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Abstract
EEG-based lie detectors have become popular over polygraphs because it cannot be controlled by human intentions. Various
studies have performed “Guilty Knowledge Test” or “Concealed Information Test” by creating a mock crime scenario to
identify changes in brain potential. In this study, an individual’s behavior during lying is analyzed and a new scenario is
developed for “Concealed Information Test.” This work involves a mock crime scenario using an EEG acquisition device for
10 participants. Data acquisition has been performed by placing 16 electrodes on the subjects’ scalp. For this experiment,
the subject has to recognize faces of some known and unknown personalities among 10 images flashed. These images
behave as stimulus for the subject which generate corresponding brain responses. Various feature extraction approaches
such as statistical, time domain, frequency domain and time–frequency domain are applied to the 16- channel EEG data.
For classifying a subject as guilty or innocent, five classifiers have been applied on subject-wise EEG data. Moreover, the
classifiers’ ranking is considered based on the performance of classifiers. An ensemble framework is developed by aggregating
the results of the best three classifiers out of the tested five classifiers. The classifiers’ results are aggregated using a weighted
voting approach and have been compared with popular conventional approaches using various classification performance
measures. Results present a comparative performance of different feature extraction approaches and classifiers using subject-
wise single-trial EEG data. The wavelet approach performs better for EEG data of most of the subjects. A comparison between
base classifiers and ensemble framework is provided with the ensemble approach outperforming over the base classifiers.
Further proposed framework is compared with some existing approaches, and a highest accuracy of 92.4% has been achieved.

Keywords Electroencephalography · Event-related potential · Lie detection · Feature extraction · Ensemble classification

1 Introduction

Over the years, significant research has been conducted aim-
ing at improving the interface betweenhumans andmachines.
An interface aiming at developing coordination and correla-
tion betweenman and his brain has been evolved by the name
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brain–computer interface (BCI). When our brain responds to
an event or activity, a difference in potential is generated.
This difference in potential is nothing but transmission of a
message from one synapse to another through the release of
a chemical. Movement of chemical inside brain cells gener-
ates brain potential or brain signal, which is then recorded via
acquisition devices. There are several different techniques to
record the brain signals or potentials.

Few commonly used noninvasive acquisition techniques
include electroencephalograph (EEG), magnetoencephalog-
raphy and functional magnetic resonance imaging. Invasive
techniques such as electrocorticography (ECoG) place elec-
trodes beneath the scalp, whereas noninvasive techniques as
discussed above place electrodes on the scalp and are safe and
easy to use [1].Various types of brain potentials are generated
depending on the type of events/stimuli/commands given
to the brain. One of them is event-related potential (ERP)
which is a psychological response, originateddue to the reflex
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generated in the brain on performing some mental activity or
observing something familiar. Using the advantage of ERP,
lie detectors have been developed which, by analyzing vari-
ation in brain signals, identifies whether a subject is guilty
or not. In the past, polygraph-based lie detectors were avail-
ablewhich analyzes human behavior like sweating, increased
heart rate. But this indirect view was not successful in classi-
fying a subject as guilty or innocent. ERP-based lie detectors
provide a direct view to understand and detect deception.

An ERP component called P300 is usually identified by
researchers for lie detection [2,3]. P300 is a response which
is generated between 300 and 1500 ms on the occurrence of
somemeaningful stimulus or “oddball stimulus” [2]. “Guilty
Knowledge Test (GKT)” or “Concealed Information Test
(CIT)” is conducted to detect whether the given subject is
guilty or innocent. To perform CIT, subjects are trained for a
mock crime scene where three different stimuli are randomly
given to the subject, i.e., target, irrelevant and probe. Target
stimulus is recognized by guilty and innocent; the probe is
crime-related stimulus which is identified by guilty only, and
irrelevant stimulus is not related to crime and is unidentified.
Out of the total stimuli given to a subject, 70% is irrelevant
and rest includes probe and target [2]. Probe and target are
rarely occurring meaningful stimuli; hence, they will gener-
ate P300 wave and the irrelevant stimulus will not generate
any P300 component.

For the guilty subject, probe and target stimuli will gen-
erate a P300 response, whereas, for the innocent subject,
only target stimulus will generate a P300 response. Many
methods have been applied to analyze probe, irrelevant and
target responses and identify whether responses are gener-
ated from guilty or innocent subject. We have categorized
these methods into two approaches— statistical approaches
and machine learning approaches.

1.1 Statistical approach

1.1.1 Bootstrapping techniques

Bootstrapping is a statistical technique to measure the sim-
ilarity between the brain responses generated by stimuli
presented to any subject. It is applied by randomly sampling
the parameters with various iteration. A “double centered
correlation” method [3] has been applied by Farwell et al.,
where they found a correlation between probe and irrele-
vant and between probe and target response. A conclusion
has been made that if the correlation between probe and tar-
get stimuli is greater than the correlation between probe and
irrelevant stimuli, then the subject is guilty and vice versa.
A different mock crime scenario has been developed where
instead of two groups, three group mock crime scenario have
been conducted. One group was guilty, the other was inno-
cent, and the third group was a countermeasure group, which

had the freedom to perform any covert responses for irrele-
vant stimuli. To identify concealed information, “bootstrap
amplitude method” has been applied by authors. Average
of ERP amplitude is calculated from probe set (randomly
with replacement) and from the irrelevant set (randomly with
replacement) [4,5]. The average of ERP from probe set and
the irrelevant set is subtracted, and the process is iterated for
100 times.With 95% confidence, if the difference of the aver-
ageof probe setwith irrelevant set is greater than zero, a guilty
decision is made. Similar bootstrapping method, known as
“bootstrap reaction time,” was used by authors where instead
of amplitude difference, reaction time was considered [4].

1.1.2 Analysis of variance

Analysis of variance (ANOVA) is used to analyze the differ-
ence between the means (i.e., variance) of various groups.
The variance is partitioned into components attributable to
different sources of variation; hence, it is useful for com-
paring the variance of several groups. Using its advantage,
ANOVA has been applied to ERP responses [6]. A CIT using
“cards” has been conducted by authors, where different suit
cards were either probe or irrelevant. From a pack of cards,
five selected cards and a joker card were presented as target
stimulus.

Peak values of EEGwaves have been considered as amea-
sure of identification of deception in many research works
[5–7]. Signal peak alone is not enough to explain various
characteristics of ERP responses generated while testing
deception. EEG data are also affected by the noise like ocular
artifacts or muscular artifacts making it difficult to analyze
theERP responsegeneratedby stimuli. Toovercome the issue
of noise removal, machine learning techniques are applied
which reduces noise from EEG data. Many authors have
worked on removal of artifact and classification of EEG data,
which is being discussed in the succeeding paragraph.

1.2 Machine learning approach

Machine learning approaches have become another tool for
CIT as it analyzes the signal for each trial. A GKT [3] has
been applied by Abootalebi et al. [2] in their work. Instead
of analyzing only peak values, a set of relevant features from
EEG data have been extracted. Morphological features like
latency, amplitude, the ratio of latency and amplitude; fre-
quency features like mean, mode, the median of frequency;
and wavelet features are extracted from EEG waveform. But
all the features do not give exact information about the data
and do not provide better classification accuracy. Hence,
genetic algorithm [2] has been applied for feature selec-
tion and further statistical classifier is applied to classify
data as innocent or guilty. In another work, genetic algo-
rithm for feature selection has been applied [8]. “Empirical
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Mode Decomposition (EMD)” has been applied for feature
extraction on P300 responses. EMD decomposes a signal
into components called “Intrinsic Mode Functions (IMFs).”
The IMFs are frequency or amplitude modulated waveforms
which provide the physical characteristics of a wave. IMFs
have been used as features and post-feature selection LDA
has been applied as a classifier.

To resolve the issue of denoising EEG data, independent
component analysis (ICA) has been used to remove noisy
components [9]. ICApartitions data into various independent
components (ICs) and spatial map sets or categorizes EEG
data into task related and task unrelated. But there has been
an issue in identifying the difference between task-related
and the unrelated components. To overcome this issue, a
template matching method has been devised [9]. The spa-
tial map set which is similar to the template is selected from
different guilty subjects for different stimuli and these are
regarded as P300 ICs, by which the P300 and non-P300
responses with high SNR are reconstructed at sensors. A
birthday paradigm for CIT has been applied considering
time constraint with accuracy to predict the deception [10].
Nonparametric-based feature extraction with LDA and KNN
as classifier has been used. A spare representation method
has been used on irrelevant and target ERP responses for sin-
gle subject [11]. In [12], genetic SVM as classifier has been
applied to identify guilty subject using a novel CIT method.
The author in [13] also proposed a novel association-based
CIT having similarities with reaction time–CIT, which con-
siders reaction time differences between irrelevant and probe
stimuli.

