Machine Vision and Applications (2018) 29:1041-1068
https://doi.org/10.1007/500138-018-0951-x

ORIGINAL PAPER

@ CrossMark

Localization of 3D objects using model-constrained SLAM

Angelique Loesch'® - Steve Bourgeois' - Vincent Gay-Bellile! - Olivier Gomez' - Michel Dhome?

Received: 3 April 2017 / Revised: 6 June 2018 / Accepted: 6 June 2018 / Published online: 30 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Accurate and real-time camera localization relative to an object is needed for high-quality Augmented Reality applications.
However, static object tracking is not an easy task in an industrial context where objects may be textured or not, have sharp
edges or occluding contours, be relatively small or too large to be entirely observable from one point of view. This paper
presents a localization solution built on a keyframe-based SLAM algorithm. This solution only requires a video stream of
a 2D camera (color or grayscale) and the prior knowledge of a 3D mesh model of the object to localize (also named object
of interest in this document). The 3D model provides an absolute constraint that drastically reduces the SLAM drift. It is
based on 3D-oriented contour points called edgelets, dynamically extracted from the model using Analysis-by-Synthesis on
the graphics hardware. This model constraint is then expressed through two different formalisms in the SLAM optimization
process. The dynamic edgelet generation ensures the genericity of our tracking method, since it allows to localize polyhedral
and curved objects. The proposed solution is easy to deploy, requiring no manual intervention on the model, and runs in real
time on HD video streams. It is thus perfectly adapted for high-quality Augmented Reality experiences. Videos are available

as supplementary material.

Keywords Simultaneous localization and mapping - Constrained bundle adjustment - Occluding contours - Memory

consumption - Real time - Augmented Reality

1 Introduction

Applications such as quality control, automation of com-
plex tasks or maintenance support with Augmented Reality
(AR) could greatly benefit from visual tracking of 3D objects

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00138-018-0951-x) contains supplementary
material, which is available to authorized users.

B Angelique Loesch
angelique.loesch@cea.fr

Steve Bourgeois
steve.bourgeois @cea.fr

Vincent Gay-Bellile
vincent.gay-bellile @cea.fr

Olivier Gomez
olivier.gomez2 @cea.fr

Michel Dhome
michel.dhome @univ-bpclermont.fr

CEA, LIST, Laboratory of Vision and Content Engineering,
F-91191 Gif-sur-Yvette, France

Pascal Institute, Blaise Pascal University, Clermont-Ferrand,
France

[7]. However, this technology is underexploited due to the
difficulty of providing deployment easiness, localization
quality and genericity simultaneously. Most existing solu-
tions indeed involve a complex or an expensive deployment
of motion capture sensors, or require human supervision
to simplify the 3D model [33]. And finally, most tracking
solutions are restricted to textured or polyhedral objects to
achieved an accurate camera pose estimation [4,38].

Tracking any object is a challenging task due to the large
variety of object forms and appearances. Industrial objects
may indeed have sharp edges, or occluding contours that cor-
respond to non-static and viewpoint-dependent edges. They
may also be textured or textureless. Moreover, some applica-
tions require to take large amplitude motions as well as object
occlusions into account, tasks that are not always dealt with
common model-based tracking methods. These approaches
indeed exploit 3D features extracted from a 3D model, which
are matched with 2D features in the image of a video stream
[15]. However, the accuracy and robustness of the camera
localization depend on the visibility of the object as well as
on the motion of the camera.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-018-0951-x&domain=pdf
http://orcid.org/0000-0001-5427-3010
https://doi.org/10.1007/s00138-018-0951-x

1042

A.Loesch et al.

To better constrain the localization when the object is
static, recent solutions rely on environment features that are
reconstructed online, in addition to the model ones. These
approaches combine simultaneous localization and mapping
(SLAM) and model-based tracking solutions by using con-
straints from the 3D model of the object of interest. This
model can indeed be used to constrain the SLAM initializa-
tion [2] or its optimization process [23,31,35]. Constraining
SLAM algorithms with a 3D model results in a drift-free
localization. However, such approaches are not generic since
they are only adapted for textured or polyhedral objects. Fur-
thermore, using the 3D model to constrain the optimization
process may generate high memory consumption and limit
the optimization to a temporal window of few cameras.

In this paper, we propose a solution that fulfills the require-
ments concerning deployment easiness, localization quality
and genericity. This solution, based on a visual keyframe-
based constrained SLAM, only exploits a camera and a
geometric 3D model of the static object of interest. A classical
camera is indeed preferred over an RGBD sensor, since the
latter imposes limits on the volume, the reflectiveness or the
absorptiveness of the object, and the lighting conditions. A
geometric 3D model is also preferred over a textured model
since textures may hardly be considered as stable in time
(deterioration, marks, etc.) and may vary for one manufac-
tured object. Furthermore, textured 3D models are currently
not widely spread. Contrarily to previous methods, the pre-
sented approach does not need 3D model simplification to
bring out sharp edges. It deals with polyhedral and curved
objects by extracting sharp, occluding contours and silhou-
ette from a model rendered on GPU and is real time, accurate
and robust to occlusion or sudden motion.

2 Related work

Several visual localization methods exist in the state of the
art. This section focuses especially on approaches adapted to
object tracking like model-based tracker solutions that only
exploit the knowledge of the 3D object model and constrained
SLAM (C-SLAM) algorithms for which the camera evolves
in a partially unknown environment with the 3D model as
unique a priori.

2.1 Model-based tracking methods

Camera localization relative to an object of interest may be
achieved thanks to model-based tracking methods. These
solutions rely on a two-step process. First, 3D features pro-
vided by a 3D model of the object of interest are matched
with their corresponding 2D features in the image. Then, the
camera pose that minimizes the re-projection of these 3D fea-
tures with respect to their 2D counterparts is estimated. With

@ Springer

N Edgelet projection
into the frame

~

Fig. 1 Edgelet representation on the 3D model of a french monument
called the Geode. Edgelets (in red) correspond to 3D- oriented surface
points that may result in contour points (in blue) in the 2D image. They
have the 3D orientation of the sharp edge or the occluding contour to
which they belong (blue arrows) (color figure online)

a textureless 3D model, these 3D features are 3D-oriented
surface points on the model, which may result in contour
points in the image. These surface points corresponding to
infinitesimal edges are 3D edge points with the orientation
of the model edge to which they belong as presented in Fig.
1. We refer to them as edgelets throughout the paper.

The main difficulties of model-based tracking using such
features are encountered during the 3D/2D matching step.
Visual features such as 2D contour points are indeed not
adapted to local discrimination (difficulty of distinguishing
an edge point from another). To constrain the 3D/2D match-
ing, the camera motion has to be small between two frames
which limits the solution robustness against fast and sudden
displacements. Besides, edgelets may depend on the cam-
era point of view (silhouette, auto-occluding contours, etc.)
and cannot be extracted from sharp edges of the model as
edgelets of the Geode’s dome in Fig. 1. In early works [4,39],
to bypass these issues, some methods have only focused on
polyhedral object tracking or limited the camera motion to
small displacements.

However, polyhedral object tracking solutions are not
generic approaches since they cannot deal with curved
objects. When the object of interest is indeed polyhedral,
surface points that generate contours in the image mostly
come from sharp edges of the model. These edgelets are
thus independent of the camera point of view and can be
precomputed. They are identified by a simple threshold on
the dihedral angle between the model facets. However, the
dihedral angle criteria are not relevant when dealing with
manufactured objects with sharp edges rounded into fillets.
These criteria can be applied if the camera/object distance is
long enough to visualize fillets as sharp edges. However, if

Localization of 3D objects using model-constrained SLAM

1043

the camera is close to the object, no edgelet will be detected.
A simplification of object models may resolve this problem
by transforming round edges into sharp edges and allowing
to be independent with respect to the observation distance,
but the simplification degree generally needs to be adjusted
by an expert.

Besides, experts are often needed to manipulate the sen-
sor during the object tracking in order to control the camera
motion. Small amplitude displacements between images are
indeed needed to facilitate 3D/2D matching between edgelets
and 2D contour points and to maintain good robustness and
stability. The 3D/2D matching step is usually performed
by projecting each edgelet extracted from the model and
by searching locally around this projection for a 2D image
contour with a similar orientation. Without prediction, this
projection is performed on the current image with the pose
estimated on the previous one. Nevertheless, a small research
area is crucial for low discriminant features such as edges to
avoid matching errors and to keep real-time performances.

Among the state of the art, we can distinguish two families
of approaches that try to tackle these model-based tracking
limitations. The first family tries to improve the genericity,
while the other one tries to improve the robustness to large
displacements and sudden motions.

The first family of approaches try to improve the genericity
of the tracking solution by considering occluding contours in
addition to sharp edges. Some model-based trackers locally
approximate the 3D model surface using parametric mod-
els based on curvature radius [18] or quadrics [28]. These
parameterizations have the advantage of being differentiable
and thus easily integrable in a cost function to optimize.
However, for very complex objects, the number of quadrics
or curvature radii may quickly increase and complicate the
model parametrization. To enable computationally tractable
tracking, the number of quadrics or curvature radii has to be
limited which results in an approximation of object surfaces
for complex objects and thus a less accurate tracking. Fur-
thermore, these parametric models do not take into account
the observation distance. For example, the curvature radius is
computed from the mesh geometry and may not correspond
to the object curvature in the image that is relative to the
camera/object distance. The curvature can be smooth if the
object of interest is far from the camera, but more complex
if the observation distance is small and more details appear.

Other solutions exploit Analysis-by-Synthesis to identify
the edgelets of an object model, with the use of normal
and depth maps from synthetic model renders [27,29,41].
These methods are based on non photo-realistic renders to
be independent of illumination conditions [10]. They have
the advantage of being efficient on any object, since they
consider the observation distance and exploit the model with-
out simplification. However, the resulting edgelets are only
locally valid, since they are not parametrized according to

the object surface. Thus, they have to be re-estimated at each
image of the sequence. This process is time-consuming due
to the data transfer between GPU and CPU, especially when
the geometric model has many faces or when the image has
a high resolution.

Other methods aim to lift the low amplitude motion con-
straint, in order to increase the tracking robustness to sudden
motion. A first solution is to use particle filters [13] to
eliminate this motion constraint by generating an important
number of hypotheses for the current pose. Each of them
is weighted based on the re-projection error between sharp
edges and their closest edge in the image. This approach
offers a robust tracking solution with respect to fast motions
and occlusions. However, its computing cost is not compat-
ible with a real-time execution for complex objects.

Another strategy to increase the displacement between
two frames is to predict the camera pose on the current
image. One possibility is to use an external sensor such as an
IMU [1]. It is also possible to exploit image features that are
more discriminant than edgelets, e.g., keypoints, to compute
a first estimation of the camera displacement between the
previous image and the current one. This estimation is then
refined with the model edges. In [29,38], keypoints extracted
on the objects of interest are used. Since these approaches
require a textured object that is always visible in the image
(not occluded), an alternative solution is to exploit the object
environment by extracting keypoints on the whole image as
proposed by constrained SLAM solutions.

2.2 Constrained SLAM solutions

Model-based tracking methods only exploit the 2D contour
points of the object in the image. However, in a static scene,
other features from the environment can provide additional
constraints. SLAM algorithms are based on these features to
estimate the camera pose but suffer from drift of the scale
factor and do not suit to object tracking. Constrained SLAM
approaches use both multi-view geometry constraints from
the scene and geometric constraints imposed by the 3D model
of the object to localize the camera according to the object of
interest. In this section, a first part describes keyframe-based
SLAM methods that only rely on the multi-view geome-
try constraints to estimate the camera pose. A second part
presents these solutions whose the optimization process is
constrained to the object 3D model in order to not suffer
from drift of the scale factor.

2.2.1 Keyframe-based SLAM
Keyframe-based SLAM algorithms [14,24] are iterative
processes that reconstruct online 3D primitives from the

environment with respect to 2D observations and estimate
the camera pose for each image thanks to 2D/3D correspon-

@ Springer

1044

A.Loesch et al.

dences between the previously reconstructed primitives and
those extracted from the images. The reconstructed map is
improved with new primitives at each keyframe. Since such
incremental approach is prone to error accumulation, a possi-
ble solution is to use a nonlinear optimization process called
bundle adjustment. It locally refines camera poses chosen
on a temporal or spatial window and 3D feature points by
minimizing their re-projection errors [37]. Standard SLAM
algorithms [14,24] are often used to estimate the localiza-
tion of a camera in an unknown environment. However, they
are not well adapted for object tracking. With monocular
solutions, camera poses are indeed expressed in an arbitrary
coordinate frame and with an arbitrary scale that is subject
to drift over time. The use of the 3D model as a constraint
has then been studied. It can indeed be used to constrain the
SLAM initialization [2] by providing a pose obtained thanks
to a model-based tracker. Nevertheless, although the coordi-
nate frame is specified and an initial scale is provided to the
SLAM with the model constraint, this solution is still prone
to error accumulation when the camera is getting away from
the initialization pose. Thus, the idea to use constrained bun-
dle adjustments that minimize simultaneously the multi-view
geometry and a constraint term based on the 3D model has
been developed.

2.2.2 Constrained bundle adjustment

Since standard SLAM algorithms are not appropriate for
object tracking, C-SLAM methods propose to include con-
straints provided by the model of the static object of interest in
their optimization process. This constraint integration allows
to express the SLAM reconstruction into the object-frame
with the correct scale and to prevent the drift of SLAM algo-
rithms throughout the entire tracking sequence.

Model constraints exploit an a priori partial knowledge of
the scene geometry, usually a 3D model, and can be defined
through different metric or re-projection formalisms. They
can be expressed with a metric error [31] corresponding
to the 3D distance between 3D features reconstructed by
SLAM and the model of the object. However, combining
this error with a pixel one in the constrained bundle adjust-
ment requires an adaptive weight to deal with heterogeneous
measurements.

