scenario
especially in commercial products search. The fourth era
again has mainly tackled two subaspects of the abstraction
gap, but also has offered a semantic approach to cross the
gap which is using attributes.

– For the random distortion, Li et al. [36] still relied on
the grid division scheme of the HOG feature. But deep
learning-based works [47,58] have addressed the ran-
dom distortion in the convolution and the max-pooling,
as abstraction is involved in these processes.

– For the simplification, DPM offers a layer at lower reso-
lution (root) to reflect abstraction. And the max-pooling
layers abstract the object multiple times in the feature
extraction process.
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Table 1 The analysis of the strategies of addressing sketch–image differences, the invariances on translation, scale and rotation, and the type of
SBIR for each reviewed work

Year Author Visual cue
imbalance

Content
imbalance

Abstraction gap Trans. Scale Rot. Type

Dist. Simp. Disp.

1992 Hirata and Kato [26] ([31]) � � � S

1994 Faloutsos et al. [21] ([42]) � � � S

1997 Del Bimbo and Pala [13] ([14,15]) � � � � � � O

1997 Chans et al. [9] � � � � S

2000 Rajendran and Chang [45] � � � � � S

2005 Chalechale et al. [8] � � � � � � S

2010 Eitz et al. [18] ([17]) � � � O,S

2011 Eitz et al. [19] � � � � S

2011 Hu et al. [29] � � � � � O

2011 Cao et al. [7] � � S

2013 Hu and Collomosse [28] ([27]) � � � � S

2014 Parui and Mittal [44] � � � � � � � O

2014 Li et al. [36] � � � � � � O

2016 Yu et al. [58] � � � � O

2016 Sangkloy et al. [47] � � � O

2016 Song et al. [53] � � � � O

No. 16 15 5 15 11 1 14 5 3 S(9),O(8)

If the reviewed work is able to address one aspect, the corresponding cell is checked. The eras are separated by double horizontal lines. The
abbreviations used in the table are: translation (Trans.), rotation (Rot.), random distortion (Dist.), simplification (Simp.), unrealistic disproportion
(Disp.), sketching-the-scene (S) and sketching-the-object (O). The works stated in parentheses are the precedent or succedent works that have
considerable content overlap

3 Summary on the strategies of addressing
the sketch–image differences

After introducing the history of SBIR, we revisit one of our
main focuses. Addressing sketch–image differences is the
main objective for SBIR. In this section, we go through each
aspect of the sketch–image differences and summarize to
what extent each aspect is addressed throughout the litera-
ture. The invariances on translation, scale and rotation and
the types of SBIR are also analyzed. The complete summary
is visualized in Table 1, and we discuss each aspect in the
sections below. In Table 1, we treat papers describing the
same work but differing in versions (conference or journal)
as one work, so the reviewed 22 papers are categorized into
16 works. This categorization will be used from now on. In
addition, the discussions in this section are from a statisti-
cal perspective and the corresponding technical perspective
discussions can be found in Sect. 4.

3.1 Visual cue imbalance

As it is quite intuitive that similar representations will be
easier to compare with, out of 16 works, 15 works have
addressed the visual cue imbalance, mostly with edge detec-

tion. Exceptionally, Sangkloy et al. [47] argued that edge
detection is not necessary for deep learning, yet more com-
paring experiments are desired to verify the point. In general,
we can conclude that it is beneficial to address the visual cue
imbalance with edge detection. More technical discussion
can be found in Sect. 4.2.

3.2 Content imbalance

For the content imbalance, just a few works (5 out of 16)
that studied the sketching-the-object type have considered
to address it with either manual [13,17,18] or automatic
approaches [29,36,44]. We have to admit that whether
to address content imbalance depends on the concrete
application and dataset. If the application is sketching-the-
object type and the dataset possesses obviously cluttered
background, it is then quite necessary to address the con-
tent imbalance. Both [18,29] have shown improvement by
addressing the content imbalance with comparing experi-
ments and they both include sketching-the-object type and
employ a dataset with cluttered background. More technical
discussion can be found in Sect. 4.1.
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3.3 Abstraction gap

For the abstraction gap, the random distortion is the best
addressed (15 out of 16) subaspect, since it is intrinsically
edge distortion and many techniques in the field can tolerate
it. The different ways that different feature types use to tackle
the random distortion are summarized in detail in Sect. 4.3.