A single classifier gives a good performance, but combin-
ing various classifiers in an ensemble framework provides
near to optimal results. Hence, we have applied ensemble
classification approach in our work to obtain better results.
Ensemble classificationmethods like bagging, boosting, ran-
dom forest have been applied by many authors on different
datasets. Bagging [14] combines various machine learning
approaches to design one model by decreasing its variance,
whereas boosting [15] decreases the bias values. Boosting
and bagging were applied by [16] on 23 datasets using deci-
sion tree and neural networks. They showed that ensemble
methods provide consistent results with single classifiers.
Another ensemble approaches random forest (RF) [17], con-
structed multiple decision trees at training time, and gives a
class label as output which takes mean or mode of multiple
decision trees.

An ensemble framework has been proposed, where five
classifiers, namely LDA, SVM, MLFFNN, KNN and naïve
Bayes, have been applied to EEG data. Later, classification
ranking has been applied and results of three best classifiers
have been aggregated usingweighted voting (WV) approach.
In this study, we have recorded EEG signals by conduct-
ing a CIT and detailed explanation of it is given in Sect.

2. Brain signals are affected by a lot of noise; therefore,
noise removal followed by feature extraction and proposed
classification framework has been discussed in Sect. 3. The
result of the proposed framework is given in Sect. 4. Later
sections provide conclusion and future work followed by ref-
erences.

2 Data acquisition

2.1 Subjects

An EEG-based CIT experiment has been conducted where
10 participants bearing age between 23 and 35 participated.
No medical record of any psychological disorder was found
with subjects, and they were having normal or corrected
vision. Subjects are given a brief description of the complete
experimental procedure. Before beginning the experimental
procedure, subjects have given in written for their consent
to this experiment. The EEG data recording is done by plac-
ing Ag/AgCl electrodes at Fz, FC1, FC2, C3, Cz, C4, CP5,
CP1, CP2, CP6, P3, Pz, P4, O1, Oz and O2 sites (10–20
international system).

To record vertical electro-occulograph (VEOG) and hor-
izontal electro-occulograph (HEOG), a signal was recorded
from right eye, for VEOG above and below the eye and for
HEOG from outer canthus. An electrode placed on mastoid
for reference and an electrode on the forehead as ground. For
signal acquisition, we have used EasyCap [18] (a 32-Channel
EEG Standard Cap Set (Munich, Germany)), a V-amp ampli-
fier, set of 16 electrodes and brain vision recorder [19].
Electrode placement protocol is similar as in [9].

Before execution of experiment, subjects are randomly
grouped under to the “guilty” and “innocent” groups for two
experimental sessions. All 10 participants behave as inno-
cent for one session consisting of 30 trials and guilty for
second session consisting of 30 trials. For a total of 60 trials,
subjects are presented with a set of images of some known
and unknown personalities for 31 seconds. Three types of
stimulus are presented to the subjects:

• Probe stimulus: It is a crime-related stimulus which is
presented rarely and generates a P300 response for guilty
subjects. Here, probe is an image of a known person
(images of the person from institute)

• Target stimulus: This stimulus is familiar to all subjects,
as it is given to maintain the concentration of the subject
in the experiment. Target will generate a P300 response
for both guilty and innocent subjects. For the experiment,
images of well-known personalities or celebrities have
been used as target

• Irrelevant stimulus: This stimulus is not related to crime
and does not generate any ERP response that is guilty
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Fig. 1 Trial structure

or innocent. These are random images downloaded from
internet sources. For the innocent subject, responses gen-
erated from probe and irrelevant stimuli will be same.

In the initial phase of the experiment, subjects are trained
for a mock crime scenario. They are trained as they have
committed a crime with the person whom they know (i.e., a
well-known colleague from college). There are 10 images
to be presented to subjects where one image is a probe,
two of them are target and rest are irrelevant. These images
are presented to subjects on a 15.4-inch display screen. The
images of known persons will act as a probe, and this will
generate P300 response in the brain. Also, target images
(celebrity images) will generate P300 response, whereas the
images of random unknowns, i.e., irrelevant stimuli, will
generate a non-P300 response. These generated responses
are hence recorded and analyzed using brain vision ana-
lyzer.

Images were presented for 31 seconds; each stimuli image
remained on screen for 1.1 second with 2 second inter-
stimulus period (Fig. 1) [2]. On observing the stimulus,
subject is instructed to respond “yes” or “no.” For probe stim-
uli, subjects who replied “no” indicates that they are lying.
The probe is presented rarely, and these images are related to
crime and hence will generate P300. For irrelevant stimuli,
also subject has to reply “no” which represents that they are
speaking the truth. As irrelevant stimuli are mostly occurring
and are not related to crime, hence it will not generate P300
responses. For target stimuli, subjects are instructed to reply
“yes” as they identify the target stimuli image. As the target
is also rarely occurring and is not related to crime, but famil-
iar to the subject, hence P300 responses will generate for the
same.

Subjects go through a practice session of 5 min in which
they perform few trials of the task identical to the full
experiment as described above. After the training session,
experiments are conducted of 30 trials as innocent and 30
trials as guilty. The complete experimental procedure devel-
oped in our work is depicted in Fig. 2. The experiment has
been conducted for two sessions for each subject.

2.2 Signal preprocessing

Before proceeding for analysis of CIT data, EEG signal is
preprocessed for artifact removal. VEOG- and HEOG-based
ocular artifacts are corrected using brain vision analyzer. Fur-
ther, to remove other noise mixed with the signal, we have
applied bandpass filter on our data. The bandpass filter is
applied from a range of 0.3–30Hzwhichwill eliminate high-
frequency bands from the raw signal. This frequency range
is mostly observed during mental tasks [4]; hence, bandpass
filter is applied for this range.

Signals acquired using EEG device are hence converted
into (.)mat form using Brain Vision Analyzer 2.1 [19]. Fur-
ther, the feature extraction and classification are done using
MATLABR2015a on Intel i7 processor with 8 GBRAM and
64-bit Windows 10 Pro platform.

3 Proposed approach

This section describes about the proposed ensemble frame-
work and discusses about the various feature extraction
approaches applied.

3.1 Feature extraction

The EEG data have been recorded from 16 channels of 10
subjects (S-1 to S-10), but data of subject 6 (S-6) has not been
considered for whole study process, due to the presence of
lots of artifacts. Hence, we analyzed 16-channel data of 9
subject (9 × 16) for 30 trials from two sessions (truth ses-
sion and lie session). Various statistical andmachine learning
approaches for feature extraction have been applied. Statis-
tical approaches alone are not sufficient to provide all the
information of the signal; hence, we have combined it with
variousmachine learning approaches and have tried to extract
features from every domain of the signal. Following set of
feature extraction methods have been used for the study:
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3.1.1 Potential or amplitude

Potential gives themaximumpeak values at any time instant t
[2,6]. Let x(t) represents the EEG signal at any time instance
t. Potential (P(x(t)) is given as:

P(x(t)) = maxpeak(x(t)) (1)

3.1.2 Power

Power gives the energy of the signal which is given by the
square of potential value (E(x(t)))

E(x(t)) = (P(x(t))2 (2)

3.1.3 Frequency response

Frequency response μ(x(t)) [20] calculated using fast
Fourier transform (FFT) gives complex values. Hence, mag-
nitude of frequency is calculated as given in Eqs. 3–5.