Model constraints can also be expressed through a re-
projection error of 3D features reconstructed by SLAM and
projected on the model, while some of their degrees of free-
dom (DoF) are fixed during the optimization [21,36]. The
constraint can furthermore be defined with a re-projection
error between 3D features extracted from the model and their
associated image observations. These features are considered
as an absolute information and are fixed in the bundle adjust-
ment process. They may come from a 3D point cloud [23] or,
when objects of interest are textureless, correspond to 3D-

@ Springer

oriented points (edgelets) from edges of a 3D model [35] as
model-based tracker solutions. This latter method is called
in this article edgelet-constrained SLAM (EC-SLAM). How-
ever, although the approach of [35] isreal time and accurate, it
reaches its limits for curved objects since only sharp edges are
exploited. Furthermore, this approach using a re-projection
error in its optimization process is not compact in memory
due to contour images and the set of edgelets that have to be
stored. Memory consumption grows with the duration and
the resolution of the video and limit the local bundle adjust-
ment to a spatial window. Besides, this edgelet constraint is
time-consuming since the 2D/3D correspondences have to
be re-estimated at each constrained bundle adjustment on all
the optimized keyframes.

We propose in this paper an EC-SLAM that tracks
polyhedral and curved objects with robustness and accu-
racy. Edgelets are dynamically generated using Analysis-
by-Synthesis and integrated as a model constraint into a
C-SLAM algorithm. Moreover, we propose different for-
malisms of this constraint to reduce the memory consumption
of the optimization process.

Notations Matrices are designated in this paper by sans-serif
capital font such as M and vectors by bold font such as v or
V. The projection matrix P associated with a camera is given
byP = KRT (13| —t), where K is the matrix of intrinsic param-
eters and (R, t) the extrinsic ones. X corresponds to all the
optimized parameters in a bundle adjustment: the extrinsic
parameters of the optimized cameras {R;, t; }fz | and the 3D

. . No <
point positions {Q;} l.:Ql . X corresponds to the vector concate-
nating all the optimized pose parameters X; = {R;, t j}js.: 1

3 Overview and contributions

This paper is an extension of previous works [19,20]. It
proposes a constrained SLAM solution for generic object
tracking that deals with large amplitudes and occlusions.

Our EC-SLAM framework shown in Fig. 2 is built on
keyframe-based SLAM as [35] and divided into alocalization
and a mapping threads running in parallel. In the tracking
thread, the camera pose is estimated at each frame thanks to a
matching algorithm that establishes 2D/3D correspondences,
and the decision to create a keyframe is made. The mapping
thread is performed in parallel of the localization process
when a keyframe is detected. Generally, it is decomposed
into two important steps, the triangulation that extends the
3D map with new 3D features, and the refinement of camera
poses and 3D feature positions through a bundle adjustment
constrained to the 3D model on a local window of keyframes.
Our framework is, however, slightly different to answer the
genericity and robustness issues.

Localization of 3D objects using model-constrained SLAM

1045

Tracking process

New frame

Localization

Keyframe?
\ /

Mapping process
Wait for

W

Trlangulatlon

Edgelet
--------- generation by |
rendering
N—— Classical bundle
adjustment
. E—

v

v

Constrained bundle
adjustment

Model constraint
representations

r—

and

Fig. 2 Our EC-SLAM framework with a four-step mapping process:
triangulation, model constraint formalism, classical and constrained
bundle adjustment. Edgelet generation by rendering is performed in
parallel on GPU before the model constraint representation

3.1 Dynamic edgelet extraction

We represent the model constraint with a constellation of vis-
ible edgelets for the current keyframe point of view. In [35],
the model constraint is provided by static edgelets extracted
offline on sharp edges of the 3D model. A visibility testis then
performed to only get the subset of visible edgelets for each
keyframe optimized in the constrained bundle adjustment.
However, the visible edgelet constellation may not well con-
strain the camera pose or the matching step since the number
of edgelets varies according to the point of view, a uniform
distribution is not guaranteed and the risk of false association
is not dealt. Moreover, this solution being limited to polyhe-
dral objects, we propose a different use of the 3D model by
extracting dynamically edgelets with Analysis-by-Synthesis.

In Sect. 4, our edgelet extraction by rendering the 3D
model of the object of interest is detailed. We propose a
solution allowing to deal with curved objects and whose the
sampling strategy provides an edgelet constellation adapted
to the matching and pose estimation. Nevertheless, replac-
ing the precomputed edgelets of an EC-SLAM as [35] with

a constellation generated by rendering implies modifications
in the SLAM framework. In fact, since the edgelets generated
from the silhouette and occluding contours of the 3D model
are viewpoint dependent, they should be estimated online.
Moreover, our edgelet generation process induces an addi-
tional computing cost that depends on various factors, such
as the image resolution used during the rendering, the per-
formance and current workload of GPU (it can also be used
to display some virtual content on a screen for Augmented
Reality applications). The presented edgelet generation is
then achieved in the mapping thread on GPU in parallel
of other processes to prevent its computational cost from
slowing down the tracking process and to maintain real-time
performances. The output of this generation is finally a set of
edgelets that are evenly distributed and non-ambiguous for
the matching and the pose estimation steps.

3.2 Model constraint representations

The dynamic edgelets are exploited to refine the camera
pose and the SLAM reconstruction in the constrained bundle
adjustment as presented in Fig. 2. A first representation of
the model constraint can be proposed through a re-projection
formalism presented in Sect. 3.2.1, although it has an impor-
tant impact on the memory consumption of the optimization
process. An other formalism of the model constraint is then
proposed to reduce the memory footprint of our method
thanks to the output of a model-based tracker. The edgelet
constellation is in that case used to refine the model-based
tracker outputs as presented in Sect. 3.2.2.

3.2.1 Re-projection formalism

A first possible model constraint formalism takes directly
advantage of edgelet information through a re-projection
error E(X) similar to the one proposed by Tamaazousti et
al. [35], where our dynamic edgelets are associated with 2D
contour points in the image.

In that case, the model constraint is expressed as follows:

S
EX) = ZH(X,-,m,-), (1)
=1

with H (X j»m;) the edgelet re-projection error

Nu
H(va m;) = Z(ni,j-(mi,j - PjMi))z. 2)
i=1

It measures the orthogonal distance between the projection of
edgelets M; and their corresponding edge m; ; concatenated
in the vector mj, for the jth keyframe. n; ; is the normal

@ Springer

1046

A.Loesch et al.

to the projection of the edgelet direction. This re-projection
formalism will be evaluated in Sect. 6.

However, with this constraint representation, edgelet con-
stellations have to be stored for all the optimized keyframes.
This storage increases the memory footprint of the opti-
mization process, which grows with the duration and the
resolution of the video. Besides, this formalism is time-
consuming since the 2D/3D correspondences have to be
re-estimated at each constrained bundle adjustment on all
the optimized keyframes. Two other representations of the
model constraint are proposed in this article to manage this
issue.

3.2.2 Hybrid model/trajectory constraint formalisms

These other model constraint formalisms are presented in
details in Sect. 5. Both correspond to hybrid model/trajectory
constraints that do not exploit the dynamic edgelet constella-
tions directly in the error expression as with the re-projection
formalism. They instead use the outputs of a model-based
tracker (named model-based poses as opposite of the SLAM
poses). These constraints, which we define as pose errors, are
also more compact in memory, but expressed in pixels to be
homogeneous with respect to the environment constraint (see
Sect. 3.3) proposed by the SLAM in the constrained bundle
adjustment.

The output model-based poses used in both formalisms are
the optimal camera poses with respect to the object model
that best align the dynamic edgelets and their observations in
the image. Since the 2D-associated contour points that cor-
respond to edgelets are initially unknown, the camera pose
and these correspondences are defined as the parameters that
minimize the model-based error given by Eq. (2) whose vec-
tor representation is as follows:

HX;,m;)=h"(X;,m;)h(X;, m;), 3)

with 2T(X;,m;) = [(mg;.(mo; — P;Mg))---(ny,;.(my; —
P;My))]. This minimization problem is usually solved by
alternating the estimation of the observations m; and the
estimation of the pose parameters X ;. The m; are estimated
by projecting the edgelets with the current pose parameters
and matching them to the nearest contour with a similar ori-
entation. The pose parameters are then refined by minimizing
H(X j»m;) with a Levenberg—Marquardt algorithm [16].
To ensure a good convergence, such an algorithm requires
an initial estimation of X ;j close to the solution and a con-
figuration of edgelets/observations that constrains the 6 DoF
of the camera. In our context, the first assumption is ver-
ified since the optimization process uses the SLAM pose
as initial guess. On the contrary, the second assumption
cannot be ensured. It is then preferable to keep the poorly
constrained DoF to their initial value during the optimiza-

@ Springer

tion process. This can be achieved by using a truncated
Levenberg—Marquardt [6]. This approach relies on a differ-
ent approximation of the Hessian matrix’s cost function than
the usual Levenberg—Marquardt. While the Hessian matrix
of H()_(j, m;) is approximated with W; ~ JjTJj in classi-
cal Levenberg-Marquardt [30], it is approximated by W; =
TSVD(J;"J;) in a truncated Levenberg-Marquardt, where
T SV D(A) represents the truncated SV D of the matrix A.
The resulting orientation and position parameters
)_(jf = {Rj'., tj.'} of the optimal model-based pose are stored
to be used as a constraint for this keyframe over the rest
of the tracking. The associated projection matrix is denoted
P;. The vector X¢ represents the set of model-based pose

parameters X? ={ R;, t?} for all the keyframes optimized
in the constrained bundle adjustment. The 2D contour points
associated with edgelets on keyframe j with the optimal pose
(R? |tf/f), are concatenated in the vector ﬁl‘/ Finally, we define

WS = Jj.TJj'. as the approximation of H”(Xj, m;).
3.3 Optimization process

Since our model constraint may present inaccuracies espe-
cially if the object is occluded, creating incorrect 2D/3D
associations or erroneous model-based poses, optimizing
simultaneously as [35] the model and the multi-view con-
straints could result in a deterioration of the multi-view
geometry relationships, which may cause localization fail-
ures. Then, our approach consists in first optimized the
environment constraint only. We determine the optimal solu-
tion of the multi-view relationships for all the optimized
keyframes. These keyframes are selected via a covisibility
graph [25]. To obtain this optimal solution, a classical bundle
adjustment without any model constraint is thus performed
as presented in Fig. 2. The cost function G (X) to minimize
is as follows:

Ng

GX) =" d*(q;.P;Q.)

i=1 jEL[

The re-projection error d of Eq. (4) is the euclidean distance
between q; ; the 2D observation of the ith 3D point Q; in
the jth keyframe and the projection of this 3D point. L; is
the set of the keyframe indexes observing Q;.

Then, the model and multi-view constraints are com-
bined in a constrained bundle adjustment. Since multi-view
constraint is less robust but more accurate than the model
constraint, we use a fusion strategy, which ensures that the
degradation of the multi-view constraint remains small. To
achieve this task, a constrained bundle adjustment framework
with a barrier term as [17] is chosen. Thus, the cost function
of our constrained bundle adjustment combining multi-view
and model constraints is given by:

Localization of 3D objects using model-constrained SLAM

1047

F(X) = + E(X), (5)

e
e — G(X)

where E (X) is the model constraint re-projection error or the
two formalisms described in next Sect. 5 using the optimal
model-based poses presented in Sect. 3.2.1. ¢; is a threshold
which is slightly greater than the squared re-projection error
obtained after minimizing Eq. (4). The fraction ﬁ with
w > 0 corresponds to a regularization term that prevents the
degradation of the multi-view relationships estimated after
the classical bundle adjustment.

We can notice that in practice, with the re-projection for-
malism proposed by Tamaazousti et al. [35] and defined by
Eq. (1), our dynamic edgelets can also be directly integrated
in the constraint bundle adjustment with a classical linear
cost function. Then, this latter will be only composed of the
edgelet constraint and the multi-view relationships between
the images. Both terms will be expressed in pixels and opti-
mized simultaneously. This classical linear cost function will
be given by:

F(X) = G(X) + E(X), ©6)

with G(X) the environment constraint presented in Eq.
(4) and E ()_() the re-projection formalism of the model
constraint. Moreover, the classical bundle adjustment only
optimizing the multi-view geometry relationships becomes
optional.

3.4 Roadmap and contributions

Edgelet generation is detailed in Sect. 4. Additional contribu-
tions over [19,20] include the edgelet orientation definition in
Sect. 4.1.3 and the improvement of the CPU/GPU transfer in
Sect. 4.1.5. Furthermore, these edgelet generation steps are
evaluated in Sect. 6. Both hybrid model/trajectory constraints
are described in Sect. 5. Our EC-SLAM solution is evaluated
on several polyhedral and curved objects and compared with
other tracking solutions on synthetic and real data to assess
its genericity, robustness and accuracy. All the evaluations of
Sect. 6 are performed with the new edgelet orientation and
data transfer, since they allow more accuracy in the camera
pose estimation and better performances.

Moreover, additional contributions over [19,20] concern
the evaluation of our EC-SLAM framework robustness when
the model constraint is inaccurate, and the evaluation of our
solution tested on public datasets. Section 7 is also a contri-
bution of this paper where we present an Augmented Reality
application involving a static curved object with movable
parts.

4 Dynamic edgelet extraction

Image contours (except those from textures) are sharp bright-
ness changes that are likely to correspond to discontinuities
in depth or surface orientation. Furthermore, the detection of
these edges is influenced by the observation distance and the
image resolution as mentioned in Sect. 2. Tracking solutions
based on Analysis-by-Synthesis are adapted to identify 3D
surface points that are likely to generate contours from depth
and surface orientation discontinuities by relying on renders
of 3D models that take into account of the observation dis-
tance. For computational performance, these surface points
are sampled into a set of edgelets prior to the matching pro-
cess. However, in most tracking solutions, the importance of
the sampling is neglected. Although it has a major impact on
the matching of edgelets with 2D image contours and on the
pose estimated from these correspondences, most solutions
rely on a basic constant-step sampling.

In this section, the introduced edgelet extraction provides
a constellation of edgelets adapted to both matching and pose
estimation.

4.1 Edgelet generation

Similarly to [41], our virtual rendering process relies on an
image space approach. This choice is motivated by the large
amount of faces (hundred of thousands) of 3D models used
in our applications that will result in costly rendering times
for object space approach [8,32].

Our solution aims to estimate for each pixel from the ren-
dered model image, both its probability of being a contour
and its probability of being matched with its corresponding
contour in a real image.