Simplification is also widely addressed (11 out of 16) by
controlling the edge amount and/or the abstraction level of
the edge maps. The detailed discussions regarding different
features on this subaspect are also included in Sect. 4.3.

Only the unrealistic disproportion is addressed by a single
instance [13–15] with a costly deformation process (elastic
matching). The unrealistic disproportion is the most chal-
lenging among the three subaspects in nature due to the
high-level human perception involved. Probably, only part
analysis-based approaches could address it but the computa-
tional cost would then be higher than holistic approaches.

Alternatively, semantic interpretations of the visual infor-
mation, i.e., attributes, can be used to cross the abstraction
gap, like being demonstrated in [53].

3.4 Translation, rotation and scaling

For the invariances on different properties, the translation
invariance has received the most attention (14 out of 16).
The scale invariance normally comes with an extra cost and
users would tend to draw objects at the proper scale. It is
only addressed when it is handy for the employed technique
(5 out of 16). As to the rotation invariance, the SBIR system’s
designing goalwouldmatter, i.e., whether it is desired to have
rotation invariance. From the literature, it would be clear to
see that most of the works (13 out of 16) chose to consider
the rotation as a kind of information that the sketches convey
and thus not to address it.

3.5 SBIR types

For the SBIR type, slightly more works (9 vs. 8) studied
the sketching-the-scene type while most recent works have
focused on the sketching-the-object type due to its commer-
cial value.

3.6 Conclusions

When designing an SBIR system, clearer designing goals
would guide to a more effective system. The aspects listed in
this section are the ones we highly recommend the authors to
consider. Among them, we recommend to consider the SBIR
type first, as it will decide if it is necessary to address con-
tent imbalance. Anyhow, from the history review, we can
see sketching-the-object type is becoming more and more
important, since commercial product search is estimated to

be a good scenario to apply SBIR. Among all the aspects,
visual cue imbalance, content imbalance, random distor-
tion and simplification of the abstraction gap, and invariance
on translation are the most important ones to involve and
solve with existing techniques. Invariances on scale and rota-
tion are relatively less important and depend on the specific
scenario to choose the coping strategies. Unrealistic dispro-
portion is very challenging to solve and would desire future
exploration.

4 Summary of the general SBIR framework

The general SBIR framework is illustrated in Fig. 2. As can
be seen, the whole framework is divided into the population
phase for gallery preparation and the retrieval phase. Two
modules are optional: the object localization module and the
gallery indexing module. This section summarizes the tech-
nologies involved in each module through the eras.

4.1 Object localization

Object localization is an optional module in the population
phase. It is very necessary for the sketching-the-object type
and for addressing the content imbalance. Initiated in the
second era and proliferating in the third era, both manual
[13–15] and automatic [17,18,29,36,44] approaches hadbeen
applied for this module. Manually drawn bounding boxes
[13–15] are very expensive to obtain and thus are hard to
apply to real-life applications. Sketch specific masks [17,18]
are easy to scale up, but are not so accurate, since the salient
object in the image may not be at the same location as in the
sketch. On the other hand, hierarchical segmentation [29],
prominent edge extraction [44] and object detection [36] are
more accurate methods which can more reliably extract the
main object of the image out. To scale up, any automatic
saliency detectionmethod can be used for thismodule. Given
the large amount of images usually present in the gallery, this
module is time consuming in terms of computation. There-
fore, it is natural to treat it as an offline procedure applied
before the online retrieval.

4.2 Edge extraction

Edge extraction is the mandatory module for addressing the
visual cue imbalance. It is also one of the strategies for
addressing the simplification subaspect of the abstraction
gap. The common techniques for edge extraction are the
popular edge detectors like Canny [6] and Sobel [52]. The
thresholds in the edge detectors are usually used to control
the amount of the edges and thus address the simplifica-
tion subaspect. Since sketches are generally composed of
strokes which are essentially edges, it is intuitive to compare
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Fig. 2 The general SBIR
framework. The numbers in the
right-top corner indicate in
which era the module was
proposed and the boxes with
dashed boundaries indicate
optional modules
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edge maps of the images with sketches. Thus, this module is
adopted by almost all the works in the literature.