X [N ] = �M−1
m=0 x(m)WmN (3)

x(m) = 1

S
�M−1

N=0 X [N ]W−mN (4)

where N = 0, 1, . . . , M − 1 and S is number of samples in
t time

μ(x(t)) = abs(x(m)) (5)

3.1.4 Hjorth features

Hjorth [21] developed three statistical parameters using time
domain. We have used two of them, i.e., mobility and com-
plexity, for extracting time features of EEG signals. The
parameters are used for EEG feature extraction earlier for
emotion recognition by [20]. Mobility gives root of ratio of
“derivative of variance of signal” with “variance of signal,”
and complexity provides ratio of derivative of mobility to
mobility of signal. Value of complexity lies in range of [0,
1], and 1 shows that signal is similar to sine wave

Mobility

M(x(t)) =
√

σ(x ′(t))
σ (x(t))

(6)

where x ′(t) represents differential of x(t) and σ represents
variance of the data.
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Complexity

C(x(t)) = M(x ′(t))
M(x(t))

(7)

3.1.5 Wavelet transform

All the features explained above consider only time domain
characteristics of ERP response. As ERP waveform has both
time and frequency characteristics, nowadays authors are
considering wavelet-like approaches [2]. Discrete wavelet
transform (DWT) decomposes a signal into a variable fre-
quency range which is represented in approximation or detail
levels. For first-level decomposition, “approximation coeffi-
cients” consider high-frequency components, while “detail
coefficients” consider low-frequency components of the sig-
nal. For next level, detail values are again decomposed into
approximation and detail coefficients, and this process is con-
tinued for the number of levels assigned. DWT conserves
time information while considering frequency components
of signals. DWT has been applied to 4 levels using “db2”
wavelet. After applying wavelet transform for 4 levels, the
output vector consists of a set of approximation coefficients
and four sets of detail coefficients which are used as the fea-
ture vector. For each trial, we received a large number of
approximation and detail coefficient in the range of 0.5 to 30
Hz. Hence, root-mean-square value [20] of wavelet coeffi-
cients has been calculated and used as a feature.

Wv =
√

�N
i=1

C2
i

Ni
(8)

whereCi are wavelet coefficients and N gives a total number
of coefficients generated from all levels.

3.2 Classification

For EEG-based CIT data, subjects are classified into two
classes: innocent and guilty. A classifier can perform well on
a particular dataset, while the same classifiermay give unpro-
ductive results with some other dataset. Hence, one cannot
predict the performance of a classifier for a dataset [22].
Many classifiers are available in the literature that outperform
while dealing with binary classes. Previous CIT- based stud-
ies use LDA [8], SVM [9], KNN [10] as classifiers. In order
to improve the performance of our system, we proposed an
ensemble framework for lie detection, in which the decision
of innocent or guilty is taken by aggregating the performance
of different classifiers. Ensemble classification provides
better performance as compared to single classifier perfor-
mance [23]. Ensemble framework can be structured either
by combining the same type of classifiers, i.e., homogeneous

framework, or by combining different types of classifiers,
i.e., heterogeneous framework. Here, in our work we have
applied heterogeneous ensemble framework, by combining 5
classifiers, namely LDA, SVM, multilayer feedforward neu-
ral network (MLFFNN), KNN and naïve Bayes (NB).

3.2.1 Linear discriminant analysis (LDA)

LDA [24] is a typical linear classification technique, which
provides separability by drawing decision region between
data of two classes. To assure the maximum separability,
it tries to optimize the ratio of within-class scatter to the
between-class scatter. LDA searches for a linear solution to
separate the data into classes.

3.2.2 Support vector machines (SVM)

SVM[25] is a non-probabilistic linear classification approach
which chooses an optimal separating hyperplane such that
it maximizes the distance between data points of different
classes. To construct the best solution for separating hyper-
plane, training data points are used which are considered
as vectors or support vectors. These support vectors help
in determining the width of the hyperplane. SVM can be
extended for the cases where data are not separated by a
hard margin. Hence, a trade-off parameter is used which
allows margin to be flexible and separates nonlinearly sepa-
rable data. In addition to that, SVM can be used to classify
nonlinear data using kernel trick. This is the reason behind
extensive use to SVM as it achieves to an optimal solution
for both linear and nonlinear data.

3.2.3 Multilayer feedforward neural network (MLFFNN
or NN)

MLFFNN is successfully used in classification tasks, feature
extraction, pattern mapping, etc. It takes input, processes it
and produces an output. Various layers called hidden layers
are added between input and the output layer to improve
performance of the system. The nodes from input to output
carry some weights. These weights are adjusted until the
network reaches to an optimal solution. MLFFNN [26,27]
consists of one input layer, one output layer andmany hidden
layers. At the output layer, an activation function is applied
which processes the final output. The activation function can
be a linear or a nonlinear function according to the specified
problem.

3.2.4 k-nearest neighbor

KNN [28] is a nonparametric classification approach that
classifies test data into a particular class based on class of
majority of its neighbors. To identify the class of given data
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point, k number of neighbors are chosen using different
distance-based approaches like Euclidean distance, Maha-
lanobis distance, Manhattan distance. The k is a constant,
which can be selected based on the number of data points to
be classified. There is no predefined technique to calculate
the value of K, and it is selected heuristically. KNN is best
suitable for low-dimensional data.

3.2.5 Naïve Bayes

NB [29] is a probabilistic classification approach which uses
the concept maximum likelihood and is based on Bayesian
theorem. It considers the conditional probability model to
classify a data into various classes. It is generally suitable for
high- dimensional data.

3.3 Ensemble framework

For any particular dataset, classifiers discussed above per-
form differently. Hence, we are unable to predict which
classifiermay have better classification performance. Ensem-
ble is a strong approach to achieve the optimal solution for
every dataset [30]. Above discussed, five classifiers are com-
bined to form a heterogeneous ensemble framework (Fig. 3)
for classification of CIT-based EEG data. LDA provides the
best solution for linearly separable data, SVM gives optimal
solution by using a trade-off parameter, NN provides nonlin-
ear data classification by making use of activation functions
and synaptic weights, naíve Bayes classifies data on basis of
its prior probability, and KNN uses distance as a measure to
classify data. Hence, by combining these different properties
of five different classifiers, we have tried to obtain a near to
optimal solution for our dataset. There are three approaches
which aggregate results of base classifiers, as follows:

• Majority voting: It takes the decision in favor of a partic-
ular class if the majority (more than 50%) of classifiers
classify it as that particular class.

• Unanimous voting: For a given class, say,Class-Guilty, if
any classifiers’ results classify data as Class-Guilty, then
unanimous voting takes decision as Class-Guilty

• Weighted voting: In this approach, an aggregation func-
tion is applied which assigns higher weight values to the
classifier with better performance. This will increase its
participation in ensemble framework, in turn increasing
the performance of overall system.

Majority voting and unanimous voting approach utilizes
homogeneous ensemble framework providing better classi-
fication performance toward a particular classifier. It assigns
equal weights to all classifiers; hence, the classifier which is
performing better is given same weight as the least perform-
ing classifier. This approach will reduce the performance of
the system if heterogeneous classifiers are used. However,
weighted voting gives better classification results as it assigns
moreweights to the better performing classifier. Hence in this
work, ensemble framework with heterogeneous classifiers is
aggregated using weighted voting approach. The output of
base classifiers is aggregated using aggregation function as
in Eq. 9.

yi = �m
i=1wiCi (9)

where m denotes number of classes and wi and Ci denotes
weights and output predicted by i th classifier.

For assigning the weight to classifier, initially equal
weights are assigned to each base classifier, and on basis
of their performance, weights are updated according to the
Eq. 10.
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Fig. 3 Proposed ensemble framework for lie detection
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Table 1 Subject-wise performance using various classifiers and ensemble framework applied to potential values

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 77.5 65.0 49.2 79.7 64.5 72.3 58.3 77.8 74.7 68.7 80.4