In the following, let us consider each pixel of the ren-
dered image of the model as a random variable X;, with
X; = 1 if the pixel is a contour, 0 otherwise. We denote Y;
the random variable that represents the 2D direction of a con-
tour pixel X;, with Y; € {North, North — East, North —
West, West}. L(X;,Y;) (respectively, R(X;,Y;)) is the
function that returns the neighbor of a pixel X; located on the
left (respectively, right) of the axis defined by the direction
Y;,and N (X;, Y;) (respectively, P(X;, Y;)) correspond to the
function that returns the next (respectively, previous) neigh-
bor of X; along the direction Y;. These last two functions will
be used in Sect. 4.1.3 only. These notations are illustrated in
Fig. 3. Finally Nmap(X;) (respectively, Dmap(X;)) is the
function that returns the normal (respectively, the depth) of
the pixel X;.

4.1.1 Edgelet probability

This first step of our edgelet generation estimates for each
pixel of the rendered image, its probability of being a con-

@ Springer

1048

A.Loesch et al.

NOXY) LX) NXY)
W) | X | RV x
P, Y, POY) RIX,Y)
---------- Y; = North s, = North-East

Fig.3 Each pixel of the rendered image of the model corresponds to the
random variable X;. L(X;, Y;) and R(X;, Y;) are the neighbor pixels
on the left and right of the axis defined by the direction Y;. N (X;, Y;)
and P(X;, Y;) are the neighbor pixels along the direction Y;. On the left
example with ¥; = Nord and on the right with Y; = Nord — Est

,_T E—;N\-:,,,

(a) (b)

Fig.4 Normal (left) and depth (right) maps of a rendered orthosis 3D
model for a given camera point of view

tour. Usually, two types of 2D contours are distinguished:
crease edges and silhouettes. On one hand, crease edges are
relative to the sharp edges of the 3D model and appear as
discontinuities in the normal map (Nmap) (see Fig. 4a). On
the other hand, silhouettes correspond to the outline of the
object or the auto-occluding contours and appear as disconti-
nuities in the depth map (Dmap) (see Fig. 4b). In both cases,
the orientation of a 2D contour point corresponds to the 2D
direction of the discontinuity in the image space.

Therefore, we define the probability of X; to be a crease
edge with direction Y; as:

Perease(XiYi) = max(1, crease(X;, Y;)), @)
with the angular discontinuity measure:

crease(X;,Y;)
=Ax*x (1 = Nmap(L(X;,Y:)) - Nmap(R(X;, Y;))), (8)

where A = (1—cos(angleMax))~" is the normalization fac-
tor defined to reach an intensity of 1 for an angular amplitude
ofangleMax.In our experiments, we use angle Max = 30°.

In a similar way, the probability of X; to belong to the
silhouette with an orientation Y; is given by:

Psithouerre(Xi1Y;) = max(1, silhouette(X;, Y;)), 9

where silhouette is the depth discontinuity measure defined
as follows:

@ Springer

silhouette(X;, Y;) = B x Laplacian(Dmap, X;, Y;). (10)

Laplacian is the 1D Laplacian oriented with respect to direc-
tion Y;, and B is a weight factor. Since the discontinuity
is normalized with respect to the observation distance, the
parameter 8 does not depend on the dimension of the scene.
Therefore, B can be easily interpreted as the minimal depth
discontinuity, expressed as aratio of the observation distance,
that provides a silhouette contour with a probability of 1. In
our experiments, we use 8 = 1/(0.03 x Dmap(X;)).

Consequently, the probability of being a contour is defined
as:

IP)contour (Xl)
= Inyax(maX(Pcrease (X; |Yj)’ Psitnouerre (Xi |Yj))) (11)

J

and the 2D direction associated with X; is defined as:

Dirap(X;)
= arg max(max(Perease (Xi|Y;), Psithouetre (XilY}))).
Y

12)

4.1.2 Matching probability

This second step estimates the probability that each virtual
contour is matched to its corresponding contour in the real
image. Usually, during the matching process, the edgelets
are associated with the nearest contour located along the nor-
mal of the contour. Consequently, the probability of correctly
matching an edgelet can be assessed from the number of con-
tours encountered within this 1D neighborhood.

Therefore, we propose to compute this probability from
the probability map estimated at the previous step. In the
following, let us consider X, to be the pixels of the 1D neigh-
borhood of a pixel X; still along the normal of the contour.
And let N be the random variable representing the number of
contours within the neighborhood. We define the probability
of a pixel to be both a contour and correctly matched in a real
image according to E(V), the expected value of N, as:

IEJ)cnnt(mr (Xt)
P Xi)=—"——. 13
atch(1) 1 +E(N) ()

This matching probability is represented in Fig. 5 for each
edgelet detected on the rendered orthosis model.

4.1.3 3D edgelet orientation

The edgelet orientation is useful in the 2D/3D matching step
to define a research area in the contour image and to select

Localization of 3D objects using model-constrained SLAM

1049

Fig. 5 Matching map of the rendered orthosis 3D model for a given
camera point of view. The darker the pixel, the likelier the edgelet is to
match to a 2D contour point

Front-face
rendering

Back-face
rendering

Front-face
rendering

(b)

Fig. 6 Parametric model of the 3D orientation of edgelets. These last
ones belong to the intersection of two planes (pink and green) represent-
ing locally the model surface. The 3D edgelet orientation corresponds to
the direction of the intersection defined thanks to the two plane normals.
alfedgelets (red) are extracted from sharp edges, the two planes forming
the intersection are on the front-face rendering of the object model (here
the french monument the Geode). b If they are extracting from occlud-
ing contours, one of the plane is located on the back-face rendering

the 2D contour point with a similar orientation. In theory, the
edgelet and the edge to which it belongs have the same ori-
entation. This orientation can be easily determined from the
3D positions of the two adjacent contour points N (X;, ;)
and P(X;,Y;) in the edgelet probability map, as exploited
in our previous works. However, the rasterization step of the

rendering process creates aliasing and damages the orien-
tation estimation. The erroneous edgelet orientation is then
able to disturb the 2D/3D matching process and decreases the
tracking accuracy. In order to avoid a lack of accuracy on the
3D orientation due to the image resolution and the aliasing
effect, we propose to locally define the edgelet orientation
by a parametric model. We propose a solution in the image
space based on the hypothesis that our 3D model mesh is ori-
entable 2-manifold. As shown in Fig. 6, it is indeed possible
to define edgelets from crease edges, or silhouettes (including
auto-occluding contours) as the intersection of two planes.
The idea is to identify these two planes whose intersec-
tion forms an edge that locally approximates the 3D model
contour.

Each pixel X; that might be an edgelet belongs to the
intersection between two planes according to our definition.
Thatis why an analysis of pixels in the adjacent neighborhood
of X; in the direction of the contour normal is performed,
to establish which of them can be assimilated to the planes
creating the contour. The selection process of the two pixels
differs if X; is a crease edge or a silhouette. On one hand, if
the contour pixel X; is part of a crease edge, the plane pixels
are chosen by taking the adjacent pixels from both sides of X;
according to the direction Dir,p (X;). Then, the 3D direction
of the plane intersection and by extension the 3D direction of
the contour pixel X; is given by the following cross product:

Dir3p(X;)
= Nmap(L(X;, Dirap(X;)))
xNmap(R(X;, Dirap(X;))), (14)

the plane equations being estimated thanks to the normal
map Nmap of the rendered image of the model. On the other
hand, if the contour point X; belongs to the silhouette, the
selection process of the two pixels has to take into account
that the object has auto-occluding contours. Indeed, one of
the planes creating the edge where X; stands is not visible
on the front-face rendering. To visualize this occluded plane,
a back-face rendering is achieved. The first neighbor pixel
belonging to the hidden plane corresponds to the pixel X;
in terms of 2D position but in the back-face rendering. The
second plane pixel is choosing in the front-face rendering as
for the crease edges. Its selection depends on its distance to
the camera position dist.q;,. Thus, 3D direction of the plane
intersection and the 3D direction of the contour pixel X; is
defined as:

Dir3p(X;)
= Nmappacr(X;) x Nmap(C(X;, Dirap(X;))), (15)

with Nmappacr the function that returns the back-face ren-
dering normal of the pixel X;. C(X;, Dirop(X;)) is the

@ Springer

1050

A.Loesch et al.

Fig. 7 Orientation map of the rendered orthosis 3D model for a given
camera point of view. The 3D orientation is expressed through the
three channels of the rendered image, i.e., x-axis orientation values are
expressed through the R channel, y-axis orientation values through the
G channel and z-axis orientation values through the B channel (color
figure online)

neighbor pixel in the front-face rendering the closest of the
camera. An orientation map of the rendered orthosis model
is shown in Fig. 7.

4.1.4 Edgelet sampling

An edgelet map P,4¢cn (see Fig. 5), which maps each pixel
to its probability of being a correctly matched edgelet to its
corresponding contour, has been estimated previously. This
edgelet map is then exploited by the sampling step to provide
a set of edgelets relevant to the matching and pose estimation
processes.

On one side, to be consistent to the matching process,
this set of edgelets must maximize the expectation of the
matching success. On the other side, to be suitable to the
pose estimation process, the matches estimated from this set
of edgelets must constrain the 6 DoF of the camera pose.
Particularly, a set of matches that is unevenly distributed in
the image, in terms of both position and contour orientation,
is not a relevant configuration for pose estimation.

Our sampling process (see Fig. 8) relies on a division of
both the 2D position and 2D orientation spaces of the edgelets
projections. The 2D position space is divided into a regular
grid of N x N buckets, and each bucket is divided into 4 angu-
lar sectors. Then, a set of edgelets is sampled for each angular
sector of each spatial bucket, in order to obtain an evenly dis-
tribution in 2D space. The sampling itself is achieved with
respect to a sampling probability affected to each edgelet.
To define this sampling probability, let {Z;} be the set of
edgelets of an angular sector of a spatial bucket. The proba-
bility Psampiing of an edgelet Z € {Z;} is defined as follows:

Pmatch(z)
Zi]Pmatch (Z!) ’

With this sampling strategy, inside an angular sector of
a spatial bucket, edgelets with a high matching probability
Ppatcn are more likely to be sampled. Moreover, the random
nature of the sampling prevents the local agglomeration of
edgelets.

Psampling(z) = (16)

@ Springer

s \ / -

Fig. 8 Edgelet sampling method. The rendered image is divided into
buckets, also divided into four angular sectors to obtain an edgelet set
evenly distributed in terms of 2D position and orientation

4.1.5 Implementation details

While the edgelet sampling step is achieved on CPU, the
edgelet generation step is performed on GPU. Our implemen-
tation relies on multiple render passes with GLSL shaders.
The first pass computes the depth map Dmap and the normal
map Nmap. The second and third one compute the back-face
normal map Nmapp,cr and the 3D orientation Dir3p. The
fourth one computes the edgelet map Py,s0, and the 2D
direction Dirpp. The last one computes the matching prob-
ability map P,,4c5. Since the sampling is achieved on CPU,
the textures containing all the edgelet information have to be
transferred to CPU memory. However in each map, most of
the pixels are not relevant and correspond to the background
or the model surfaces instead of edgelet data. That is why,
instead of transferring the entire textures asynchronously by
GPU as in earlier works, a filter is proposed as a preprocess-
ing in order to only transfer the edgelet pixels to CPU. This
new filter is a render pass based on a geometry shader and a
transform feedback process.

A set of vertices is generated on GPU through a ver-
tex buffer object (VBO) in order to optimize computation
times. This set contains as many vertices as pixels in one
texture. The geometry shader reduces the set size by stor-
ing only the vertices representing edgelet pixels with their
2D coordinates as attributes. Moreover, the geometry shader
adds more attributes to each edgelet vertex, as 2D and 3D
positions, normal and depth values, 3D and 2D orientations
and matching probability values of each edgelet. Then, the
vertices are saved in an other VBO thanks to the transform
feedback process with an interleaved data mode, in order to
simplify the edgelet reading on CPU. The new set of vertices
is organized on GPU similarly as the sequential reading on
CPU and the reading performance is optimal. Since all the
edgelet information are stored contiguously, edgelets with
their attributes can be indeed read in a sequential way. In
this filter step, the rasterization process coming usually after
the geometry shader in a render pass is deleted since it is
time-consuming and not relevant in our case. The vertices

Localization of 3D objects using model-constrained SLAM

1051

containing the edgelet data are then directly transferred to
CPU in an asynchronous way after the geometry shader exe-
cution, with the help of pixel buffer object (PBO).

Moreover, to reduce the amount of data to transfer, the
probability is encoded on an unsigned byte (the value 255
corresponding to 1).

A performance comparison between these transfer strat-
egy will be given in Sect. 6.2.3.

5 Model constraint representations

Edgelets extracted from the 3D model on GPU, as described
in the previous section, are exploited to expressed the model
constraint of our EC-SLAM algorithm. They can be directly
used in the model constraint representation as proposed
in the re-projection formalism presented in Sect. 3.2.1.
However, this model constraint representation is memory-
consuming with the edgelet and contour image storage and
time-consuming with the necessity to re-estimate the 2D/3D
matches at each constrained bundle adjustment and on all
the optimized keyframes. We propose instead to dedicated
the edgelet extraction to the optimization of the model-based
poses that are exploited into both formalisms of our model
constraint in the present section.

We describe two slightly different approaches that use
the 3D model to estimate model-based poses as presented
in Sect. 3.2.2. These model-based poses are exploited as
hybrid model/trajectory constraints in the constrained bun-
dle adjustment in order to decrease the memory footprint
of the optimization process. However, using the outputs of
a model-based tracker as constraints implies to deal with
heterogeneous error terms between the environment con-
straint and the model one. We then propose two hybrid
model/trajectory constraints to combine the benefits of both
kinds of constraints and keep error terms homogeneous.

Different pose distances are introduced in this section,
which measure the deviation of pose parameters from X¢ by
their impact on the model constraint.