4.3 Feature extraction and similarity comparison

Feature extraction is the mandatory module for both the pop-
ulation phase and the retrieval phase. It encodes the sketches
and the feature maps into representations which are efficient
for similarity comparison. During the encoding procedure, it
has the potential to address the random distortion and sim-
plification subaspects of the abstraction gap.

This section summarizes the features used in the literature
and analyzes their characteristics.We divide the features into
4 types according to their similar feature extraction proce-
dure as : pixel-based, contour-based, histograms and deep
features. We summarize each type as below and list the type
of feature eachwork had employed in Table 2. (More detailed
description for eachwork can be found in Sect. 2.)Also, since
similarity comparison is closely related to each feature type,
we also summarize the similarity comparison methods here
together with each feature type and list them in Table 3. The
4 types of features are :

– Pixel-based There is no feature extraction step for the
pixel-based features where raw pixels are used directly
for similarity comparison. The similarity comparison
is directly accumulating the pixel value differences. In
general, this type of feature is quite rigid and has low tol-

erance to random distortion and translation. Apart from
the first era, few works have adopted this type of feature.

– Contour-based The contour-based features try to extract,
regulate and encode the salient edge segments of the
objects. The contour-based similarity comparison will
first find matched segment pairs across two objects, and
then accumulate each pair’s similarity score to calculate
the overall similarity between two objects. The similar-
ity metric between a pair of segments highly depends on
the specific representation of the segments. For exam-
ple, in Chans et al. [9], first degree implicit polynomials
(lines)were used as representations. Therefore, the length
and the angles of inclination were used for similarity
comparison. The contour-based features can deal with
random distortion and simplification in the salient seg-
ments extraction, but the major drawbacks for this type
of features are the high computational cost and the loss of
object details. Therefore, only a pair of works have used
this type of feature.

– Histograms Histogram-based features render some spe-
cific aspect(s) of the statistics of the image into a
histogram, and use it as the representation for the image.
Every image has a histogram representation of the same
length. Therefore, by employing metrics for the vectors
of the same length, this representation is very efficient
for comparing the similarity between different images.
Usually, BOW representation is employed together with
histogram features for more efficient computation. Sev-
eral distance metrics can be used for similarity compari-
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Table 3 The summary of
similarity comparison metrics
for different feature types

Feature type Similarity metrics

Pixel-based Accumulated pixel value differences

Contour-based Accumulated scores of the matched segment pairs

Histograms City block, cosine, Chi-square and histogram intersection distances

Deep features Euclidean distance

son of histograms and a good demonstration for this can
be found in Hu and Collomosse [28], where city block,
cosine, Chi-square and histogram intersection distances
are thoroughly compared. The histogram features can tol-
erate random distortion due to the grid division scheme in
feature extraction. When combined with BOW represen-
tation, translation is also tolerated. Due to their efficacy
and efficiency, they aremost widely used in the literature.

– Deep featuresDeep features also have a fixed length (nor-
mally the output of the last feature layer is used) and are
easy to compare with each other, e.g., with Euclidean
distance [58]. The convolutional layers and max-pooling
layers can handle random distortion and translation by
design and themax-pooling layers can copewith the sim-
plification as well. But CNN needs huge amount of data
to train due to the large set of parameters in it, and this
often brings a challenge to the sketch field as still limited
quantities of sketches are available.

Table 2 lists the type of feature employed by each work.
For the histograms type and deep features type, we also list
the exact feature(s)/network architectures for comparison.
For the other two types, we do not list the exact details, as
the features in them are generally pixels or lines. Through the
table, we can observe that it started from the pixel-based fea-
tures and turned majorly into histogram features, with only
a pair of works employing contour-based features. Recently
the trend has already begun to favor the deep features. Given
limited computational resources, histogram features are the
best solution so far, since they do not ask for large amount of
training data and do not need good GPU for efficient com-
putation. For the deep features, current studies [47,53,58]
have generally focused on utilizing or combining existing
advanced deep architectures yet neglected the study on con-
volutional neural network’s ability to address the abstraction
gap. Future work on designing specific deep architectures
(choosing the number of layers, setting the filters’ sizes
or introducing other novel network components), aiming at
addressing the abstraction gap, is highly desired.

4.4 Gallery indexing

This section summarizes the indexing schemes employed
in the literature and discusses about what kind of indexing
scheme is desirable for SBIR.