Sensitivity 86.7 62.9 54.4 93.3 86.7 86.7 96.7 60.9 90.0 93.3 70.0

Specificity 67.4 63.5 46.6 70.3 37.1 55.4 16.0 186.7 59.4 40.6 81.1

G-measure 75.3 63.1 50.2 80.6 46.9 68.7 23.7 100.0 72.2 53.5 75.3

Subject 2

Accuracy 65.2 72.8 76.1 77.5 77.0 77.0 71.0 81.9 77.0 72.2 85.6

Sensitivity 67.1 77.6 78.1 73.3 89.8 75.6 96.0 93.8 65.3 92.0 73.3

Specificity 63.3 76.3 77.0 80.0 63.3 76.7 46.7 70.0 76.7 46.7 76.7

G-measure 63.9 76.3 77.1 74.1 74.2 75.0 66.6 80.3 68.1 64.8 73.0

Subject 3

Accuracy 60.0 48.3 66.7 55.0 51.7 58.3 50.0 61.7 58.3 65.0 68.3

Sensitivity 56.7 55.7 65.5 43.3 60.0 56.7 83.3 76.7 50.0 73.3 56.7

Specificity 63.3 58.2 71.6 66.7 43.3 60.0 33.3 43.3 70.0 23.3 60.0

G-measure 58.7 56.9 68.2 44.7 48.4 57.8 51.7 57.1 56.4 36.0 57.1

Subject 4

Accuracy 87.6 84.0 72.9 87.6 87.8 88.9 69.6 86.3 90.7 84.4 89.4

Sensitivity 81.3 84.0 68.6 79.6 89.8 85.8 96.0 92.0 83.6 89.8 83.6

Specificity 93.8 84.0 83.3 95.6 85.8 92.0 43.1 81.8 97.8 79.1 93.3

G-measure 87.1 84.0 75.4 86.5 87.7 88.7 63.7 86.6 90.0 83.9 87.8

Subject 5

Accuracy 83.6 60.2 73.3 76.4 76.2 81.6 60.2 81.6 81.7 73.3 82.9

Sensitivity 87.6 64.9 81.3 80.9 89.3 85.3 95.6 91.6 87.6 87.6 87.6

Specificity 79.6 49.3 74.1 72.0 63.1 77.8 24.9 59.6 77.8 59.1 75.6

G-measure 80.3 52.5 76.9 71.9 74.9 80.5 36.2 71.7 79.5 69.8 78.4

Subject 7

Accuracy 76.7 73.3 71.7 71.7 70.0 75.0 68.3 75.0 75.3 71.7 76.7

Sensitivity 80.0 67.5 73.3 76.7 73.3 76.7 90.0 90.0 80.0 86.7 83.3

Specificity 73.3 90.0 73.9 66.7 66.7 73.3 46.7 60.0 76.7 56.7 70.0

G-measure 75.5 77.7 73.2 70.6 68.9 74.3 63.6 72.2 77.3 69.7 75.5

Subject 8

Accuracy 83.3 55.0 48.3 75.0 70.0 73.3 51.7 70.0 78.3 78.3 81.7

Sensitivity 93.3 54.3 48.9 73.3 100.0 100.0 100.0 100.0 80.0 100.0 93.3

Specificity 73.3 56.9 47.9 76.7 40.0 46.7 3.3 40.0 76.7 56.7 70.0

G-measure 82.2 55.4 48.3 74.5 54.7 65.3 8.2 55.0 78.1 73.2 80.3

Subject 9

Accuracy 71.7 66.7 61.7 80.0 71.7 75.0 65.0 72.3 76.7 63.3 80.0

Sensitivity 80.0 74.2 71.0 80.0 93.3 83.3 96.7 90.0 80.0 90.0 80.0

Specificity 63.3 73.8 58.8 80.0 50.0 66.7 33.3 46.7 73.3 36.7 80.0

G-measure 66.6 73.9 64.1 74.3 57.7 69.1 41.4 59.1 70.2 47.4 74.3

Subject 10

Accuracy 65.0 61.7 60.0 80.0 70.0 78.3 56.7 66.7 80.2 71.7 81.7

Sensitivity 56.7 50.0 65.0 76.7 86.7 76.7 93.3 83.3 80.0 83.3 80.0

Specificity 73.3 72.4 66.1 83.3 53.3 80.0 20.0 50.0 83.3 60.0 83.3

G-measure 52.8 56.0 65.5 79.2 67.5 77.3 37.3 60.9 81.0 68.3 81.0
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Table 1 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Average

Accuracy 74.5 65.2 64.4 75.9 71.0 75.5 61.2 74.8 77.1 72.1 80.7

Sensitivity 76.6 65.7 67.3 74.0 85.4 80.7 94.2 86.5 77.4 88.4 78.6

Specificity 72.3 69.4 66.6 76.4 55.9 69.8 29.7 70.9 76.9 51.0 76.7

G-measure 71.4 66.2 66.5 72.9 64.5 73.0 43.6 71.4 74.7 62.9 75.8

wi = acci
�m
i=1acci

(10)

where acci is accuracy at i th classifier
For evaluating the performance of all five classifiers, we

have utilized a classifier ranking approach, which selects
the best- performing classifier among the five classifiers. In
order to find the rank of the classifier, we have considered
G-measure as the measure of calculation. Data have been
partitioned into two parts training and testing in 9:1 ratio ran-
domly, this procedure is repeated for n iterations, and mean
of n iterations is considered for ranking of the classifiers.
Mean of weights of respective classifier for all iterations is
assigned to the classifier.

4 Experimental results and analysis

EEG data for deception detection have been recorded using
brain vision analyzer and recorder (brain products, Germany
[19]). Recorded data were analyzed on the system with 8
GB RAM Intel i7 processor and implemented on MATLAB
2015a. Results of various feature extraction approaches like
potential, mobility, complexity, power, frequency response
and wavelet are discussed in this section. Also, compari-
son of proposed 3-classifier ensemble framework with the
5-classifier framework and with the base classifier has been
presented.

4.1 Feature extraction

EEG is a signal waveform, and its amplitude provides the
value of a signal at each peak; power provides the strength of
the signal; the frequency component of a signal is extracted
using FFT and statistical parameter using Hjorth features
(mobility and complexity); and wavelet is used to extract
time–frequency components of EEG signal. Hence, instead
of using a single type of feature extraction technique like
[8,11], we have used various feature extraction techniques to
analyze EEG data more precisely. After signal preprocess-
ing, each feature extraction approach (as discussed in Sect.
3) has been applied on single subjects’ 16 channel for 30

trials of one session (1 × 16 × 30). The experiment is con-
ducted for two sessions where subjects behaved as guilty
for one session and innocent for another session. While tak-
ing results, data of 9 subjects out of 10 subjects have been
considered. One subject (i.e., subject number 6) data have
not been acquired properly and have lots of artifacts; hence,
it is not considered for this study. For comparative analysis,
various feature extraction approaches with various classifica-
tion techniques and ensemble frameworks (with 5-classifier
ensemble framework and with 3-classifier ensemble frame-
work) are aggregated by majority voting, unanimous voting
and weighted voting with respective subjects. The results are
depicted in Fig. 4. These results show mean of the perfor-
mance evaluated by applying subject-wise fivefold cross-
validation (5-FCV). Here, 5-MV represents majority vot-
ing using 5 classifiers, 5-UV represents unanimous voting
using 5 classifiers, and 5-WV represents weighted voting
using 5 classifiers. Similarly, 3-MV, 3-UV and 3-WV repre-
sent majority voting, unanimous voting and weighted voting
using 3 top-ranked classifiers, respectively. From Fig. 4, it is
inferred that in most of the cases mobility and wavelet have
performed better than other feature extraction techniques. It
is observed that the combined result of proposed approach (3-
WV) is higher than others for most of the feature extraction
approaches.

A similar set of features have been utilized by R. Jenke
et al. for emotion recognition dataset [20]. After applying
various feature selection approaches, they have achieved an
average accuracy of 35.9% using LDA as classifier, with
highest accuracy of 45% for subject 6 using mRMR fea-
ture selection approach. Using proposed 3-WV framework,
an average accuracy of 84.6% has been achieved using com-
paratively less channels.

4.2 Classification

For classification, data have been labeled into two classes:
guilty as Class-1 and innocent as Class-2. The perfor-
mance of classifiers is measured using various performance
measures such as accuracy, sensitivity, specificity and G-
measure. Specificity and sensitivity provide negative class
and positive class accuracy where G-measures consider
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Table 2 Subject-wise performance using various classifiers and ensemble framework applied on complexity values

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 81.1 60.1 50.8 56.2 69.4 80.1 56.5 82.1 82.1 58.3 83.0