5.1 Hybrid model/trajectory constraint formalisms

We propose to use a difference of pixel errors as pose dis-
tance. More precisely, it consists in measuring the difference
between the re-projection error (see Eq. (2)) corresponding
to a keyframe pose (R;|t;) and the one corresponding to the
model-based pose with the parameters)_(ji associated with
the same jth keyframe. The corresponding distance is then
defined by the following equation:

N N
EX) =) H(X;. m$) — > HX m), (17)
j=1 j=1

Fig. 9 Point A (respectively, B) is an edgelet extracted from a cube
model and projected according to a SLAM keyframe pose in red (respec-
tively, according to the model-based pose in orange). Point C is the 2D
contour point associated with the edgelet B. The error £ (X) of Eq. (18)
can be interpreted as the difference dyy150(A, C) — dorino (B, C), with
doriho the orthogonal distance

Notice that to ensure the pixel error to be minimal at the
pose (R? |t;), the firstterm of Eq. (17) is evaluated by using the
2D contour points Iﬁj associated with edgelets generated at
keyframe j during the model-based pose refinement process.
Thus, it is not necessary to re-estimate the 2D/3D associa-
tions. Moreover, (R; |t;?) is the optimal pose with respect to
the object model, which best aligns the edgelets and their
observations in the image (see Sect. 3.2.2). Consequently,
we consider that there is no pose with a re-projection error
inferior to the model-based pose (R?- |t§) and our hybrid error
E(X) is then always positive. We define the vector represen-
tation of this error as follows:

EX) = HX,m) — H(X¢, m°), (18)

with m¢ the vector concatenating the 2D contour points asso-
ciated with the parameters X¢ for all the edgelets and for all
the optimized keyframes. An illustration of this hybrid error
for a given keyframe and a given edgelet is represented in Fig.
9. With this definition, we ensure that E (X) is minimal when
the model constraint H (X, m¢) is minimal (i.e., at the pose
parameters X¢). Besides, the pose defined by the parameters
X¢, the 2D contour points m¢, and consequently the pixel
error associated with the parameters X¢ are constant. Since
the 2D contour points m¢ are no longer re-estimated, it is
not required to store the contour images. Furthermore, con-
trary to the re-projection formalism described in Sect. 3.2.1,
the edgelet/contour matching step is not necessary anymore,
which allows to reduce computation time. Only the vector of
the 2D contour points m¢ and, in case of dynamic edgelets,
the edgelet constellation are memorized for each keyframe.
Compared with re-projection formalism, it implies a large
reduction in memory footprint and computation cost. How-
ever, this memory consumption can remain important if the
number of edgelets and keyframes is high. In the following
subsections, we introduce two approximations of E (X) that
reduce the memory footprint.

@ Springer

1052

A.Loesch et al.

5.2 First approximation

Thanks to the refinement processing performed with a
Levenberg—Marquardt algorithm as presented in Sect. 3.2.2,
the model-based tracker has converged to a local mini-
mum. The first approximation of the constraint relies then
on the hypothesis that the local minimum also corresponds
to the global one. Thus, it is reasonable to consider that
the distance between the projection of the edgelets with
respect to the parameters X¢ and their corresponding 2D
contour points is negligible. In Fig. 9, this assumption cor-
responds to approximate dortho(A, C) — dortho(B, C) by
dortho(A, B).

Under such hypothesis, the 2D contour points ﬁl; of Eq.
(17) are replaced by the projection of their corresponding
3D edgelets with respect to the parameters Xj.. The resulting

approximation of E(X) is given by:

S
EX) = ZH(X,-,M;), (19)
j=1

where 1\713 = {P;f M; }lN:M1 is the vector concatenating edgelets
M; projected according to Pj..

With this approach, it is not necessary to keep the 2D-
associated contours in memory, since only the model-based
pose parameters are exploited. In the case of polyhedral
object, the memory footprint of the resulting constrained
bundle adjustment is very small, since only a set of edgelets
shared by all the keyframes has to be stored as proposed by
Tamaazousti et al. [35]. However, the memory consumption
is higher with dynamic edgelets extracted from occluding
contours as presented in Sect. 4, since they depend on the
point of view. They are generated online and stored for each
keyframe. That is why a second approximation of Eq. (18) is
proposed to reduce memory consumption.

5.3 Second approximation

This second approximation relies on the hypothesis that the
poses of the EC-SLAM keyframes are located in the neigh-
borhood of their corresponding model-based poses. This
approximation is valid in practice since the model-based
poses are obtained by refining the SLAM poses with Eq. (2).
Under this hypothesis, Eq. (18) can be approximated with
a second-order Taylor expansion around the model-based
poses X¢:

E(X) ~ E(X°) + E'(X°)8 + %(STE”(XC)& (20)

The SLAM and model-based poses being 4 x 4 matrices and
belonging to the Lie SE(3) group [3,5], § corresponds to the

@ Springer

projection of the SLAM poses into the tangent space of the
model-based poses:

¢ o\ "! T
R¢ t Rt
8 =log ((01X3 1) (01X3 1)) @h

§ € RO with 8[3...5] = t° — t and §[0...2] defined as
follows:

0 _ _
§[0...2] = ZSin(Q)((RC IR) — REIR)T), (22)
with § = arccos(w). X¢ is obtained after the

model-based refinement and corresponds to the minima of
the model-based cost functions (Eq. (2)) for all the optimized
keyframes. Thus, H’ (X¢, m°) (Eq. (3)) is null. Consequently,
the first derivative E'(X¢) = H'(X¢, m¢) = 0. Besides, the
second derivative E”(X¢) = H”(X¢, m°) can be approxi-
mated by the 65 x 65 diagonal matrix W€ with S the number
of optimized keyframes. The diagonal term of this matrix is
Wj. = J;TJ;, j €10...S], which corresponds to the approx-
imation of H” (X; , m;) introduced in Sect. 3.2.2. This matrix
is estimated during the model-based refinement step for the
keyframe j. Wjﬁ is determined only once per keyframe and
stored in addition to the optimal pose parameters)_(j. The
hybrid error defined in Eq. (20) becomes:

EX) = EX%) + %STW"(S (23)

Since E ()_(C) = 0 according to Eq. (18), the hybrid error
definition becomes:

EX) = %ﬂw“a (24)

This definition of our hybrid constraint presents several
advantages. W converts the difference between the pose
parameters to an error in pixels and makes this error homo-
geneous with the multi-view term of the constrained bundle
adjustment (Eq. (5)). It also allows not to store contour
images for each keyframe contrary to Eq. (2). Moreover, nei-
ther the edgelets, nor their associated observations intervene,
allowing not to store any of them. Only the model-based pose
{RS, t;} and the 6 x 6 matrix W; are exploited in the opti-
mization process for each keyframe.

This hybrid constraint results in a bundle adjustment with
a memory footprint invariant to the video resolution and the
model complexity.

Localization of 3D objects using model-constrained SLAM 1053
e e ECSLAV
1ierent 5 algonthms Edgelet constrained SLAM
exploited in the experimental
results SEC-SLAM DEC-SLAM
Static EC-SLAM Dynamic EC-SLAM
rSEC-SLAM rDEC-SLAM rhDEC-SLAM phDEC-SLAM

SEC-SLAM with

re-projection error

DEC-SLAM with

re-projection error

DEC-SLAM with hybrid

re-projection error

DEC-SLAM with

hybrid pose error

6 Experimental results

In this entire section, the EC-SLAM of [35] exploiting static
edgelets extracted from sharp edges of 3D models will be
called static edgelet constrained SLAM (SEC-SLAM). Since
this method only uses a re-projection error as presented in
Eq. (1), the letter “r” will be added to its acronym to rep-
resent this re-projection formalism: rSEC-SLAM. On the
contrary, our SLAM solutions exploiting dynamic edgelets
extracted from sharp and occluding contours (see Sect. 4)
will be called dynamic edgelet-constrained SLAM (DEC-
SLAM). The approach using the re-projection error will
be named rDEC-SLAM, the letter “r” still representing the
re-projection formalism in the acronym. If the first hybrid
formalism is used (see Eq. (19)), our solution will be called
rhDEC-SLAM (the letter “h” representing the hybrid for-
malism et the letter “r” representing re-projection error of
the first approximation). Finally, our DEC-SLAM exploiting
the second hybrid representation (see Eq. (24)) will be named
phDEC-SLAM (the letter “p” representing the difference of
poses of the second approximation in the hybrid formalism).
Table 1 resumes these acronyms.

We first evaluate in Sect. 6.2 the different contributions of
this paper against state-of-the-art methods: the 3D orientation
of edgelets, their sampling and their transfer, the robust-
ness of our optimization process against erroneous model
constraint, the robustness of our method to sudden motions
against the robustness of a model-based tracker, its localiza-
tion accuracy and genericity on polyhedral and curved object.
For this evaluation, the EC-SLAM framework which is used
exploits dynamic edgelets and the second hybrid constraint
presented in Sect. 5.3. Results are only presented with the
phDEC-SLAM, since the choice of the constraint formalism
has no impact for the evaluation of these contribution bricks
of our solution framework.

Secondly, we evaluate in Sect. 6.3 the different model
constraint formalisms described in Sects. 3.2.1, 5.2 and 5.3
in terms of computation time, memory consumption and
accuracy. Our DEC-SLAM is also compared on these cri-
teria with the solution rSEC-SLAM of [35] exploiting static
edgelets. Finally, in Sect. 6.4, our DEC-SLAM using the

three model constraint formalisms is evaluated on two pub-
lic benchmarks: CoRBS [40] and ICL-NUIM [9].

Evaluations are performed on synthetic and real data with
objects that have different natures to assess the genericity
of the proposed solution. In the experiments, we use a lap-
top with an Intel (R) Core (TM) 17-4800MQ CPU @ 2.70
GHz processor and an NVIDIA GeForce GT 730M graphics
hardware.

6.1 Synthetic data presentation

The synthetic sequences used for the experimental results are
generated with a resolution of 640 x 480 and are composed of
a thousand frames. Only the tracked object is replaced across
all sequences. The camera trajectory and the object environ-
ment are the same. The distance between the camera and the
object do not exceed 8 m, and the object of interest is not
always entirely in the camera field of view. The object envi-
ronment is composed of 4 walls covered with brick texture
and an untextured ground. Several objects, with a volume of
about 4 m?, have been tested:

A torus (Fig. 11a), a simple curved object with a 13K

face model.

— A dragon (Fig. 11b) that presents both sharp edges and
occluding contours. The associated model has 100K
faces.

— A part of a robotic exoskeleton arm, referred to as an
orthosis (Fig. 11c), with many sharp edges. The 3D model
of this object has 264K faces.

— Adwarf (Fig. 14a), a curved object with a 8K face model.

— A bypass (Fig. 19a), a curved object from the chemical

industry, mainly composed of pipes. Its CAD model used

during the tracking has 152K faces. The bypass environ-
ment is slightly different from the others. In some case

(see Sect. 6.2.4), the bypass can be occluded by an ortho-

sis in order to allow robustness evaluation as shown in

Fig. 13.

The EC-SLAM initialization for the synthetic sequences is
obtained by the ground truth pose.

@ Springer

1054

A.Loesch et al.

(b)

Fig. 10 Representation of 3D edgelet orientations of the torus rendered
model for a given camera point of view with simple orientation on the
left and with our proposed orientation on the right

Quantitative results are obtained by measuring the dif-
ference between the ground truth and the estimated camera
positions. These localization errors are expressed as a per-
centage of the camera/object distance. Another measure used
in these experimental results is an orientation error expressed
in radians between the camera orientation and the ground
truth one. A mean 2D error expressed in pixels is also com-
puted and corresponds to the mean 2D distance between
edgelets projected according to the estimated camera poses
and edgelets projected according to the ground truth camera
poses.

6.2 Evaluation of our DEC-SLAM framework

Evaluations of our DEC-SLAM framework through phDEC-
SLAM solution concern the edgelet orientation definition
(presented in Sect. 4.1.3), the sampling strategy (Sect. 4.1.4),
the transfer time between GPU and CPU of edgelet informa-
tion (Sect. 4.1.5), and the exploitation of a cost function with
abarrier term as [17] in our constrained bundle adjustment to
deal with erroneous constraint (Sect. 3). A first comparison
with a model-based tracker algorithm similar to [41] is also
performed to demonstrate the robustness and the stability
of our solution when sudden motions occur. A second com-
parison with the rSEC-SLAM of [35] is achieved in order
to evaluate the advantage of using dynamic edgelets instead
of static ones (that are extracted offline and on sharp edges
only). Finally, our DEC-SLAM algorithm is tested on several
real sequences tracking different kinds of objects, to assess
its genericity.

6.2.1 Edgelet orientation comparison

The 3D edgelet orientation described in Sect. 4.1.3 is com-
pared with a simple orientation definition based on the 3D
positions of two adjacent contour points of the rendered
model in the image space.

The edgelet orientation is used in two processes of our
DEC-SLAM algorithm: the 2D/3D matching step when

@ Springer

edgelets are associated with image contours and then the
camera pose estimation based on the minimization of the
orthogonal distance between projected 3D edgelets and their
associated 2D contours (for the re-projection formalism or
the optimization of the output model-based poses for the
hybrid constraint representations). Thus, the 3D orientations
are first evaluated in a qualitative way; then, their impact on
the rate of 2D/3D matches and on the accuracy of the camera
position is evaluated.

Figure 10 shows the 3D orientations obtained for a simple
object as the torus. Figure 10a corresponds to the simple
3D orientation, whereas Fig. 10b represents our 3D edgelet
orientation for a given point of view. With our method, the
3D directions seem to correspond to the expected ones. On
the contrary, with the simple definition, the 3D orientation
is not well estimated because of the aliasing effect from the
rasterization step of the rendering process.

Figure 11 presents the impact of our new 3D orienta-
tion definition. The evaluation is performed on the torus
(Fig. 11a), the dragon (Fig. 11b) and the orthosis (Fig.
11c) sequences in order to confirm the genericity of our
method. Our DEC-SLAM is compared with one with simple
3D edgelet orientation. The impact on the 2D/3D matching
step is shown in Fig. 11d, e and f representing the rate of
edgelets associated with image contours. Indeed, the accu-
racy of edgelet direction estimations has a direct impact on
the matching between projected edgelets and image contours
with a similar orientation. That is, the probability grows as
the accuracy of the orientation increases. The 2D/3D match-
ing rate is presented according to the number of extracted
edgelets for each keyframe. For each sequence, the 2D/3D
matching mean rate is higher for our solution with 82.2
against 45.0% for the torus sequence, 64.2 against 46.3% for
the dragon sequence and 63.1 against 41.4% for the orthosis
sequence. The gap between the two methods is more impor-
tant when the object is curved, the aliasing effect being more
significant.