The indexing schemes were mostly explored in the third
era and can be categorized into 3 major types: hierarchical
clusters (k-means tree and k-medoids tree) [17,18], k-d tree
[28] and inverted index (including using both visual words
and edgels for entries) [7,19]. All of these schemes can reach
sub-linear efficiency. Among these schemes, the usage of k-d
tree and inverted index is quite standard and does not reflect
the focus of SBIR, i.e., object shapes. But the hierarchical
clusters schemeorganizes the imageswith similar shapes into
clusters. This behavior could offer more coherent searching
results and thus brings special interest into SBIR. Currently,
indexing schemes are not considered by all theworks except a
fewmentioned above.Yet an image gallerywell organized by
shape similarity is beneficial for both accuracy and efficiency.

4.5 Gallery displaying

Gallery displayingmodule displays the retrieval results to the
users. The focus of this module is to offer pleasant viewing
experience to the users. So normally, the layout of images on
each page, the zoom-in functionality and the image launching
speed are the key points of pay attention to.

4.6 Conclusions

As we can see, different modules have different abilities on
achieving the SBIR objectives. A complete systemwith each
module well tuned normally would be more effective than
just focusing on one module. Therefore, apart from keeping
the SBIR objectives in mind, it is also highly recommended
to keep all the modules of the general SBIR framework in
mind and put effort onto each of them.

5 Summary on datasets and evaluation
metrics

To evaluate a SBIR system’s performance, the dataset and
evaluation metric are quite essential. Here, we look through
the existing datasets and evaluation metrics to find out what
kinds of datasets and evaluations are more suitable for SBIR.
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Table 4 The comparison of the datasets

Year Publication Sketch no. Image no. Sketch type

1992 Hirata and Kato [26]([31]) 18 205 –

1994 Faloutsos et al. [21]([42]) 1 1000 –

1997 Del Bimbo et al. [13] 5 100 –

1997 Chans et al. [9] 112 137 Observed sketches and memory sketches*1

2000 Rajendran and Chang [45] – 5000 –

2005 Chalechale et al. [8] 400 4000 –

2010 Eitz et al. [18] 86 1.5M Traced sketches*2 and memory sketches

2010 Hu et al. [27] ([29]) (avail.) (i)25*3 (ii)7 (i)160 (ii)383 –

2011 Cao et al. [7] 132 2.1M Memory sketches

2011 Eitz et al. [19] (avail.) 31 1240 and 100,000*4 Imaginary sketches*5 and traced sketches

2013 Hu et al. [28] (avail.) 330 15,000 Memory sketches

2014 Parui and Mittal [44] (i)175 (ii)7 (i)1.2M (ii)383 –

2014 Li et al. [36] (avail.) 84 840 –

2016 Yu et al. [58] (avail.) 716 716 Memory sketches

2016 Sangkloy et al. [47] (avail.) 75,471 12,500 Memory sketches

The available (avail.) datasets are labeled out. If the cell is empty, it means that no reliable source can be identified in the paper
*1 Observed sketches are drawn while observing the original images, and memory sketches are drawn after careful observation and then without
images
*2 Traced sketches are generated by tracing major contours on top of the images
*3 Two datasets were employed
*4 Each sketch has 40 corresponding images and there are 10,000 distractor images
*5 Imaginary sketches are drawn entirely without images but with imagination

5.1 Datasets

This section lists the datasets employed in the literature and
tries to recommend the suitable benchmarks and describe the
desired characteristics that could be considered when gener-
ating the future new datasets. A comprehensive summary
of the datasets is offered in Table 4. From Table 4, we can
observe:

– The amount of the images in the gallery was increasing
and reached the peak in the third era, from hundreds to
thousands until millions. Yet it dropped back dramati-
cally in the 4th era, as people’s attention started to focus
on fine-grained differences. The amount of the sketches
had kept its moderate scale until the 4th era, when the
recent works [47,58] started to collect more and more
sketches to train the deep networks. Another reason for
the increase of the number of sketches is the popularity of
some crowdsourcing Internet marketplaces, like Amazon
Mechanical Turk (AMT), which make the generation of
hundreds of thousands of sketches manageable.

– The sketches can be generatedwhile observing (observed
sketches), by tracing (traced sketches), from mem-
ory (memory sketches) or by imagination (imaginary
sketches). Among these types of sketch generation, the
memory sketch is considered the closest type to the real
application scenario (i.e., people are trying to search

some vague memories with sketches) and has received
the most research attentions [7,9,18,28,47,58].