Sensitivity 83.3 62.0 65.8 16.7 70.0 73.3 100.0 73.3 80.0 100.0 83.3

Specificity 81.1 65.0 49.5 100.0 68.0 92.0 8.0 92.0 85.1 12.0 81.1

G-measure 78.0 63.4 57.1 18.3 58.2 72.3 12.6 72.3 78.8 15.5 78.0

Subject 2

Accuracy 60.0 46.0 59.1 66.2 62.2 63.3 56.0 66.9 65.3 59.8 69.3

Sensitivity 52.9 50.0 58.1 58.7 77.3 58.7 95.6 85.3 52.9 79.1 64.9

Specificity 67.1 51.2 62.1 73.8 47.1 69.8 10.2 40.9 77.8 40.4 73.8

G-measure 58.6 45.5 59.8 63.2 58.4 62.2 18.5 51.7 63.0 49.8 67.7

Subject 3

Accuracy 80.0 66.7 66.7 71.7 73.3 76.7 68.3 78.3 81.7 68.3 82.7

Sensitivity 86.7 63.5 67.2 76.7 93.3 80.0 100.0 93.3 93.3 100.0 93.3

Specificity 73.3 71.5 67.3 66.7 53.3 73.3 36.7 63.3 70.0 36.7 70.0

G-measure 79.2 67.2 67.0 70.7 68.9 75.6 59.5 76.2 80.5 54.0 80.5

Subject 4

Accuracy 85.3 90.7 91.6 87.6 86.7 94.7 80.4 89.8 91.8 81.6 91.8

Sensitivity 80.9 91.0 93.3 83.6 93.3 93.3 95.6 95.6 87.6 89.8 87.6

Specificity 89.8 95.0 93.8 91.6 80.0 96.0 65.3 84.0 96.0 73.3 96.0

G-measure 83.8 92.5 93.2 86.1 84.8 94.2 76.7 88.9 91.0 79.3 91.0

Subject 5

Accuracy 70.2 59.3 62.2 66.2 45.1 65.3 54.2 73.3 68.2 67.3 74.2

Sensitivity 71.1 43.8 71.8 56.9 56.9 62.7 97.8 67.1 55.1 83.6 73.3

Specificity 69.3 48.9 60.7 75.6 33.3 65.8 16.9 63.6 69.3 51.1 67.1

G-measure 65.6 41.7 65.6 55.4 38.5 61.0 30.5 63.3 57.7 60.0 65.6

Subject 7

Accuracy 80.5 65.2 67.9 81.0 60.1 75.0 66.2 78.7 80.5 68.4 82.8

Sensitivity 73.3 63.7 68.8 83.3 63.3 80.0 96.7 86.7 83.3 90.0 83.3

Specificity 89.8 81.3 66.0 77.8 57.3 69.8 36.0 69.8 77.8 46.7 77.8

G-measure 80.3 71.0 67.3 80.1 56.3 74.2 51.0 77.5 80.3 63.3 80.3

Subject 8

Accuracy 85.0 70.0 58.3 83.3 65.0 76.7 68.3 75.0 80.0 78.3 80.0

Sensitivity 93.3 69.9 61.7 90.0 80.0 86.7 96.7 93.3 90.0 96.7 90.0

Specificity 76.7 69.2 56.9 76.7 50.0 66.7 40.0 56.7 70.0 60.0 70.0

G-measure 83.8 64.4 59.2 80.3 52.3 67.8 54.3 64.2 77.1 67.6 77.1

Subject 9

Accuracy 70.3 70.0 61.7 80.0 56.7 75.0 53.3 70.0 75.0 61.7 86.7

Sensitivity 93.3 80.5 60.0 86.7 86.7 90.0 93.3 90.0 86.7 93.3 86.7

Specificity 63.3 92.0 61.4 73.3 26.7 60.0 13.3 50.0 63.3 30.0 86.7

G-measure 74.4 85.0 56.4 76.2 35.7 69.6 21.0 60.3 69.6 42.8 84.4

Subject 10

Accuracy 68.3 63.3 55.0 70.0 56.7 73.3 56.7 68.0 70.1 68.3 73.3

Sensitivity 66.7 55.9 53.1 63.3 73.3 83.3 93.3 90.0 73.3 86.7 73.3

Specificity 70.0 71.6 63.0 76.7 40.0 63.3 20.0 40.0 73.3 50.0 73.3

G-measure 66.0 58.5 57.5 66.5 44.2 69.1 32.8 57.2 70.9 63.4 70.9
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Table 2 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Average

Accuracy 73.18 65.7 63.7 73.6 63.9 75.6 62.2 75.8 77.2 68.0 80.4

Sensitivity 78.0 64.5 66.6 69.0 77.1 78.7 96.5 80.4 77.9 91.0 81.8

Specificity 75.6 71.7 64.5 79.1 50.6 73.0 27.4 62.2 75.9 44.5 77.3

G-measure 74.4 65.4 64.0 66.3 55.2 71.7 46.5 67.9 74.3 55.0 77.2

both negative and positive class accuracies to calculate
performance score. G-measure gives geometric mean of
specificity and sensitivity. Five classifiers have been con-
sidered here for evaluating the performance of system.
Using a classifier ranking approach, three best classifiers
among five classifiers have been identified. Results of
classifiers are aggregated following an ensemble frame-
work. For aggregation, weighted voting approach has been
used and its performance is compared with other aggre-
gation approaches as majority voting and unanimous vot-
ing. For weight updation instead of using conventional
weight update formula 11, we updated weight as Eq. 10.

wi0 = wi1 + 1

2
log

(
acci

1 − acci

)
(11)

where wi0 and wi1 represent old weight and updated weight,
respectively, for i th classifier at nth iteration and acci rep-
resents accuracy of i th classifier. Equation 11 provides
logarithm of the accuracy of classifier, which makes weight
update as zero, provided accuracy is 0 or 100%. Hence, in
order to overcome that limitation normalization approach is
considered.

Usingvarious classificationperformancemeasures, results
are calculated and are presented in Tables 1, 2, 3, 4, 5 and
6. Results are evaluated by applying 5-FCV on subject-
wise EEG data. Results of base classifiers with 5-classifier
ensemble framework and 3-classifier ensemble framework
are compared. Each table represents results evaluated from
various feature extraction approaches. Result after applying
5-FCV on potential as the feature is given in Table 1. Table 1
compares performance to single classifiers with 5-classifier
ensemble framework and 3-classifier ensemble framework.
Performance of classification for each subject is compared
using various measures like accuracy, sensitivity, specificity
andG-measure. Using amplitude as feature, proposed frame-
work achieves accuracy of 89% for subject 4 which is highest
among all subjects. In most of the cases, G-measure value
is higher for proposed framework and compromised per-
formance of sensitivity and specificity. As sensitivity and
specificity provides measure toward a particular class, its
value is higher for unanimous voting approach, which pro-
vides decision in favor of one class.

In Table 2, performance of various subjects using com-
plexity as feature is tabulated. All classifiers are applied
on features extracted using complexity, and the results are
compared with proposed ensemble framework. Using com-
plexity as feature, an accuracy of 91.8%with subject 4 and an
average accuracy of 80.4% has been achieved. Table 3 repre-
sents comparative performance of ensemble framework with
other classifiers using frequency response. With frequency
response as a feature, proposed framework has attained a
highest accuracy of 98.8% for subject 4 and an average accu-
racy of all subjects as 76.3%.

Table 4 shows results of various classification approaches
using one of the Hjorth’s parameter, viz. mobility. An accu-
racy of 96.9% has been achieved using weighted voting
approach for 3-classifiers and an average accuracy of 89.8%.

In Table 5, power values extracted from EEG data have
been classified and compared achieving highest accuracy of
100% for subject 4 and an average accuracy of 88.2%.

Table 6 provides a comparative analysis of various classi-
fiers and ensemble framework usingwavelet as feature. After
applying classifiers onwavelet features, an accuracy of 100%
for subject 3 and an average accuracy of 92.4% are attained,
which is highest among all.

From the results depicted in Tables 1, 2, 3, 4, 5 and 6,
it can be inferred that from base classifier performance 5-
classifier system (5-MV, 5-UV and 5-WV) and 3-classifier
system (3-MV, 3-UV and 3-WV) have performed better for
almost all feature extraction approaches. On comparing the
performance of different feature extraction approaches, clas-
sification accuracy is improved when wavelets as feature is
used (as depicted in Table 6). Also, performance of classifiers
is similar for Hjorth’s parameters. Among various subjects,
subject-4 has responded best for all features, thus provid-
ing highest classification accuracy for almost all classifiers.
The classifier ranking approach is applied to aggregate the
best-performing classifiers. A graph depicting the compari-
son between two systems is given in Fig. 5. It is observed that
the ensemble framework with ranking approach has a great
impact toward the improvement of classification accuracy.
Results of 3-classifier ensemble system are aggregated using
three different approaches namely majority voting, unani-
mous voting and weighted voting. From the results, it is
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Table 3 Subject-wise performance using various classifiers and ensemble framework applied on frequency response values

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 75.4 66.3 57.2 76.6 69.4 76.1 54.1 77.4 77.5 73.6 79.0