Finally, the accuracy of our solution exploiting the new
3D edgelet orientation definition is compared with a DEC-
SLAM with a simple edgelet orientation. It is evaluated
through a position error. The quantitative results are pre-
sented in Fig. 11g, h and i. On the torus sequence, for both
methods, the position error is important. The optimization
process is indeed less constrained due to the object sym-
metry. However, our 3D edgelet orientation results in more
accurate camera positions since the mean position error is
around 9%, whereas the solution with the simple orienta-
tion definition has a mean position error of more than 16%.
For the dragon sequence and the orthosis one, the tracking is
also more accurate with the new 3D orientation. The mean
position error is around 0.5% for the dragon sequence using
the proposed 3D orientation definition, against 1.5% with the
simple method. For the orthosis sequence, the object of inter-

Localization of 3D objects using model-constrained SLAM

1055

(b) (c)
—simple orientation —simple orientation —simple orientation
— new orientation —new orientation —new orientation
100 100 100 T
~ 80 —~ 80 i = 8 : T
X S =
)
8 S S
2 60 Q 60 4 8 eo .
jo)]
2 2 =
5 5 5
T 40 T 40 { @ 40 :
S 1S €
20 20 20 .
% 5 10 15 20 % 5 10 15 20 25 % 5 10 15
keyframes (#) keyframes (#) keyframes (#)
(d) (e) ®
3.5 - ——
22t ——simple orientation —simple orientation ——simple orientation
—new orientation ——new orientation —_new orientation
20 1
18
= —~ ~08
X 16 X =
= = =
g s £
34 o 806
s 5 S
= 12r *ﬁ ‘é’
g g 804
100 ’
8 -
0.2
6 -
% 5 10 15 20 % 5 10 15 20 % 5 10 15
keyframes (#) keyframes (#) keyframes (#)
(8) (h) ()

Fig. 11 Comparison of DEC-SLAM with simple 3D orientation definition and the solution we proposed that uses dynamic generated edgelets with
new orientations. In green our solution exploiting the presented edgelet generation and in red the other method (color figure online)

est is polyhedral and the aliasing effect is less perceptible.
Thus, both methods are accurate with a mean position error
<1%.

The DEC-SLAM with the proposed 3D orientation allows
a higher 2D/3D matching rate and a higher or similar accu-
racy than the one with simple edgelet orientation.

6.2.2 Sampling strategy comparison

The proposed sampling strategy described in Sect. 4.1.4 is
compared with a random sampling. This evaluation is per-
formed on the orthosis sequence where the proposed solution
is ran a hundred times with the two sampling strategies (400
edgelets are used). The mean errors over the 100 trials and

@ Springer

1056

A.Loesch et al.

Table 2 Localization errors (%) with different sampling strategies

Min (%) Max (%) Mean (%) SD (%)
Random sampling 0.9228 19.0420 8.4383 8.4943
Proposed sampling 0.5788 10.3170 3.5466 3.4458

T e g
\

L3
-

2
h

(b)

Fig.12 Set of edgelets extracted by using our sampling method on the
left and with a random sampling solution on the right

Table 3 Computation time for the edgelet data transfer between GPU
and CPU. The comparison is made between a texture transfer and the
proposed method

SD sequence (ms) HD sequence (ms)

Mean SD Mean SD
Texture transfer 3.55 0.17 17.07 3.75
Proposed solution 0.56 0.10 1.03 0.23

over all the images of the orthosis sequence are estimated, as
well as the min/max errors and the standard deviation (SD).
Results are reported in Table 2. Our proposed sampling better
constrains the matching and the pose estimation, halving the
localization errors. Edgelets resulting of the different sam-
pling methods are also shown in Fig. 12. Our sampling allows
a more even distribution.

6.2.3 Edgelet data transfer time comparison

Our method for transferring edgelets from GPU to CPU,
detailed in Sect. 4.1.5, is compared with a simple asyn-
chronous texture transfer using pixel buffer object.

In the presented approach, the transfer begins with the
synchronization between GPU and CPU for the data read-
ing access. Then, the filtering pass follows, storing only
the edgelet data. The transfer ends with the reading of the
VBO containing edgelet information. With the simple texture
transfer method, the transfer also begins with the synchro-
nization between GPU and CPU. However, there is no filter
performed and the transfer ends when all the textures con-
taining edgelet information are read.

Table 3 presents the mean and standard deviation (SD)
of transfer and reading times on the whole keyframes of the
dragon sequence. Computation time is expressed in millisec-
onds. To evaluate the impact of our optimization, transfer
computation time is evaluating on a standard-definition (SD)

@ Springer

sequence with a 640 x 480 resolution and a high-definition
(HD) sequence with a 1280 x 960 resolution.

Table 3 shows an important time saving since transfer time
between the simple texture transfer and our proposed solution
decreases over 84% for the SD video and 94% for the HD
one. Moreover, we can see that the simple texture transfer
approach is almost five times more time-consuming between
the SD and the HD sequence, whereas our proposed transfer
method is only almost twice more time-consuming. Edgelet
transfer time with the simple texture transfer method depends
directly on the sequence definition since all the pixels of
all the textures are transferred to CPU. On the contrary, our
method proposes to only transfer the edgelet pixels through
an optimized array. Thus, the presented approach runs faster
and is less affected by the sequence resolution.

6.2.4 Robustness to erroneous model constraint

In this experiment, the robustness of our solution exploit-
ing inaccurate constraints is evaluated. Particularly, we seek
to compare our constrained bundle adjustment using a cost
function with a barrier term as [17] and an other one using a
classical linear cost function optimizing simultaneously the
environment and the model constraints as in [35]. The hybrid
constraint may indeed be erroneous, especially if the output
of the model-based tracker is inaccurate when the object is
occluded or small in the image.

The experiment consists in occluding an object of inter-
est to disturb the model-based tracking and obtain erroneous
model-based poses for the constrained bundle adjustment.
Figure 13 shows the position errors and 2D errors with our
phDEC-SLAM approach and with a phDEC-SLAM con-
strained with a classical linear cost function. The two object
trackers are compared on a synthetic sequence where a
bypass is momentarily occluded by an orthosis as shown in
Fig. 13aand b. When the bypass is occluded, the model-based
pose can reach a position error of almost 22%. However, this
erroneous constraint does not degrade the camera pose since
after the optimization process exploiting Lhuillier cost func-
tion, the mean position error is < 1% (see Fig. 13c) and the
mean 2D error is 1.56 pixels. However, with the use of a clas-
sical cost function, the localization is less accurate when the
model-based pose is erroneous. The mean localization error
is more than 2%, and the mean 2D error is around 2 pixels.

6.2.5 Comparison to a model-based tracking

We compare our DEC-SLAM with model-based tracking in
terms of robustness against large displacements. The latter
relies on edgelets extracted by using the proposed solution
described in Sect. 4. For the matching step, the pose estimated
on the previous image is used to project each edgelet and
the nearest 2D image contour with a similar orientation is

Localization of 3D objects using model-constrained SLAM

1057

e
(a) (b)

H 1|~ barrier term cost function| ~ barrier term cost function
o E E —classical cost function 9 ——classical cost function

position error (%)
2D error (pixels)

0 5 10 15 20 25 0 5 10 15 20 25
keyframes (#) keyframes (#)

(© @

Fig. 13 Comparison between our cost function with a barrier term as
[17] and classical linear cost function on a synthetic sequence. The
bypass is the object of interest and is occluded by an orthosis in a part
of the video. a, b Some frames of this sequence. ¢ The position errors
of our phDEC-SLAM with a classical cost function (red) or the cost
function with a barrier term (green) in the constrained bundle process.
The blue dots correspond to the interval where the bypass is occluded
and the model-based poses are erroneous. d The 2D errors of both
methods (color figure online)

selected as its correspondent. The comparison is made on
the dwarf synthetic sequence described in Sect. 6.1. The two
algorithms are evaluated by varying the frame rate of the
camera on the dwarf sequence. The travel speed of the camera
is unchanged.

Three scenarios are tested: the original frame rate and
frame rates divided by 8 and by 10. Figure 14c and d rep-
resents the position errors for the model-based tracking and
the proposed solution, respectively. The DEC-SLAM suc-
ceeds on the three scenarios. The mean error stays in the
interval [0.78%, 0.92%] and is almost constant for all frame
rates. On the other hand, model-based tracking fails on
the sequence with the lowest frame rate due to too large-
amplitude motions. The mean position error increases with
the displacement amplitude, and its values are 2.41 and
6.65% for the sequences with the original frame rate and with
a frame rate divided by 8, respectively. Moreover, the stan-
dard deviation is important (2.76 vs 0.33% for our solution)
due to tracking instabilities (jitter). The proposed solution is
thus more accurate and more robust to large displacements
than model-based tracking.

This robustness comparison is also made on a real
sequence, as shown in Fig. 15. The tracked object

N\, \
(a)
—original frame rate —original frame rate
——original frame rate / 8 ——original frame rate / 8
16l—original frame rate / 10 4l — original frame rate / 10
= =
s S 3
2 2
[} [}
c =
S S
‘@ ‘@
o o
Q a

0 200 400 600 800 0 200 400 600 800
keyrames (#) keyframes (#)

(© @

Fig. 14 Comparison of a model-based tracker and our DEC-SLAM
solution on the dwarf sequence. a Illustration of the dwarf. b Edgelets
extracted by using the solution described in Sect. 4 for a given camera
pose. Localization errors resulting from model-based tracking (c) and
from the proposed DEC-SLAM (d) on the dwarf sequence with the
original frame rate (red), a frame rate divided by 8 (green) and by 10
(blue) (color figure online)

Fig. 15 Comparison of the proposed solution (right) with model-based
tracking (left) on the car seat sequence where sudden motions occur

@ Springer

1058

A.Loesch et al.

corresponds to a car seat that is a curved object whose 3D
model has 79K faces.

Thanks to the SLAM prediction based on keypoints, the
generated edgelets at each keyframe are extracted from
an accurate pose contrary to the model-based approach,
which uses the pose estimated on the previous frame.
Moreover, the pose predicted by the SLAM also facilitates
the 3D/2D matching step, especially when large-amplitude
motion occurs. Thus, our solution results in a stable (jitter-
free) localization, while model-based tracking presents some
localization instabilities and fails to track when the motion
amplitude is large as illustrated in Fig. 15. Additional data
are given in the first part of Online Resource 1, with a com-
parison video on the car seat sequence.

6.2.6 Comparison to rSEC-SLAM

We compare our proposed solution to the rSEC-SLAM algo-
rithm described in [35] in terms of localization accuracy and
tracking genericity. The dragon and the orthosis sequences
are used for the evaluation. Both objects have sharp edges,
but they are not predominant for the dragon. Figure 16a
and b represents position errors on the two sequences. For
the dragon sequence, the proposed solution is 5 times more
accurate than the one proposed by Tamaazousti et al. [35].
In fact, the edgelets obtained with the dihedral criteria are
not evenly distributed on the object, whereas the dynamic
edgelets generated with the solution we proposed (see Sect.
4) better represents the silhouette and object contours. For the
orthosis sequence, the original model and a simplified version
are used. With the proposed solution, the localization errors
are almost the same whatever the model complexity. On the
other hand, the localization accuracy of the rSEC-SLAM is
affected by the model complexity. Mean errors values are of
1.18 and 2.36% with the simplified and the original model,
respectively. In fact, without model simplification, edgelet
detection with the dihedral criteria results in a noisy con-
stellation. The proposed solution does not require any model
simplification to generate an evenly distributed edgelet con-
stellation and thus to achieve accurate tracking.

Figure 17a and b illustrates on a real bypass sequence the
same issue with a set of 2000 edgelets dynamically generated
with the solution described in Sect. 4 and extracted by using
a dihedral criteria, respectively. A constellation of edgelets
obtained via the dihedral criteria is not evenly distributed,
whereas the edgelets obtained with the proposed solution are
distributed on the whole object surface, including the pipes.

The accuracy of EC-SLAM is directly affected by the
quality of the edgelet constellation as seen in Fig. 17c¢ and
d on the real bypass sequence. The DEC-SLAM is more
accurate than the rSEC-SLAM proposed in [35] since their
edgelets constellation poorly constraints camera poses. Addi-

@ Springer

— phDEC-SLAM (OM)
— ISEC-SLAM (OM)
~— phDEC-SLAM (SM)
— rSEC-SLAM (SM)

~——phDEC-SLAM|
—rSEC-SLAM

position error (%)
-
position error (%)

1 M
0 5 10 15 20 25 0 5 10 15
keyframes (#) keyframes (#)

(a) (b)

Fig. 16 Comparison of the rSEC-SLAM of [35] and our phDEC-
SLAM, on the dragon (a) and the orthosis (b) sequences. Localization
errors for the orthosis sequence are measured with the use of a simplified
model (SM) and the original one (OM)

(c) (d)

Fig. 17 Comparison between DEC-SLAM (left) and the rSEC-SLAM
of [35] (right) on the bypass sequence. a Dynamic generated edgelets
for that point of view. b Static edgelets generated with a dihedral criteria.
¢, d Model re-projections on a bypass portion

tional data are given in the second part of Online Resource 1,
with a comparison video on the bypass sequence.