For the benchmarking purpose, 3 recently proposed
datasets [36,47,58] are recommended to refer to. They all
focus on the fine-grained SBIR concept and quite challeng-
ing. Higher performances on them are appreciated. As for
designing new SBIR datasets, it would be valuable to hold
on the fine-grained concept as it has highlighted the pain
point of SBIR as an industrial application : using sketches to
extract the shape details and other means like texts to retrieve
category. The major challenge for collecting a fine-grained
SBIR dataset is the massive supervision needed to rate the
similarity between each sketch–image pair. All of Li et al.
[36], Yu et al. [58] and Sangkloy et al. [47] have offered
different strategies which are good initiatives yet still have
limitations. How to obtain this kind of supervision at large
scale and with good quality is the aspect worth improving.

5.2 Sketch–image relevance definitions

Before discussing about evaluation metrics, one thing needs
to be clarified, that is how to define an image is relevant to a
query sketch. We name it sketch–image relevance definition.
In the literature, there are 3 types of relevance definitions:
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Table 5 The comparison of several evaluation metrics

Year Publications Evaluation metric Type Relevance

1992 Hirata and Kato [26] (Kato et al. [31]) Hit rate at K*1 (named recall ratio in the papers) 1 S

1994 Faloutsos et al. [21] AVRR, IAVRR*2 3 M

1997 Del Bimbo and Pala [13] The correlation between human rankings and
algorithm rankings

4 M

1997 Chans et al. [9] The rank of each reference image 3 S

2005 Chalechale et al. [8] ANMRR*3 3 M

2010 Eitz et al. [18] Median retrieval rank of the retrieved reference
image over multiple queries

3 S

2010 Hu et al. [27] ([28,29]) Average precision (AP) 5 C

2011 Cao et al. [7] Hit rate at K, precision at K*4 1,2 S,M

2011 Eitz et al. [19] Kendall’s tau*5 4 M

2014 Parui and Mittal [44] Precision at K 2 C

2014 Li et al. [36] Summed similarity scores 4 M

2016 Yu et al. [58] Hit rate at K, Triplet ranking*6 1,4 S,M

2016 Sangkloy et al. [47] Hit rate at K 1 S

2016 Song et al. [53] Hit rate at K, Triplet ranking 1,4 S,M

For the ‘Relevance’ column, ‘S’ stands for single reference image, ‘M’ for multiple reference images and ‘C’ for category relevance
*1 Over N queries, the portion that has retrieved the reference image among top K results
*2 AVRR: the average rank of all relevant, displayed images; IAVRR: the ideal AVRR when all the relevant images are ranked on the top
*3 ANMRR: the mean of the normalized average rank of all relevant images, and it is the mean of multiple queries
*4 Among the top K results, the portion that is relevant to the query
*5 Kendall’s tau is a measure for rank correlation [32]
*6 The percentage of the correctly ranked triplets in the retrieved list. It is an evaluation for multiple objects ranking ability. For more detailed
explanation please refer to [58]

– Single reference image: only one relevant image for each
query. (7 works)

– Multiple reference images: multiple relevant images for
each query. (8 works)

– Category relevance: the images of the same category are
counted as relevant for each query. (2 works)

It can be clearly seen that the single reference image and
multiple reference images are the most popular definitions
for sketch–image relevance. Normally, the single reference
image definition comes with the specific image search which
assumes that the user wants to search one special instance of
image in his/her mind. The multiple reference images defi-
nition comes with the general image search which assumes
that the user just has a concept in his/her mind and wants
to retrieve as many similar images as possible. Ideally, both
functionalities (specific and general image search) could be
investigated, since the users would be interested in both func-
tionalities in different situations.

5.3 Evaluationmetrics

Coming with the proposed various datasets, diverse evalua-
tion metrics are also adopted. Continuing the enumeration,
here we list the different evaluation metrics used in the litera-
ture in Table 5. The qualitative evaluations are not referred, as

they are not informative for the comparison of different sys-
tems. Also in the literature, for the same evaluation scheme,
different works may name it differently.We unify the notions
to make the summary clearer.

Overall, there are 5 basic formats of evaluation metrics
existing in Table 5 (explanations are available in the table
footnotes):

– Hit rate at K. (5 works)
This metric looks at the single reference image among
the top K results. Over multiple queries, it is the portion
of the queries which have the reference image among the
top K results.