Sensitivity 80.0 67.4 55.6 73.3 73.3 73.3 86.7 73.3 78.5 73.6 78.6

Specificity 71.4 58.9 68.3 81.1 64.0 80.0 17.7 80.0 73.3 86.7 80.0

G-measure 73.9 58.1 61.1 74.4 64.6 73.8 34.9 73.8 85.1 59.4 67.4

Subject 2

Accuracy 72.5 77.0 77.5 74.3 76.1 77.5 73.8 80.6 79.3 77.5 81.3

Sensitivity 71.6 76.9 77.7 71.1 89.8 79.6 96.0 96.0 79.3 77.5 79.3

Specificity 70.0 88.3 77.0 76.7 60.0 73.3 50.0 63.3 79.6 89.8 79.6

G-measure 67.1 81.4 77.1 72.2 64.0 74.0 60.3 74.3 76.7 63.3 76.7

Subject 3

Accuracy 75.0 70.0 56.7 71.7 75.0 76.7 66.7 70.0 73.9 65.0 75.0

Sensitivity 80.0 74.4 60.0 70.0 86.7 83.3 96.7 90.0 75.0 65.0 75.0

Specificity 70.0 66.7 55.0 73.3 63.3 70.0 36.7 50.0 76.7 86.7 76.7

G-measure 71.8 65.2 57.3 69.2 73.0 73.5 45.4 56.0 73.3 43.3 73.3

Subject 4

Accuracy 95.6 98.0 86.9 95.8 98.0 96.9 88.0 98.0 95.8 95.8 98.8

Sensitivity 91.1 96.7 83.5 95.6 96.0 97.8 100.0 100.0 95.8 95.8 95.8

Specificity 100.0 100.0 98.0 96.0 100.0 96.0 76.0 96.0 95.6 95.6 95.6

G-measure 94.9 98.3 89.9 95.5 97.9 96.7 86.0 97.9 96.0 96.0 96.0

Subject 5

Accuracy 73.0 72.9 72.4 78.9 79.6 74.9 72.7 77.6 74.9 70.7 78.9

Sensitivity 96.0 90.0 85.7 97.8 89.8 93.8 100.0 97.8 94.9 90.7 96.9

Specificity 96.0 98.0 81.7 100.0 69.3 96.0 65.3 77.3 93.8 100.0 97.8

G-measure 96.0 93.7 83.4 98.9 78.4 94.6 80.7 87.0 96.0 81.3 96.0

Subject 7

Accuracy 83.3 81.7 71.7 80.0 71.7 80.0 78.3 80.0 81.7 70.0 84.7

Sensitivity 80.0 80.3 70.0 80.0 76.7 86.7 100.0 90.0 81.7 70.0 81.7

Specificity 86.7 90.5 74.0 80.0 66.7 73.3 56.7 70.0 83.3 90.0 83.3

G-measure 82.9 84.7 71.9 78.8 70.4 78.6 74.7 78.9 80.0 50.0 80.0

Subject 8

Accuracy 88.3 78.3 70.0 88.3 86.7 85.0 86.7 90.0 90.0 91.7 95.0

Sensitivity 80.0 78.6 79.8 80.0 86.7 76.7 100.0 96.7 90.0 91.7 95.0

Specificity 96.7 81.4 69.3 96.7 86.7 93.3 73.3 83.3 83.3 93.3 93.3

G-measure 87.2 79.7 74.4 86.3 86.0 82.8 85.2 89.5 96.7 90.0 96.7

Subject 9

Accuracy 75.0 68.3 51.7 81.7 73.3 78.3 68.3 81.7 48.3 53.3 50.0

Sensitivity 93.3 71.3 56.2 90.0 83.3 90.0 100.0 100.0 48.3 53.3 50.0

Specificity 56.7 70.0 60.1 73.3 63.3 66.7 36.7 63.3 50.0 86.7 50.0

G-measure 64.4 70.6 53.4 70.9 65.6 67.9 52.8 70.5 46.7 20.0 50.0

Subject 10

Accuracy 73.3 75.0 61.7 80.0 76.7 76.7 73.3 75.3 46.7 48.3 46.7

Sensitivity 70.0 80.3 62.5 73.3 90.0 76.7 96.7 80.0 46.7 48.3 46.7

Specificity 76.7 76.3 62.1 86.7 63.3 76.7 50.0 66.7 60.0 70.0 60.0

G-measure 61.7 77.6 57.0 75.2 74.2 74.0 66.2 68.9 33.3 26.7 33.3
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Table 3 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Average

Accuracy 79.0 76.4 67.3 80.8 78.5 80.2 73.5 81.2 74.2 71.8 76.6

Sensitivity 82.4 79.6 70.1 81.2 85.8 84.2 97.3 91.5 76.0 74.0 77.6

Specificity 80.5 81.1 71.7 84.9 70.7 80.6 51.4 73.0 77.3 88.7 79.6

G-measure 77.7 78.8 69.5 80.1 75.0 79.5 65.1 77.4 76.0 58.9 74.4

Table 4 Subject-wise performance using various classifiers and ensemble framework applied on mobility values

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 74.5 75.7 51.5 78.5 67.3 78.2 50.5 78.2 80.0 73.0 81.5

Sensitivity 76.7 80.8 53.9 76.7 80.0 76.7 86.7 76.7 76.7 83.3 76.7

Specificity 72.0 86.0 44.0 81.1 52.0 80.0 9.7 80.0 84.0 61.1 81.1

G-measure 67.2 81.8 44.0 74.7 49.0 73.8 15.9 73.8 76.2 65.3 74.7

Subject 2

Accuracy 77.8 83.8 81.4 85.9 85.9 85.5 75.2 86.7 87.4 74.7 88.4

Sensitivity 81.3 86.7 88.8 85.3 92.0 89.8 92.0 92.0 87.6 92.0 87.6

Specificity 76.7 88.3 90.0 90.0 80.0 90.0 56.7 83.3 86.7 56.7 86.7

G-measure 78.6 86.6 89.0 87.1 81.9 89.1 68.7 86.0 86.4 69.9 86.4

Subject 3

Accuracy 76.7 75.0 73.3 84.0 78.3 83.3 70.0 81.7 85.0 81.7 86.0

Sensitivity 76.7 78.5 77.8 80.0 70.0 83.3 93.3 90.0 80.0 90.0 80.0

Specificity 76.7 86.3 77.3 90.0 86.7 83.3 46.7 73.3 90.0 73.3 90.0

G-measure 75.4 80.9 76.7 82.9 76.3 80.7 62.8 79.8 82.9 80.3 82.9

Subject 4

Accuracy 95.8 95.8 94.7 94.9 95.8 96.9 94.7 95.8 95.2 96.9 96.9

Sensitivity 91.6 97.8 95.0 92.0 96.0 96.0 96.0 96.0 93.8 96.0 93.8

Specificity 100.0 94.4 96.7 97.8 95.6 97.8 93.3 95.6 100.0 97.8 100.0

G-measure 95.5 96.0 95.6 94.6 95.5 96.7 94.2 95.5 96.7 96.7 96.7

Subject 5

Accuracy 94.0 91.6 89.6 92.8 85.6 91.6 81.8 89.6 91.5 86.9 95.8

Sensitivity 100.0 92.2 88.9 95.6 91.6 95.6 100.0 95.6 95.6 100.0 95.6

Specificity 96.0 92.2 92.2 100.0 79.6 95.6 63.6 95.6 100.0 73.8 100.0

G-measure 97.9 92.1 90.3 97.6 84.9 95.6 79.2 95.6 97.6 83.6 97.6

Subject 7

Accuracy 86.7 63.3 63.3 76.7 70.0 76.7 70.0 75.0 81.7 80.0 88.0

Sensitivity 86.7 62.0 58.0 66.7 66.7 76.7 86.7 83.3 76.7 90.0 86.7

Specificity 86.7 73.9 63.7 86.7 73.3 76.7 53.3 66.7 86.7 70.0 83.3

G-measure 83.9 66.8 56.8 71.0 67.2 73.4 66.3 72.1 78.9 68.7 82.2

Subject 8

Accuracy 90.0 86.7 65.0 95.0 68.3 93.3 63.3 88.3 95.0 78.3 95.0

Sensitivity 96.7 83.7 68.3 96.7 86.7 100.0 100.0 100.0 100.0 100.0 100.0

Specificity 83.3 96.7 55.8 93.3 50.0 86.7 26.7 76.7 90.0 56.7 90.0

G-measure 88.8 89.5 57.9 94.6 63.6 92.8 42.8 87.4 94.6 72.1 94.6
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Table 4 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 9