6.2.7 Tracking genericity evaluation

To finally assess the genericity of our DEC-SLAM method,
experiments are carried on several real sequences with dif-
ferent kinds of objects. All of our proposed formalisms result
in similar accuracy and robustness. Then, Fig. 26 shows 3D
model projections on the real scene according to the esti-
mated camera poses with phDEC-SLAM solution only.
Our proposed solution has been successfully tested with
objects for which a 3D model is available, for example, with
a sport car (Fig. 26g), a bypass from the chemical industry

Localization of 3D objects using model-constrained SLAM 1059
Table4 Computation time in .
milliseconds of the mapping Polyhedral object (sport car)
process for the hDEC-SLAM, rSEC-SLAM [35] rhDEC-SLAM phDEC-SLAM
phDEC-SLAM and
rSEC-SLAM on the sport car 3 Optimized keyframes 47.9 27.9 23.6
sequence. It is given for 3, 10 10 Optimized keyframes 130.5 77.9 76.2
and 30 optimized keyframes o

30 Optimized keyframes 216.6 203.9 188.7
Table 5 Computation time in -)
milliseconds of the mapping Curved object (dragon statue)
process for the (DEC-SLAM, rDEC-SLAM thDEC-SLAM phDEC-SLAM
rhDEC-SLAM and
phDEC-SLAM on the dragon 3 Optimized keyframes 97.8 94.8 94.1
sequence. It is given for 3, 10 10 Optimized keyframes 172.1 170.6 130.3
and 30 optimized keyframes o

30 Optimized keyframes 385.3 330.0 261.3

(Fig. 17) and a seat from a car OEM (Fig. 15). The genericity
of our solution is also demonstrated by tracking objects like
a metal statue of dragon (Fig. 26d), and a Raving Rabbid
(Fig. 26a) using 3D models reconstructed by photogramme-
try. Industrial objects like a real-sized car (Fig. 26j), a car
cylinder head (Fig. 26m), or an other kind of orthosis (Fig.
26p) with a known 3D model have been tracked successfully.

These objects might be polyhedral (the sport car, the cylin-
der head or the orthosis) or curved (the Raving Rabbid, the
dragon or the car seat), but they also can present sharp and
occluding contours at the same time (the bypass or the real-
sized car). Some are textured (the dragon), while others are
absolutely textureless (the Raving Rabbid).

Our solution is robust to occlusions, thanks to the proposed
DEC-SLAM framework, which guarantees the multi-view
relationships to be well estimated. Additional data are given
in the third part of Online Resource 1, with a compilation
video that shows our tracking solution on several polyhedral
and curved objects.

6.3 EC-SLAM comparison

The different formalisms of the presented solution are com-
pared in terms of computational cost, memory consumption
and accuracy in this section.

6.3.1 Computation time evaluation

In this subsection, the different model constraint formalisms
integrated in our DEC-SLAM framework are evaluated in
terms of computational costs. Since these solutions differ
only by their bundle adjustment, this experiment consists in
comparing the processing time required by the mapping pro-
cess described in Sect. 3. The mapping process is achieved
once per new keyframe; then, we compare the median pro-

cessing time of these executions. Also, since the computation
time depends on the number of optimized keyframes, the
different solutions are compared for a set of 3, 10 and 30
optimized keyframes.

This experiment is achieved on two real sequences
recorded with a HD resolution (1280 x 1024). The two objects
used are a metal statue of dragon (see Fig. 26d) with a 3D
model reconstructed by photogrammetry and a sport car (see
Fig. 26g), whose the 3D model is available. The SLAM ini-
tialization on these real videos is performed manually and
followed by a contour refinement process.

The sport car illustrates the performances for a poly-
hedral object, while the dragon sequence illustrates the
performances for a curved object. For the car sequence, the
performances of our rhDEC-SLAM and phDEC-SLAM are
compared with the performances of rSEC-SLAM of [35].
For the dragon sequence, the rDEC-SLAM, thDEC-SLAM
and phDEC-SLAM are compared in terms of computational
cost.

The computation time of the mapping processes is pre-
sented in Tables 4 and 5. The classical bundle adjustment
optimizing the multi-view constraint and the dynamic edgelet
generation (and optimal output model-based poses for both
hybrid constraint representations) are running in parallel, to
optimize the computation time. Moreover, even if tDEC-
SLAM and rSEC-SLAM have not the model-based pose
refinement step in their framework (contrary to the thDEC-
SLAM and phDEC-SLAM), the 2D/3D associations between
edgelets and their 2D counterparts have to be re-estimated
at each constrained bundle adjustment on all the optimized
keyframes. This process participates in slowing down its exe-
cution. Computation time is globally more important with the
tracking of curved objects. It is due to the edgelet generation
process, which has to be performed online at the last keyframe
since the occluding contours depend on the camera point of

@ Springer

A.Loesch et al.

7=

Memory consumption (MB)

— hDEC-SLAM 0% JJf —DEC-SLAM
—— phDEC-SLAM —— phDEC-SLAM|
—rSEC-SLAM —DEC-SLAM

500 1000 1500 500 1000 1500 2000
frames (#) frames (#)

(a) (b)

Fig. 18 The memory footprint associated with the car sequence (a) and
the dragon one (b) is drastically decreased with the use of the thDEC-
SLAM and phDEC-SLAM (see Sect. 5) compared with rfSEC-SLAM
of [35] or our IDEC-SLAM. The memory consumption is expressed in
MB with a logarithmic scale on the y axis

view (see Sect. 3.1). On the contrary, the edgelet extraction
is performed offline only once for polyhedral objects. Tables
4 and 5 show that the exploitation of any hybrid constraint
representation allows to reduce computation time. Compared
with the use of re-projection formalism, the computation time
decreases around 44% for the sport car sequence and around
8% on the dragon one even if a model-based pose refinement
is performed in addition to the constrained bundle adjustment
with the use of hybrid constraint (with 3 and 10 keyframes
in the bundle adjustment). The computation time decreases
around 10 and 23% with the use of 30 keyframes.

6.3.2 Memory consumption comparison

Optimizing a SLAM reconstruction with a bundle adjustment
constrained to a 3D model implies the storage of additional
data for each keyframe. In this section, the memory footprint
of these data is evaluated, depending on the use of the chosen
model constraint formalism and the edgelet generation pro-
cess (static or dynamic). These evaluations are conducted on
the two real sequences introduced in Sect. 6.3.1. The edgelet
extraction is performed offline for the car sequence and online
for the dragon statue. Our thDEC-SLAM and phDEC-SLAM
are compared with [35] for the sport car and with our rDEC-
SLAM for the dragon. The results are summarized in Fig.
18a and b.

As explained in Sect. 3.2, rtDEC-SLAM or rSEC-SLAM
require to store edgelets and contour images for each
keyframe optimized in the constrained bundle adjustment.
Consequently, the memory footprint increases every time
a new keyframe is created. The impact is even greater as
the video resolution (for curved objects) and the number
of edgelets are high. For the real sequences, the number of
edgelets projected and associated with 2D contour points is

@ Springer

(a) (b)

Fig. 19 Images from the bypass (a) and sedan car (b) synthetic
sequences

set to 2000, and 94 (respectively, 113) keyframes are created
over the car sequence (respectively, dragon sequence).

Thus, as shown in Fig. 18a and b, the memory footprint
for rfSEC-SLAM is near 235 MB at the end of the sport car
sequence and more than 292 MB for the rDEC-SLAM at
the end of the dragon one. The latter sequence requires more
memory since edgelets extracted from occluding contours are
stored for each keyframe, which is not required with poly-
hedral objects. The memory footprint drastically decreases
with the use of a hybrid constraint formalisms, since contour
images are not required anymore in the constrained bundle
adjustment. Pose parameters of the model-based tracker out-
puts are henceforth stored instead. In addition to the pose
parameters storage, our thDEC-SLAM requires to save sets
of edgelets. Since they are extracted only once with polyhe-
dral object, the memory consumption is limited to 0.1 MB
at the end of the car sequence. However, generating and
accumulating sets of edgelets at each keyframe for curved
objects increase the memory footprint to 10 MB at the end
of the dragon sequence. Finally the phDEC-SLAM allows a
memory footprint close to 0.12 MB (respectively, 0.04 MB)
at the end of the sport car sequence (respectively, dragon
sequence), only pose parameters and matrices W of the
model-based tracker outputs (see Sect. 5.3) being stored. We
can notice that with polyhedral objects, the memory con-
sumption is higher for the phDEC-SLAM (0.12 MB) than for
the rhDEC-SLAM (0.10 MB). Indeed, in addition to the pose
parameters stored for both hybrid constraint representations,
for the rhDEC-SLAM, a unique set of edgelets is stored for
the whole sequence, whereas for the phDEC-SLAM, matri-
ces W¢ are stored at each keyframe creation.

The latter allows our memory consumption to be invari-
ant to the number of edgelets and their generation, invariant
to the resolution of the tracking video. Thus, if polyhedral
(respectively, curved) objects are tracked, the thDEC-SLAM
(respectively, phDEC-SLAM) is more suitable. Additional
data are given in the fourth part of Online Resource 1, with
a comparison video on the sport car and dragon sequences.

Localization of 3D objects using model-constrained SLAM 1061
10 " 0.04 4
—rhDEC-SLAM —rhDEC-SLAM —rhDEC-SLAM
9 —— phDEC-SLAM| — phDEC-SLAM| —phDEC-SLAM
—rDEC-SLAM 0.035 — rDEC-SLAM 3.5[|—rDEC-SLAM
8 —rSEC-SLAM —rSEC-SLAM —rSEC-SLAM
n 0.03 3
~ 7 <
& 3 0025 @ 55
T g - T~
(<] ~ x
= 5 a
5] o -
5 E 002 - 2
5 ° 8
= c =
B 4 S 3
<] ® 0015 a 15
[e% -~ N
c
3 o
=
S 001 1
2
; 0.005 0.5
% 5 10 15 % 5 10 15 % 5 10 15
keyframes (#) keyframes (#) keyframes (#)
(a) (b) (©
9 0.06 6 .
—hDEC-SLAM — rhDEC-SLAM — hDEC-SLAM
——phDEC-SLAM — phDEC-SLAM ——phDEC-SLAM
8 —rDEC-SLAM —rDEC-SLAM — rDEC-SLAM
— rSEC-SLAM 0.05[| —rsec-SLAM 5[|—rsEC-sSLAM
7
@
g
x 6 -g - 4
g £]
£s 5 3
o = T3
c o) S
9 4 c £
= S [
o T [a]
a 3 c N 2
.0
5
2
1
1
o i i ; i ; o i i i i ; o i i ; i ;
(] 5 10 15 20 25 0 5 10 15 20 25 (] 5 10 15 20 25
keyframes (#) keyframes (#) keyframes (#)
(d) (e ®

Fig.20 Accuracy comparison between static edgelet cSLAM [35] (black), dynamic edgelet cSLAM (red) and the first hybrid (blue) and the second
(green) cSLAM on the bypass (top) and sedan car (bottom) sequences (color figure online)

6.3.3 Accuracy evaluation

Our proposed DEC-SLAM algorithm is evaluated in terms
of accuracy and robustness on polyhedral and curved objects
and also compared with rSEC-SLAM described in [35].

The accuracy of our DEC-SLAM solution is evaluated
on two synthetic sequences. The first one corresponds to the
bypass sequence (see Fig. 19a) presented in Sect. 6.1. The
second sequence has a sedan car as object of interest. Its 3D
model has 50K faces. The sedan car environment is composed
of city buildings as seen in Fig. 19b.

Figure 20a, b and c presents the localization error in posi-
tion and orientation, and the 2D error on the bypass sequence.
Figure 20d, e and f presents the same errors on the sedan car
sequence.

The rDEC-SLAM and the phDEC-SLAM provide similar
accuracies on both polyhedral and curved objects, contrary

to the rhDEC-SLAM that presents some lacks of accuracy.
On the sedan sequence, the median pixel error is 1.38 for
the thDEC-SLAM, 1.12 for the phDEC-SLAM, 1.28 for
the rDEC-SLAM and 1.63 for the rSEC-SLAM of [35]. On
the bypass sequence, the median pixel error is 1.39 for the
rhDEC-SLAM, 0.99 for the phDEC-SLAM, 0.91 for the
rDEC-SLAM and 0.66 for the rfSEC-SLAM of [35]. This
latter is less accurate when the object of interest is curved.
Edgelets obtained with the dihedral criteria are not evenly
distributed on the object, whereas the dynamic edgelets
generated with the proposed solution better represent the sil-
houette and object contours.

6.4 Evaluation on public datasets

To assess the robustness and accuracy of our DEC-SLAM
approach, we run our method on two public datasets. Even

@ Springer

1062

A.Loesch et al.

if these benchmarks are more adapted for RGBD solutions,
EC-SLAM are able to localize accurately the camera with-
out depth information. The SLAM initialization on these
sequences is obtained by the first ground truth pose.

6.4.1 CoRBS dataset

Our DEC-SLAM solution is evaluated and compared on
the Comprehensive RGBD Benchmark for SLAM (CoRBS)
dataset that proposes real sequences with different objects of
interest. It provides the real depth and RGB frames thanks
to the use of a Kinect v2, with a ground truth trajectory of
the camera and a ground truth 3D model of the scene. The
CoRBS dataset is composed of 5 sequences named ktO, ktl,
kt2, kt3 and kt4 for each object of interest (a desk and a
wooden human manikin). An overview of these two objects
with their reconstructed 3D models is presented in Fig. 21.
This benchmark is interesting to evaluate our DEC-SLAM
with the different model constraint formalisms, since the
tracked objects are polyhedral and complex like the desk, or
curved as the wooden human manikin. The sequences have
a 640 x 480 definition and a frequency of 30Hz.

We evaluate our tDEC-SLAM, rhDEC-SLAM and phDEC-
SLAM solutions and compare it to RGBD C-SLAM [22]
(only the ktO sequence is available for this approach) and
rSEC-SLAM [35]. Table 6 describes the absolute trajec-
tory error (ATE) inspired by [34] and expressed through
the root-mean-square-error metric (RMSE). This error quan-
tifies the accuracy of the entire trajectory for all the five
desk sequences. The rDEC-SLAM solution presents the best
results in terms of accuracy for the first three sequences
and is very close of the most accurate approach on the last
two sequences. For the kt0 one, RGBD C-SLAM has the
same RMSE of 0.013 m as our rDEC-SLAM. However, the
other model constraints formalisms integrated into our DEC-
SLAM solution provide also accurate localization with a
trajectory error around 0.020 m for this sequence. On this
polyhedral object, rSEC-SLAM of [35] reaches good per-
formances, especially for the ktl and kt3 sequences where
it gets the smallest trajectory error. Our rhDEC-SLAM and
phDEC-SLAM also track with accuracy the desk with simi-
lar localization error. The first one has the best result for the
ktl and kt4 sequences, the second one following just near by.
This latter has the best RMSE for the kt2 sequences.