– Precision at K. (2 works)
This metric looks at multiple reference images among
the top K results. It is the portion of the reference images
among the top K results.

– The statistics of the ranks of the retrieved reference
images. (4 works)
Thismetric looks atmultiple reference images, but it does
not only focus on the top K results. Instead, it takes every
reference image’s rank into account. It can bemany types
of statistics of the reference images’ ranks, like mean and
median.

– The correlation between human rankings and algorithm
rankings. (5 works)
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This metric looks at multiple reference images. It com-
pares the human supervised rankings with algorithm
rankings. Human supervised ranks of images are needed
and thus it is labor-intensive.

– Average precision (AP). (1 work)
This metric looks at category relevance and multiple ref-
erence images. It is calculated from the precision and
recall curve of the retrieval result.

From the above list, hit rate at K, the statistics of the ranks
of the retrieved reference images and the correlation between
human rankings and algorithm rankings are the 3 most popu-
lar evaluation schemes. Among these 3 schemes, hit rate at k
is designed for single reference image, and the rest 2 are for
multiple reference images. The statistics of the ranks of the
retrieved reference images was mainly used in the first and
second eras, and its simplex nature makes it not capable to
reflect the relative rankings of the similar images, i.e., which
image ismore similar to the query sketch.On the contrary, the
correlation between human rankings and algorithm rankings
is designed for measuring the relative rankings of the similar
images and more ideal to evaluate the SBIR system’s fine-
grained ranking ability, but it usually requires large amount
of human rankings for evaluation. In general, we recommend
the researchers first to consider hit rate at K for single ref-
erence image evaluation and the correlation between human
rankings and algorithm rankings formultiple reference image
evaluation.

5.4 Benchmarks

For most of the works in the literature, they are evaluating
their method(s) on their own dataset. Just a few works have
presented a benchmark comparing with other works, yet still
in a small scope. We list all the available benchmarks in this
section.

In the first and second eras, Del Bimbo and Pala [13] had
a benchmark with its precedent works. Table 6 shows an
excerpt of it. There are 3 query sketches of different bottles,
22 relevant images of bottles and 100 images in total as the
gallery formed with other dissimilar shapes. Given such a

Table 6 Benchmark of the first and second eras

Ranking interval system 1–5 1–10 1–22 1–30 1–40

ETM [13] 5 10 21 22 22

QBIC [42] 4 7 11 12 14

QVE [26] 5 10 20 21 21

It uses precision at K measurement. The value of K is changed from 5
(1–5) to 40 (1–40). Each cell lists the number of relevant images among
the top K results. There are 22 relevant images among 100 gallery
images. In the paper [13], there are results of 3 query sketches. We list
the result of the first query here

Table 7 Benchmark on different features for SBIR

Descriptors Distance measures k mAP

GF-HOG Histogram intersection 3500 0.1222

HOG Chi-square 3000 0.1093

SIFT Chi-square 1000 0.0911

SSIM Chi-square 500 0.0957

ShapeContext Chi-square 3500 0.0814

Structure Tensor Chi-square 500 0.0798

‘k’ represents the best number of the visual words in the BOW repre-
sentation

Table 8 Benchmark on fine-grained SBIR

Sangkloy et al. [47] Li et al. [36] SP

Airplane 27.2 22 20.33

Bicycle 21.5 11.67 13.83

Car 15.8 18.83 14.5

Cat 13.8 12.17 7.67

Chair 21.7 20 20.33

Cow 19.8 19.67 14

Dog 21 9.5 6.83

Horse 23.2 31.67 7.33

Motorbike 13 22.5 9

Sheep 21 17.67 5

Average 19.8 18.57 11.88

SP is the abbreviation for spatial pyramid [35]
The best performance for each category are shown in bold

small scale gallery, the SBIR’s performance is quite satisfied
using the precision at K measurement.

In the third era, Eitz et al. [17–19] andHu et al. [27,28] had
both published some benchmarks on the similar sets of fea-
tures yet on their different datasets and experiment settings.
A representative table can be found in Table 7 (extracted
from [28]). It clearly states that HOG-based features, e.g.,
GF-HOG and HOG, outperform all the other handcrafted
features before the emergence of deep features. However, it
also states that on million level datasets SBIR’s performance
is not so good (generally low mAP values).