Accuracy 86.7 83.3 60.0 81.7 76.7 85.0 73.3 86.3 90.0 73.3 90.0

Sensitivity 96.7 84.2 51.2 96.7 96.7 96.7 100.0 100.0 96.7 100.0 96.7

Specificity 76.7 95.0 60.2 66.7 56.7 73.3 46.7 66.7 83.3 46.7 83.3

G-measure 83.1 88.4 55.5 69.8 63.1 80.6 58.8 71.5 86.4 59.4 86.4

Subject 10

Accuracy 80.0 73.3 63.3 83.3 73.3 81.7 73.3 85.0 85.0 76.7 86.7

Sensitivity 80.0 80.0 65.8 83.3 80.0 80.0 100.0 96.7 86.7 90.0 66.7

Specificity 80.0 74.4 68.3 83.3 66.7 83.3 46.7 73.3 83.3 63.3 86.7

G-measure 77.4 77.1 66.5 81.1 68.7 79.3 66.9 83.7 83.3 71.6 71.0

Average

Accuracy 84.6 80.9 71.3 85.8 77.9 85.7 72.4 85.2 87.8 80.2 89.8

Sensitivity 87.3 82.8 71.9 85.8 84.4 88.3 94.9 92.2 88.2 93.4 87.1

Specificity 83.1 87.5 72.0 86.5 71.2 85.1 49.2 79.0 89.3 66.5 87.0

G-measure 83.1 84.4 70.3 82.3 72.2 84.6 61.7 80.8 87.0 74.1 85.8

Table 5 Subject-wise performance using various classifiers and ensemble framework applied on power values

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 81.8 78.2 50.2 80.3 69.1 80.8 64.2 82.8 82.1 76.6 83.0

Sensitivity 90.0 78.7 52.5 76.7 86.7 83.3 93.3 83.3 80.0 90.0 80.0

Specificity 72.0 84.9 49.4 84.0 48.0 80.0 30.3 80.0 84.0 61.1 84.0

G-measure 75.7 81.2 50.7 75.4 55.4 77.8 45.8 77.8 77.0 69.1 77.0

Subject 2

Accuracy 72.1 78.3 83.8 83.4 75.6 82.4 75.6 83.8 83.4 82.4 86.4

Sensitivity 68.9 79.8 86.5 83.1 89.8 89.8 92.0 92.0 85.3 92.0 85.3

Specificity 73.3 87.6 83.3 83.3 60.0 73.3 56.7 73.3 80.0 70.0 80.0

G-measure 69.5 82.8 84.8 82.5 69.7 79.6 62.0 80.3 81.4 76.9 81.4

Subject 3

Accuracy 83.3 53.3 65.0 76.7 61.7 73.3 60.0 80.0 80.0 75.0 80.5

Sensitivity 76.7 60.7 64.0 76.7 63.3 80.0 96.7 63.3 80.0 86.7 80.0

Specificity 90.0 72.1 67.3 76.7 60.0 66.7 23.3 96.7 80.0 63.3 76.7

G-measure 82.2 66.1 65.6 76.3 59.8 72.9 40.8 78.0 79.7 73.6 77.7

Subject 4

Accuracy 98.9 97.8 84.0 96.7 96.9 100.0 81.6 100.0 100.0 97.8 100.0

Sensitivity 97.8 96.4 81.0 97.8 93.8 100.0 100.0 100.0 100.0 100.0 100.0

Specificity 100.0 100.0 96.0 95.6 100.0 100.0 63.1 100.0 100.0 95.6 100.0

G-measure 98.9 98.1 87.6 96.6 96.7 100.0 78.1 100.0 100.0 97.6 100.0

Subject 5

Accuracy 90.0 89.0 82.4 94.0 83.8 89.0 81.8 89.8 88.0 86.0 95.0

Sensitivity 88.0 91.0 87.7 96.0 88.0 96.0 100.0 96.0 96.0 100.0 96.0

Specificity 92.0 100.0 81.0 96.0 79.6 96.0 63.6 83.6 96.0 88.0 96.0

G-measure 89.8 95.2 83.9 96.0 82.8 96.0 79.2 89.4 96.0 92.6 96.0
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Table 5 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 7

Accuracy 88.3 78.3 78.3 86.7 75.0 83.3 75.0 83.3 90.0 81.7 91.0

Sensitivity 96.7 78.1 74.0 96.7 80.0 90.0 100.0 96.7 96.7 100.0 96.7

Specificity 80.0 84.3 85.3 76.7 70.0 76.7 50.0 70.0 83.3 63.3 83.3

G-measure 86.1 80.6 79.4 85.8 74.3 82.8 69.1 82.2 89.5 78.3 89.5

Subject 8

Accuracy 91.7 71.7 68.3 83.3 86.7 86.3 71.7 91.7 88.3 83.3 91.7

Sensitivity 93.3 65.0 70.0 70.0 96.7 80.0 100.0 100.0 83.3 96.7 83.3

Specificity 90.0 73.9 69.6 96.7 76.7 96.7 43.3 83.3 100.0 70.0 100.0

G-measure 91.1 69.3 69.7 79.6 85.5 86.3 57.2 90.9 89.8 81.5 89.8

Subject 9

Accuracy 76.7 80.0 60.0 80.0 75.0 80.0 68.3 81.7 83.3 70.0 83.3

Sensitivity 93.3 81.0 68.9 86.7 93.3 90.0 100.0 100.0 93.3 100.0 93.3

Specificity 60.0 80.0 57.6 73.3 56.7 70.0 36.7 63.3 73.3 40.0 73.3

G-measure 70.5 80.4 62.5 68.7 54.9 69.2 44.5 70.9 72.7 53.9 72.7

Subject 10

Accuracy 85.0 66.7 60.0 78.3 60.0 76.7 61.7 76.7 80.0 83.3 83.3

Sensitivity 83.3 68.0 69.7 63.3 73.3 73.3 100.0 93.3 86.7 100.0 100.0

Specificity 86.7 72.4 59.6 93.3 46.7 80.0 23.3 60.0 93.3 66.7 66.7

G-measure 84.0 70.1 64.4 72.9 52.9 73.0 36.0 70.9 89.1 78.6 78.6

Average

Accuracy 85.3 77.0 70.5 84.3 76.0 83.0 71.1 85.5 86.1 81.8 88.2

Sensitivity 87.5 77.6 72.7 83.0 85.0 86.9 98.0 91.6 89.0 96.1 90.5

Specificity 82.6 83.9 72.1 86.2 66.4 82.1 43.4 78.9 87.7 68.7 84.4

G-measure 83.1 80.4 72.1 81.5 70.2 81.9 57.0 82.3 86.1 78.0 84.7

observed that 3-WV (proposed) framework performs the best
for almost all feature extraction approaches on subject- wise
single-trial EEG data.

Further, the results obtained by proposed approach are
compared with some state-of-the-art methods. All the
approaches are applied on the EEG data recorded for this
work. Ten subjects, each subjects’ 16- channel EEG data,
have been recordedby conducting aCIT.Analysis of variance
(ANOVA) is the most commonly used statistical technique
for CIT-based studies such as [5,6,13]. In this work, ANOVA
has been applied on subject-wise EEG data for single trial
and it has been observed that means of two groups or two
classes overlaps. ERP data generally overlap [31] (as shown
in Fig. 6); hence, statistical approaches like ANOVA are not
sufficient to identify the human behavior.

Figure 6 shows that the mean values calculated using a
two-way ANOVA and overlapping of means of two classes
show certain similarity in data recorded for both classes.
Authors like Wang et al. [10] have applied nonparametric
weighted feature extraction technique based on LDA and
KNN as classifier. Nonparametric feature extraction tech-
niques are useful if some specific number of features are

needed to be extracted. It also reduces the effect of out-
liers present in data. We have applied the same approach on
recorded EEG data for different subjects. After applying the
same, accuracy of 76.8%, specificity of 70.0%, sensitivity as
73.1% andG-measure as 76.5% have been achieved. Arasteh
et al. [8] used a machine learning approach known as empir-
ical mode decomposition which divides signal into various
intrinsicmode functions. EMDwas used as feature extraction
approach andLDAas classifier in theirwork. This framework
has been applied on EEG data recorded, and results were
obtained. An accuracy of 80.1%, specificity of 75.7%, sensi-
tivity of 75.7% andG-measure of 77.8% have been obtained.
Authors have also applied genetic algorithm for feature selec-
tion. As this work is focused on feature extraction and classi-
fication, feature selectionwill be performed as futurework. In
an other work [9], P300 components are separated from non-
P300 components by ICA. In order to identify independent
components, topographic template matching has been per-
formedon extractedP300 components. SVMas classification
approach has been used. In the same framework, we have
applied on recorded EEG data and an accuracy of 60.17%,
specificity of 51.33%, sensitivity of 67.83% and G-measure
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Table 6 Subject-wise performance using various classifiers and ensemble framework applied on wavelet coefficients