Table 7 describes the localization error for all the five
human manikin sequences. The object of interest is a curved
one. Then, rSEC-SLAM [35] and RGBD C-SLAM are less
accurate, few sharp edges existing on the 3D model. Edgelets
extracted by using the dihedral criteria are not well dis-
tributed on the model and do not well constrain the camera
pose estimation. The rDEC-SLAM approach obtains the
best trajectory errors except for the ktl sequence where the
phDEC-SLAM precedes it with a RMSE of 0.146 m.

@ Springer

(© (d)

Fig. 21 CoRBS sequences [40]. Frames from the different sequences
where the desk and human manikin are tracked (left). Their associated
reconstructed 3D model (right)

Table 6 Trajectory error for the CORBS Desk sequences [40]

Desk sequence

Error (m) ktO ktl kt2 kt3 kt4

RGBD C-SLAM [22]

RMSE 0.013 - - - -
SD 0.005 - - - -
Min - - - - -
Max 0.073 - - - -
rSEC-SLAM [35]
RMSE 0.020 0.010 0.601 0.287 0.354
SD 0.006 0.003 0.238 0.126 0.256
Min 0.006 0.001 0.047 0.053 0.017
Max 0.048 0.026 1.011 0.841 1.244
rDEC-SLAM
RMSE 0.013 0.010 0.600 0.294 0.360
SD 0.005 0.004 0.238 0.128 0.257
Min 0.003 0.001 0.042 0.061 0.017
Max 0.041 0.025 1.007 0.858 1.246
rhDEC-SLAM
RMSE 0.020 0.010 0.603 0.288 0.351
SD 0.006 0.004 0.238 0.126 0.257
Min 0.006 0.001 0.053 0.055 0.016
Max 0.049 0.025 1.016 0.854 1.260
phDEC-SLAM
RMSE 0.021 0.011 0.600 0.293 0.358
SD 0.012 0.004 0.237 0.129 0.254
Min 0.001 0.001 0.042 0.066 0.026
Max 0.063 0.030 1.003 0.854 1.222

Bold indicates the best RMSE (root-mean-square-error metric) is
reached compared with the other SLAM methods

Localization of 3D objects using model-constrained SLAM

Table 7 Trajectory error for the CORBS Human manikin sequences
[40]

Human sequence

Error (m) ktO ktl kt2 kt3 kt4

RGBD C-SLAM [22]

RMSE 0.036 - - - -
SD 0.017 - - - -
Min - - - - -
Max 0.208 - - - -
rSEC-SLAM [35]
RMSE 0.032 0.223 0.077 0.740 0.147
SD 0.014 0.120 0.047 0.349 0.074
Min 0.002 0.015 0.006 0.052 0.017
Max 0.067 0.619 0.218 1.572 0.472
rDEC-SLAM
RMSE 0.019 0.158 0.027 0.510 0.086
SD 0.008 0.087 0.011 0.252 0.048
Min 0.001 0.016 0.003 0.024 0.005
Max 0.055 0.440 0.059 1.282 0.248
rhDEC-SLAM
RMSE 0.046 0.150 0.062 0.760 0.272
SD 0.021 0.072 0.032 0.308 0.076
Min 0.003 0.026 0.032 0.141 0.130
Max 0.095 0.317 0.174 1.524 0.475
phDEC-SLAM
RMSE 0.030 0.146 0.029 0.516 0.127
SD 0.013 0.073 0.012 0.252 0.074
Min 0.003 0.011 0.002 0.043 0.012
Max 0.068 0.290 0.070 1.310 0.431

Bold indicates the best RMSE (root-mean-square-error metric) is
reached compared with the other SLAM methods

The proposed DEC-SLAM method obtains accurate results
on CoRBS sequences with all the model constraint for-
malisms, the objects of interest being polyhedral or curved.

6.4.2 ICL-NUIM dataset

The Imperial College London and National University of
Ireland Maynooth (ICL-NUIM) dataset [9] is a benchmark
created for a different context than object tracking evaluation.
The scene indeed corresponds to a living room as seen in Fig.
22a, a much larger object of interest than the ones we exploit
previously. However, even if this dataset is out of our context
and our DEC-SLAM is not necessarily well adapted for this
kind of scene when the object of interest is too large for the
camera field of view, it is able to run on these sequences. The
3D model of the scene is indeed available (Fig. 22b). The
ICL-NUIM sequences have a 640 x 480 resolution and are

(0 (d)

Fig.22 ICL-NUIM sequences [9]. a A frame from the ktl sequence. b
The 3D model of the living room used as a constraint in our solution. ¢, d
3D model projected on the kt1 and kt2 sequences with the (DEC-SLAM

recorded at 30 Hz. Images are synthetic but with real-world
lightning conditions. The sequences are also noisy according
to an RGB noise model to simulate the one providing of real
camera.

Table 8 describes the trajectory accuracy expressed with
the RMSE metric of [34] as for the CoRBS dataset, for
the living room sequences ktl and kt2. We compare our
rDEC-SLAM, rthDEC-SLAM and phDEC-SLAM to the
rSEC-SLAM of [35] and RGBD SLAM approaches such
as DVO [12], FOVIS [11], ICP of KinectFusion [26] and
finally, RGBD C-SLAM [22].

Trajectory errors for the ktO and kt3 living room sequences
are not presented in this paper. Our DEC-SLAM solution
does not exploit RGBD frames and is not able to estimate the
camera pose when this latter is looking at a planar textureless
region of the scene (walls) as it happens with these both
sequences (see Fig. 23).

However, accurate results are obtained for the ktl and
kt2 sequences with our DEC-SLAM and the different model
constraint formalisms. On ktl, the rDEC-SLAM and the
phDEC-SLAM have the second best trajectory error with
a RMSE of 0.018 m behind ICP solution [26] (RMSE equal
to 0.005 m). On kt2, the rDEC-SLAM has the best trajec-
tory error with the ICP approach and the rSEC-SLAM [35]
that corresponds to a RMSE equal to 0.010 m. Our phDEC-
SLAM as the second best trajectory accuracy with a RMSE
of 0.011 m.

Even if we do not exploit depth information, our DEC-
SLAM approach presents similar accurate results compared
with [26] and superior results to [11,12,22]. Moreover, the
mean 2D error of our DEC-SLAM on both sequences is
around 4 pixels, which is small enough for RA application.
The 3D model of the scene is globally well re-projected on
the images as seen in Fig. 22¢ and d.

@ Springer

1064

A.Loesch et al.

Table 8 Trajectory error for the
ktl and kt2 ICL-NUIM
sequences [9]

@ Springer

Error (m) ktl kt2
DVO [12]
RMSE 0.125 0.473
SD 0.037 0.175
Min 0.051 0.137
Max 0.200 0.834
FOVIS [11]
RMSE 1.868 1.495
SD 0.871 0.504
Min 0.333 0.270
Max 3.039 2.773
ICP [26]
RMSE 0.005 0.010
SD 0.002 0.004
Min 0.001 0.004
Max 0.011 0.015
RGBD C-SLAM [22]
RMSE 0.025 0.023
SD 0.015 0.011
Min - -
Max 0.087 0.093
rSEC-SLAM [35]
RMSE 0.024 0.010
SD 0.011 0.004
Min 0.003 0.001
Max 0.089 0.025
rDEC-SLAM
RMSE 0.018 0.010
SD 0.013 0.004
Min 0.000 0.001
Max 0.094 0.025
rhDEC-SLAM
RMSE 0.068 0.048
SD 0.038 0.017
Min 0.001 0.005
Max 0.157 0.077
phDEC-SLAM
RMSE 0.018 0.011
SD 0.012 0.005
Min 0.001 0.001
Max 0.091 0.034

Bold indicates the best RMSE
(root-mean-square-error metric)
is reached compared with the
other SLAM methods

(a) (b)

Fig.23 Our DEC-SLAM is not able to estimate camera poses when any
model information or environment keypoints are available to constrain
our method. Without depth information, our solution fails when the
camera is looking at planar textureless regions. a, b Frames from the
ICL-NUIM kt0 sequence [9]. The tracking is lost when only walls are
visible

7 Application

DEC-SLAM is useful to Augmented Reality (AR) applica-
tions for maintenance support, automation of complex tasks
or other quality controls. Our method is able to localize com-
plex static objects, but also objects with simple dynamic parts
thanks to dynamic edgelet generation (see Sect. 4). Thus,
more complex scenarios can be proposed to guide people
with AR applications. In the industry settings, objects of
interest may be composed of several parts, curved or not.
For example, in the petrochemical industry and in a mainte-
nance support scenario, a valve may be open or closed during
the sequence, or in a part assembly scenario, elements may
be piled up successively. In these cases, the objects of inter-
est have different states. To give suitable information, the AR
application has then to localize these object parts according
to the camera pose and their current state.

7.1 Automatic object part state estimation

In order to estimate the state of a movable object part, the
idea is to exploit 3D contours extracted from the 3D model
as presented in Sect. 4.

However, it is not enough to only compare the rate of
2D/3D matching between projected edgelets and image con-
tours for each potential state to estimate the current one.

Projected edgelets and 2D image contours are not per-
fectly aligned when the model is rendered in the current state
(see Fig. 24). The camera pose may be inaccurate, and the
3D model may not be identical to the object of interest, par-
ticularly when it is created by photogrammetry. The edgelet
extraction and the 2D contour detection may also be inac-
curate. The object state estimation is then not obvious. In
order to correctly estimate which edgelets from the different
rendered models correspond to the current state, and thus to
propose a robust state estimation, these contours alignments
issues have to be taken into account.

Localization of 3D objects using model-constrained SLAM

wyﬂr,ﬁ \\\

/i
4 / fd/@féffﬁ 2N \¢ ¥
A5 //im Fm

Fig. 24 Superimposition between projected edgelets from the current
state (red) and 2D image contours (blue) on the left, and between pro-
jected edgelets from a false potential state (green) and 2D contours on
the right. To estimate the accurate state of the valve, false-positive asso-
ciation as between edgelets from the potential state and the static part
of the object have to be considered (color figure online)

Table 9 Weights for the state estimation

Other potential states

2D/3D matching Same orientation No match Wrong orientation

One potential state

Same orientation 0 + +
No match — 0 +
Wrong orientation — — 0

Our state estimation approach is based on a score for
each potential state (open, closed or half open, for exam-
ple, in the case of a valve), computed as a weighted sum
of 2D/3D matches between edgelets and 2D contours. The
highest score defines the potential state as the accurate current
state. Since some associations must be irrelevant and disturb
the state estimation, our method does not seek to match an
edgelet to a contour pixel but the opposite. It aims to asso-
ciate each 2D contour pixel to edgelets extracted from the
different rendered models based on the potential states. In
a region of interest (ROI), 2D contours of the static part as
well as the movable one are analyzed in order to help the state
estimation. The 2D/3D matching step is performed between
a contour pixel and edgelets from all the potential model ren-
ders in the ROI. The resulting association states are defined
through a weight presented in Table 9 that follows.

Three different states can result from pixel/edgelet asso-
ciations. The first possibility is that no match is found. The
remaining two cases happen in the event of successful match-
ing, depending on whether or not the orientation between the
edgelet and the contour agrees. The weight according to a
2D/3D association between the given pixel and an edgelet
from a potential state depends on the association of this same
pixel with edgelets from the other potential states. The score
of each potential state corresponds to the sum of all the 2D/3D
correspondences weighted according to their status for every
2D contour pixels. Thus, a pixel with a 2D/3D association
having the same status for each potential state is not relevant
to estimate whether a state is actually the accurate current
state. Its weight is then null. A 2D/3D correspondence with

© |)

Fig. 25 Maintenance support on a bypass system with AR effect dis-
plays

the same orientation between a pixel and a projected edgelet
will have a positive weight if it exists only for one potential
state. It will have a negative weight for the other potential
states where it does not exist. Table 9 also shows that if a
noisy contour pixel has no match for a potential state but has
a 2D/3D association with a wrong orientation on the other
potential states, this correspondence is relevant and a positive
weight will be given for this no match.

7.2 Integration into an AR application

In an AR application, state estimation is performed during
a live sequence in addition to the other tasks as the camera
localization and the display of AR effects. It is also important
to have a real-time running application for user comfort.

To display virtual information in the AR application, the
camera pose has to be known. This camera localization is also
in our case needed to estimate the state of the movable parts.
The AR application is running on a multi-thread architecture
with a thread for the localization process corresponding to
our DEC-SLAM, an other one for the display and a last one
for the state estimation.

The presented application aims to guide a user in order to
replace a pH sensor. The sensor is integrated into a bypass
system. This device allows to deviate the liquid contained
into the pipes in order to change the pH sensor without leak.
The maintenance support scenario is as follows:

Open the bypass in order to let the liquid circulate.
Close the entrance of the main pipe to deviate the fluid.
Close the pipe exit.

— Change the pH sensor located in the main pipe.

Open the main pipe exit.

Open the main pipe entrance.

— Close the bypass.

@ Springer

1066 A.Loesch etal.

® @ (r)

Fig. 26 Accurate localization results on a Raving Rabbid, a dragon, SLAM. The accuracy can be appreciated by the projection of the 3D
a sport car, a real-sized car, a car cylinder head, and an orthosis with blue models on the object of interest in the images (color figure online)

our phDEC-SLAM. Results are similar with rDEC-SLAM and rhDEC-

@ Springer

Localization of 3D objects using model-constrained SLAM

1067

The application has to detect the bypass state (open/close),
validate automatically the different steps of the scenario and
show the next move to the user. The application user can see
through a tablet screen different AR effects like the fluid cir-
culation according to the valve state in red, or actions to do
on the valves and the pH sensor in green (see Fig. 25). Addi-
tional data are given in the fifth part of Online Resource 1.

8 Conclusion and perspectives

In this article, a real-time solution for camera localization rel-
ative to polyhedral and curved industrial object is proposed. A
keyframe-based SLAM algorithm is presented with a model
constraint improving the tracking accuracy.