From the fourth era, fine-grained SBIR concept has been
raised and some new datasets have been published for this
purpose. One dataset that several works have been compared
on is proposed by Li et al. [36], and Table 8 shows a compar-
ison extracted from [47]. We can see that, for fine-grained
SBIR, the ability to rank the images of the same category
according to the query sketch is focused on. Also, deep fea-
tures have demonstrated their strength over the handcrafted
features.

Apart from the benchmarks, a few works have reported
their system efficiency in terms of retrieval time. They are
listed in Table 9. We can see that methods using histograms
[17,28] can generally finish within several seconds and can
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Table 9 The efficiency of
different works

Publications Dataset size Retrieval time Remarks

Chalechale et al. [8] 4000 7 s

Eitz et al. [17] 1.5M A few seconds ∼0.006 s with k-means tree indexing

Cao et al. [7] 2.1M ∼1 s With edgel indexing

Hu and Collomosse [28] 15k ∼2.5 s ∼0.015 s with k-d tree indexing

Parui and Mittal [50] 1.2M 1–5 s With k-medoids tree indexing

Yu et al. [58] ∼100 0.03 s

be further improved to several milliseconds with a proper
indexing scheme. Pixel-basedmethods [7] and contour-based
methods [50] are much slower yet can still satisfy real appli-
cations with indexing schemes. Deep features [58] have the
similar performance as histograms.

Additionally, we offer some suggestions given the avail-
able benchmarks and efficiency reports. Firstly, there is no
common benchmark used for most of the works, and we
promote the establishment of such a benchmark. Once estab-
lished, future works can compare with each other more
objectively. Secondly, the system efficiency is not well
reported. We also promote future works to report the sys-
tem efficiency together with the system accuracy.

6 Conclusions and future work

Looking through the history of SBIR, many interesting
works have published their different strategies for matching
sketches and images. However, concrete common objectives
and a complete methodology are not raised up to guide the
research on SBIR.As a result, the focuses of SBIR researches
are frequently shifted and different works are not easy to
benchmark together. In this survey, we try to fill in this
gap by defining detailed SBIR objectives and a complete
methodology covering all the technical aspects. After all the
discussions, we conclude as follows:

1. The common objectives are developing strategies of
addressing the sketch–imagedifferences, including visual
cue imbalance, content imbalance and abstraction gap
which is further divided into random distortion, sim-
plification and unrealistic disproportion. Edge detection
is good for solving the visual cue imbalance. Saliency
detection is useful for the content imbalance and would
better be done offline as preprocessing. The abstrac-
tion gap is the most challenging aspect and should be
treated as the core objective. Among the subaspects of
the abstraction gap, randomdistortion and simplification

have existing solutions but unrealistic distortion is quite
difficult to address. Semantic approach like attributes is
another path to go through the abstraction gap yet may
be less accurate in shape matching. Therefore, the most
important focus for the future works would be improv-
ing the ability to address the three subaspects of the
abstraction gap and in other works understanding human
abstraction better.

2. The complete methodology is the general SBIR frame-
work. Different modules of the SBIR framework have
their distinct usages and somemodules canwork together
to better solve some issues. For example, we can use the
gallery indexing to better organize the gallery into clus-
ters with similar shapes, and afterward feature extraction
and similarity comparison can find the similar clusters
first very efficiently and rank the images inside these clus-
ters according to the query. Nevertheless, only by using
all the modules wisely, could an optimal system be built.
So, it is recommended to focus on the framework rather
than one or two modules in research.

3. For the future research, fine-grained SBIR is the recom-
mended direction. In nowadays searching engines, texts
have already been very convenient to retrieve category
level information. It is the intra-category fine-grained
shape differences that are challenging to differentiate and
are a good place to apply SBIR’s advantage.

4. To evaluate the system, several public datasets are avail-
able as introduced in Sect. 5.1. For evaluating the
fine-grained differences, large amount of properly ranked
sketch–image pairs are important and hard to obtain.
Thus, it is a good problem to address. The correlation
between human rankings and algorithm rankings formul-
tiple reference image evaluation would be the important
metric for fine-grained evaluation.

Above all, we hope this effort has provided a clearer pic-
ture for the SBIR field, and we also hope it has brought more
consensuses and enough inspirations.
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