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Subject 1

Accuracy 83.6 84.2 46.9 78.5 70.9 81.8 58.0 83.8 86.0 72.7 87.9

Sensitivity 93.3 91.7 48.1 76.7 86.7 83.3 96.7 83.3 90.0 100.0 90.0

Specificity 72.0 87.1 52.9 80.0 52.0 80.0 14.9 80.0 84.0 40.0 84.0

G-measure 80.0 88.4 49.6 73.3 62.3 76.6 33.6 76.6 85.4 54.2 85.4

Subject 2

Accuracy 77.9 84.2 83.8 87.1 86.1 87.4 77.6 86.1 86.8 82.4 88.9

Sensitivity 75.6 82.3 86.5 80.9 85.8 89.8 92.0 92.0 87.6 92.0 87.6

Specificity 76.7 86.3 83.3 83.3 63.3 83.3 56.7 76.7 83.3 70.0 83.3

G-measure 72.3 84.1 84.8 81.4 64.1 85.3 62.0 80.2 84.5 76.9 84.5

Subject 3

Accuracy 98.0 96.0 82.9 96.9 98.0 98.0 86.0 100.0 100.0 100.0 100.0

Sensitivity 73.3 81.4 70.8 76.7 70.0 80.0 96.7 93.3 76.7 90.0 76.7

Specificity 86.7 83.1 73.6 83.3 73.3 80.0 46.7 66.7 86.7 53.3 86.7

G-measure 78.5 82.2 72.1 79.5 70.7 79.6 65.7 77.9 81.1 67.3 81.1

Subject 4

Accuracy 94.0 90.0 81.6 95.0 84.8 92.0 79.8 91.8 91.0 90.0 96.0

Sensitivity 100.0 100.0 81.0 93.8 96.0 96.0 100.0 96.0 100.0 100.0 100.0

Specificity 100.0 93.3 94.0 100.0 100.0 100.0 72.0 100.0 100.0 100.0 100.0

G-measure 100.0 96.5 86.6 96.7 97.9 97.9 83.2 97.9 100.0 100.0 100.0

Subject 5

Accuracy 94.0 90.0 81.6 95.0 84.8 92.0 79.8 91.8 91.0 90.0 96.0

Sensitivity 96.0 87.0 85.6 100.0 92.0 92.0 100.0 100.0 100.0 100.0 100.0

Specificity 92.0 96.0 81.5 92.0 71.6 92.0 59.6 75.6 92.0 88.0 92.0

G-measure 93.9 91.2 83.1 95.5 79.7 91.8 76.3 86.5 95.5 92.6 95.5

Subject 7

Accuracy 90.0 86.7 78.3 88.3 78.3 86.7 81.7 88.3 91.7 85.0 92.9

Sensitivity 93.3 90.0 81.0 90.0 83.3 93.3 100.0 100.0 90.0 100.0 90.0

Specificity 86.7 90.5 77.7 86.7 73.3 80.0 63.3 76.7 93.3 70.0 93.3

G-measure 88.9 89.5 79.1 87.8 77.3 86.0 78.3 87.2 90.9 82.9 90.9

Subject 8

Accuracy 97.3 78.3 66.7 95.0 88.3 97.3 80.0 90.0 98.3 93.3 98.3

Sensitivity 96.7 85.3 64.5 93.3 96.7 96.7 100.0 96.7 96.7 100.0 96.7

Specificity 100.0 79.4 68.7 96.7 80.0 100.0 60.0 83.3 100.0 86.7 100.0

G-measure 98.3 68.3 66.5 94.8 87.4 98.3 69.2 89.4 98.3 92.8 98.3

Subject 9

Accuracy 75.0 85.0 56.7 80.0 71.7 80.0 73.3 81.7 80.0 75.0 80.0

Sensitivity 80.0 85.0 68.9 86.7 86.7 86.7 100.0 96.7 86.7 90.0 86.7

Specificity 70.0 84.5 52.6 73.3 56.7 73.3 46.7 66.7 73.3 60.0 73.3

G-measure 71.1 84.7 59.9 67.9 50.5 67.9 52.7 71.3 67.9 63.4 67.9

Subject 10

Accuracy 90.0 80.0 60.0 85.0 53.3 83.3 65.0 86.7 90.2 81.7 91.7

Sensitivity 90.0 86.7 62.3 76.7 60.0 73.3 93.3 86.7 86.7 90.0 66.7

Specificity 90.0 82.5 59.7 93.3 46.7 93.3 36.7 86.7 96.7 73.3 96.7

G-measure 88.7 83.7 60.9 82.2 43.7 78.8 47.6 84.4 89.8 79.0 78.5
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Table 6 continued

Measures LDA NN NB SVM KNN 5-MV 5-UV 5-WV 3-MV 3-UV 3-WV (proposed method)

Average

Accuracy 88.8 86.0 71.0 89.0 79.5 88.7 75.7 88..9 90.5 85.5 92.4

Sensitivity 88.7 87.7 72.0 86.0 84.1 87.9 97.6 93.8 90.5 95.7 88.2

Specificity 86.0 87.0 71.5 87.6 68.5 86.8 50.7 79.1 89.9 71.2 89.9

G-measure 85.7 85.4 71.4 84.3 70.4 84.7 63.2 83.5 88.2 78.8 86.9
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Fig. 5 Comparison of the performance of 5-classifier ensemble frame-
work and 3-classifier ensemble framework

of 34.27% have been obtained. All the comparative results
are tabulated in Table 7. From the results, it is observed that
proposed approachgives better performance in termsof accu-
racy, sensitivity, specificity and G-measure. The approach
attained an average overall accuracy of 84.7%, specificity
of 83.9%, sensitivity of 82.5% and G- measure of 80.8%.
From results, it can be inferred that among various feature
extraction approaches, wavelets providing time–frequency
information of signals gives the best performance. In com-
parison with applying base classifiers for classification,
ensemble technique provides better results by combining
the best-performing classifiers. The selection of classifier is
tedious task as it depends on the type of dataset applied [22].
Therefore, with the knowledge of dataset and using ensemble
approach better performance results can be obtained.

5 Conclusion

In this paper, an ensemble framework has been proposed
by aggregating three best-performing classifiers. A classifier
ranking approach has been applied to select three classifiers
among five classifiers, viz. LDA, SVM,MLFFNN, KNN and
NB. The main aim is developing the ensemble framework to
provide a better approach for classification of guilty and inno-
cent subjects. The proposed framework is applied on EEG
data recorded for a Concealed Information Test to analyze
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Fig. 6 Comparison of the means of two classes using ANOVA

the human behavior while lying. During data acquisition, set
of images are flashed in front of subjects in two different
sessions. Signals acquired during the experimental sessions
are analyzed to identify the guilty or innocent subject. A
wide range of available feature extraction techniques has
been applied on acquiredEEGdata. For classification of EEG
data, five classifiers are applied and their results are aggre-
gated using majority voting, weighted voting and unanimous
voting. To improve the performance of ensemble framework,
classifier ranking is applied. The best three performing clas-
sifiers are aggregated using weighted voting approach for
developing the ensemble framework. The proposed ensem-
ble framework (3-WV) results are compared with different
base classifiers’ performance and with 5-classifier system.
Among the various feature extraction approaches, applied
results show that wavelet performs best. Using wavelet with
proposed ensemble framework, subject 3 has attained a high-
est of 100% accuracy and 92.4% average accuracy. Results
of proposed framework are compared with some existing
approaches. An improved overall classification accuracy has
been achieved using proposed ensemble framework (3-WV).
Further in future, different time–frequency domain feature
extraction techniques can be applied to extract useful infor-
mation from EEG signals. Feature selection approaches can
be applied in future, so as to feed the best set of features to the
classifiers. Also, optimization using bio-inspired approaches
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Table 7 Comparison with existing approaches

Classification approach Feature extraction Technique EEG dataset Number Accuracy Specificity Sensitivity G-measure
of channels

KNN [10] Nonparametric LDA Current study dataset 16 channels 76.8 70.0 73.1 76.5

QDA [20] Various (power, wavelet, Emotion dataset [20] 64 channels 35.9 – – –

Hjorth parameters, etc.)

LDA [8] EMD Current study dataset 16 channels 80.1 75.7 75.7 77.8

SVM [9] ICA Current study dataset 16 channels 60.1 51.3 67.8 34.2

Ensemble classification-
3-WV (proposed)

Various (amplitude, complexity,
mobility frequency,
power, wavelet)

Current study dataset 16 channels 84.7 83.9 82.5 80.8

like PSO can be applied to reach the optimal solution with
faster rate and better accuracy.
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