This constraint is enforced through the integration of
dynamic edgelets extracted by rendering on the graphic hard-
ware. They are sampled to guarantee homogeneous spatial
and angular distributions and to prevent the inclusion of
ambiguous edgelets in matching steps of the DEC-SLAM
algorithm. Two different formalisms in addition to the re-
projection error representation are proposed to integrate the
model constraint in the optimization process. They cor-
respond to hybrid model/trajectory constraint expressions
that exploit the output of a model-based tracker, optimized
according to the dynamic edgelets. They reduce the memory
footprint of the DEC-SLAM while achieving similar accu-
racy. Our solution has been tested on several polyhedral and
curved objects to attest its genericity. Experimental results
demonstrate that our solution is as robust and accurate as
rSEC-SLAM [35] exploiting static edgelets extracted offline
from sharp model edges and using a re-projection error for-
malism. In addition, the hybrid constraint representations are
able to drastically reduce the memory consumption and the
computation time. Our experiments demonstrate high accu-
racy that enables convincing Augmented Reality applications
(Fig. 26).

As further work, we aim to focus on larger object to track
as power plants or pipelines, or more rooms with available
3D models as with the ICL-NUIM dataset. Dealing with big
objects may be indeed a challenging task. Whereas our DEC-
SLAM solution proposes an accurate localization with local
optimization when tracked objects are relatively small, it is
not necessarily the case when objects are too large for the
camera field of view. Potentially significant drifts over time
may occur because of not well constrained DoF. Localization
error may then accumulate itself, needing local and global
corrections. However, with the use of our hybrid constraint
formalisms light in memory consumption and with the use
of a model-based tracking of the large object of interest, a
global optimization of the trajectory may be possible when
localization error occurs.

Acknowledgements This work was partly funded by the french
research program FUI through the projects NASIMA and SEEMAKE.
The authors would also like to thank their project partners Diotasoft and
Faurecia for providing the car seat sequence.

References

1. Bleser, G., Stricker, D.: Advanced tracking through efficient image
processing and visual-inertial sensor fusion. Comput. Graph. 3(1),
59-72 (2009)

2. Bleser, G., Wuest, H., Strieker, D.: Online camera pose estimation
in partially known and dynamic scenes. In: International Sympo-
sium on Mixed and Augmented Reality (2006)

3. Drummond, T.: Lie groups, lie algebras, projective geom-
etry and optimization for 3D geometry, engineering and
computer vision. https://www.dropbox.com/s/5y3tvypzps59s29/
3DGeometry.pdf?dl=0 (2014). Accessed 26 June 2018

4. Drummond, T., Cipolla, R.: Real-time visual tracking of complex
structures. PAMI 24(7), 932-946 (2002)

5. Eade, E.: Lie groups for computer vision. http://ethaneade.com
(2014). Accessed 26 June 2018

6. Finsterle, S., Kowalsky, M.: A truncated Levenberg Marquardt
algorithm for the calibration of highly parameterized nonlinear
models. Comput. Geosci. 37(6), 731-738 (2011)

7. Gay-Bellile, G., Bourgeois, S., Tamaazousti, M., Naudet-Collette,
S., Knodel, S.: A mobile markerless augmented reality system for
the automotive field. In: International Symposium on Mixed and
Augmented Reality Workshop (2012)

8. Hajagos, B., Szcsi, L., Csbfalvi, B.: Fast silhouette and crease edge
synthesis with geometry shaders. In: Spring Conference on Com-
puter Graphics (2013)

9. Handa, A., Whelan, T., McDonald, J., Davison, A.: A bench-
mark for RGB-D visual odometry, 3D reconstruction and SLAM.
In: International Conference on Robotics and Automation. Hong
Kong, China (2014)

10. Hertzmann, A.: Introduction to 3D non-photorealistic rendering:
Silhouettes and outlines. In: Special Interest Group on Computer
GRAPHics and Interactive Techniques (1999)

11. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D.,
Fox, D., Roy, N.: Visual odometry and mapping for autonomous
flight using an RGB-D camera. In: International Symposium on
Robotics Research (2011)

12. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for
RGB-D cameras. In: International Conference on Robotics and
Automation (2013)

13. Klein, G., Murray, D.: Full-3D edge tracking with a particle filter.
In: British Machine Vision Conference (2006)

14. Klein, G., Murray, D.: Parallel tracking and mapping for small
AR workspaces. In: International Symposium on Mixed and Aug-
mented Reality (2007)

15. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid
objects: a survey. Found. Trends Comput. Graph. Vis. 1(1), 1-89
(2006)

16. Levenberg, K.: A method for the solution of certain non-linear
problems in least squares. Q. Appl. Math. 2(2), 164—168 (1944)

17. Lhuillier, M.: Incremental fusion of structure-from-motion and
GPS using constrained bundle adjustments. Pattern Anal. Mach.
Intell. 34(12), 24892495 (2012)

18. Li, G., Tsin, Y., Genc, Y.: Exploiting occluding contours for real-
time 3D tracking: A unified approach. In: International Conference
on Computer Vision (2007)

19. Loesch, A., Bourgeois, S., Gay-Bellile, V., Dhome, M.: Generic
edgelet-based tracking of 3D objects in real-time. In: Intelligent
RObots and Systems (2015)

@ Springer

https://www.dropbox.com/s/5y3tvypzps59s29/3DGeometry.pdf?dl=0
https://www.dropbox.com/s/5y3tvypzps59s29/3DGeometry.pdf?dl=0
http://ethaneade.com

1068

A.Loesch et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Loesch, A., Bourgeois, S., Gay-Bellile, V., Dhome, M.: A hybrid
structure/trajectory constraint for visual slam. In: 3D Vision (2016)
Lothe, P, Bourgeois, S., Dekeyser, F., Royer, E., Dhome, M.:
Towards geographical referencing of monocular slam reconstruc-
tion using 3D city models: application to real-time accurate
vision-based localization. In: Computer Vision and Pattern Recog-
nition (2009)

Melbouci, K., Collette, S.N., Gay-Bellile, V., Ait-aider, O., Dhome,
M.: Model based RGBD SLAM. In: International Conference on
Image Processing (2016)

Middelberg, S., Sattler, T., Untzelmann, O., Kobbelt, L.: Scalable
6-DOF localization on mobile devices. In: European Conference
on Computer Vision (2014)

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.:
Real time localization and 3D reconstruction. In: Computer Vision
and Pattern Recognition (2006)

Mur-Artal, R., Montiel, JJM.M., Tards, J.D.: ORB-SLAM: a ver-
satile and accurate monocular SLAM system. Trans. Robot. 31(5),
1147-1163 (2015)

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,
Davison, A.J., Fitzgibbon, A.: Kinectfusion: Real-time dense sur-
face mapping and tracking. In: International Symposium on Mixed
and Augmented Reality (2011)

Nienhaus, M., Doellner, J.: Edge-enhancement—an algorithm for
real-time non-photorealistic rendering. J. WSCG 11(2), 1-3 (2003)
Oikawa, M.A., Taketomi, T., Yamamoto, G., Fujisawa, M., Amano,
T., Miyazaki, J., Kato, H.: Local quadrics surface approximation
for real-time tracking of textureless 3D rigid curved objects. In:
Symposium on Virtual and Augmented Reality (2012)

Petit, A., Marchand, E., Kanani, K.: Combining complementary
edge, point and color cues in model-based tracking for highly
dynamic scenes. In: International Conference on Robotics and
Automation (2014)

Press, W.H. Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.
Numerical Recipes: The Art of Scientific Computing, 3rd edn, pp.
282-283. Cambridge University Press, Cambridge (2007)
Ramadasan, D., Chevaldonne, M., Chateau, T.: Dcslam: A dynam-
ically constrained real-time SLAM. In: International Conference
on Image Processing (2015)

Raskar, R.: Hardware support for non-photorealistic rendering. In:
Special Interest Group on computer GRAPHics and Interactive
Techniques Workshop on Graphics hardware (2001)
Stanimirovic, D., Damasky, N., Webel, S., Koriath, D., Spillner, A.,
Kurz, D.: [Poster] A mobile augmented reality system to assist auto
mechanics. In: International Symposium on Mixed and Augmented
Reality (2014)

Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.:
A benchmark for the evaluation of RGB-D SLAM systems. In:
Intelligent Robots and Systems (2012)

Tamaazousti, M., Gay-Bellile, V., Collette, S.N., Bourgeois, S.,
Dhome, M.: Real-time accurate localization in a partially known
environment: application to augmented reality on textureless 3D
objects. In: International Symposium on Mixed and Augmented
Reality Workshop (2011)

Tamaazousti, M., Gay-Bellile, V., Naudet-Collette, S., Bourgeois,
S., Dhome, M.: Nonlinear refinement of structure from motion
reconstruction by taking advantage of a partial knowledge of the
environment. In: Conference on Computer Vision and Pattern
Recognition (2011)

Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle
adjustment—a modern synthesis. In: International Conference on
Computer Vision (2000)

Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture infor-
mation for real-time accurate 3D camera tracking. In: International
Symposium on Mixed and Augmented Reality (2004)

@ Springer

39. Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3D tracking using
online and offline information. Pattern Anal. Mach. Intell. 26(10),
1385-1391 (2004)

40. Wasenmuller, O., Meyer, M., Stricker, D.: CoRBS: comprehensive
RGB-D benchmark for SLAM using Kinect v2. In: Winter Confer-
ence on Applications of Computer Vision. http://corbs.dfki.uni-kl.
de/ (2016). Accessed 26 June 2018

41. Wuest, H., Wientapper, F., Stricker, D.: Adaptable model-based
tracking using analysis-by-synthesis techniques. In: Computer
Analysis of Images and Patterns (2007)

Angelique Loesch received PhD degree in computer science from
the University Blaise Pascal, Clermont-Ferrand, France. She did her
research in partnership with the Pascal Institute under the supervi-
sion of Professor Michel Dhome and Doctors Steve Bourgeois and
Vincent Gay-Bellile. She is currently a permanent researcher at CEA
LIST. Her main research interests include simultaneous localization
and mapping, 3D object tracking, as well as visual perception with
deep learning (detection, tracking, classification, recognition).

Steve Bourgeois received PhD degree in computer vision from the
University Blaise Pascal, Clermont-Ferrand, France, in 2006 under the
supervision of Professor Michel Dhome. He is currently a permanent
researcher at CEA LIST where he works on industrial projects and
supervises PhD students. His main research interests include simulta-
neous localization and mapping, 3D object tracking and their applica-
tions in augmented reality and robotics.

Vincent Gay-Bellile received PhD degree in computer science from
the University Blaise Pascal, Clermont-Ferrand, France, in 2008. He
did his research in partnership with the LASMEA and LSVE lab-
oratory under the supervision of Professors Jean-Thierry Lapresté,
Adrien Bartoli and Doctor Patrick Sayd. He is currently a permanent
researcher at CEA LIST. His main research interests include structure
from motion for rigid scenes, real-time vision-based localization and
reconstruction (SLAM) for autonomous system.

Olivier Gomez received a masters degree in computer science from the
University of Burgundy, Dijon, France. He is currently a permanent
engineer/researcher at CEA LIST. He focuses on hardware specifica-
tion and concerns about real-time, memory-efficient code mainly for
applications using vision-based localization and reconstruction
(VSLAM).

Michel Dhome aged 60 years, is a senior researcher of the French
National Council for Scientific Research (CNRS). From 2005 to 2011,
he was the head of the Laboratory of the Sciences and Materials
for Electronics, and for Automatic (LASMEA) of Clermont-Ferrand.
From 2012 to 2016, he was the head of a new laboratory « Pascal
Institute » of Clermont-Ferrand (union of three old laboratories—
300 people). He is actually the head of the laboratory of excellence
IMobS3, research program on “Innovative Mobility: Smart and Sus-
tainable Solutions”, involving seven laboratories working in the
mechanics, automatics, electronics, computer sciences and process engi-
neering. He is also the head of FACTOLAB which is a common labo-
ratory between IMobS3 and the French manufactory of tires MICHE-
LIN. His main scientific contributions concern essentially the domain
of the « Artificial Perception », with the « Robotics » as main field
of application. His activity can be classified according to the follow-
ing four topics: - Auto-calibration of video cameras; - Complex 3D
objects alignment on video sequences; - Real-time tracking of textured
objects; - Artificial vision approaches for the autonomous vehicles
guidance. He has published more than 200 scientific publications and
has 6 patents.

http://corbs.dfki.uni-kl.de/
http://corbs.dfki.uni-kl.de/

	Localization of 3D objects using model-constrained SLAM
	Abstract
	1 Introduction
	2 Related work
	2.1 Model-based tracking methods
	2.2 Constrained SLAM solutions
	2.2.1 Keyframe-based SLAM
	2.2.2 Constrained bundle adjustment

	3 Overview and contributions
	3.1 Dynamic edgelet extraction
	3.2 Model constraint representations
	3.2.1 Re-projection formalism
	3.2.2 Hybrid model/trajectory constraint formalisms

	3.3 Optimization process
	3.4 Roadmap and contributions

	4 Dynamic edgelet extraction
	4.1 Edgelet generation
	4.1.1 Edgelet probability
	4.1.2 Matching probability
	4.1.3 3D edgelet orientation
	4.1.4 Edgelet sampling
	4.1.5 Implementation details

	5 Model constraint representations
	5.1 Hybrid model/trajectory constraint formalisms
	5.2 First approximation
	5.3 Second approximation

	6 Experimental results
	6.1 Synthetic data presentation
	6.2 Evaluation of our DEC-SLAM framework
	6.2.1 Edgelet orientation comparison
	6.2.2 Sampling strategy comparison
	6.2.3 Edgelet data transfer time comparison
	6.2.4 Robustness to erroneous model constraint
	6.2.5 Comparison to a model-based tracking
	6.2.6 Comparison to rSEC-SLAM
	6.2.7 Tracking genericity evaluation

	6.3 EC-SLAM comparison
	6.3.1 Computation time evaluation
	6.3.2 Memory consumption comparison
	6.3.3 Accuracy evaluation

	6.4 Evaluation on public datasets
	6.4.1 CoRBS dataset
	6.4.2 ICL-NUIM dataset

	7 Application
	7.1 Automatic object part state estimation
	7.2 Integration into an AR application

	8 Conclusion and perspectives
	Acknowledgements
	References

