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Abstract
A method for temporal segmentation and recognition of team activities in sports, based on a new activity feature extraction,
is presented. Given the positions of team players from a plan view of the playground at any given time, we generate a smooth
distribution on the whole playground, termed the position distribution of the team. Computing the position distribution for
each frame provides a sequence of distributions, which we process to extract motion features for activity recognition. We can
classify six different team activities in European handball and eight different team activities in field hockey datasets. The field
hockey dataset is a new, large and challenging dataset that is presented for the first time for continuous segmentation of team
activities. Our approach is different from other trajectory-based methods. These methods extract activity features using the
explicitly defined trajectories, where the players have specific positions. In our work, given the specific positions of the team
players at a frame, we construct a position distribution for the team on the whole playground and process the sequence of
position distribution images to extract activity features. Extensive evaluation and results show that our approach is effective.

Keywords Computer vision · Sport video analysis · Team activity recognition · Temporal segmentation · Motion analysis

1 Introduction

Analyzing complex and dynamic sport scenes for the purpose
of team activity recognition is an important task in computer
vision. Teamactivity recognition has awide range of possible
applications such as analysis of team tactic and statistics (i.e.,
especially useful for coaches and trainers), video annotation
and browsing, automatic highlight identification, automatic
camera control (useful for broadcasters). Despite the fact that
there is much research on vision-based activity analysis for
individuals [1], group activity analysis remains a challeng-
ing problem. In group activity, there are usually many people
located at different positions andmoving in different individ-
ual directions making it difficult to find effective features for
higher-level analysis.

There are mainly two possible sources of sport videos:
TV broadcasts and multiple video feeds from fixed cam-
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eras around the playing field. We first review group activity
analysis techniques using broadcast videos and then review
methods which investigate sport videos captured by fixed
multi-camera systems.

1.1 Using the TV broadcast

Kong et al. [2] use optical flow-based features and the
latent-dynamic conditional random field model to recognize
three different actions (i.e., left side attacking, stalemate
and left side defending) in soccer videos. Later, Kong et
al. [3] proposed an alternative approach to recognize the
same activities in soccer videos. They use scale-invariant
feature transform (SIFT) key point matches on two suc-
cessive frames and a linear SVM to classify activities. Wei
et al. [4] aim to discriminate group activities in broadcast
videos targeting identification of football, basketball, tennis
or badminton. They extract space–time interest points and
use the probability summation framework for classification.
Li et al. [5] proposed a discriminative temporal interaction
manifold (DTIM) framework to characterize group motion
patterns in American football games. For each class of group
activity, they learn a multi-modal density function on the
DTIM using the players’ role and their motion trajectories.
Then a maximum a posteriori (MAP) classifier is used to
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recognize activities. They can recognize five different activ-
ity types. Swears and Hoogs [6] also present a framework to
recognize different offense types in the context of American
football. First, a broadcast video is stabilized and registered
to another domain. This process normalizes the plays into a
common coordinate system and orientation. Players’ trajec-
tories are then extracted for activity analysis. The temporal
interactions of the players aremodeled using a non-stationary
kernel hidden Markov model. Ibrahim et al. [7] proposed a
group activity recognition framework and experiment on a
volleyball dataset. The team activity is predicted based on
the dynamics of the individual people performing the activity.
They build a deep learning model to capture these dynamics
based on long short-term memory (LSTM) models. Shu et
al. [8] recognize group activities in volleyball game using a
LSTM network that forms a feed-forward deep architecture.
Instead of using the common softmax layer for prediction,
they introduce an energy layer and estimate the energy of the
predictions. There are also some recent approaches, [9,10],
using convolutional neural networks for action recognition
in ice hockey and football games, respectively.

Despite the existence of such approaches, using a TV
broadcast is not effective for group activity analysis, since
the camera usually captures the region of interest (such as
ball locations) and many players may not be in that region.
Using broadcast cameras also suffers from inaccurate player
localization because of occlusions, camera motion, etc.

1.2 Using fixedmultiple cameras

Most team activity analysis methods [11–17] use a fixed
multi-camera system around the playing field to overcome
the limitations of using broadcast data. The multi-camera
system usually has a camera configuration to cover all loca-
tions on the playground and is therefore able to capture
all players simultaneously. Player detection and tracking
algorithms are employed in the videos to obtain the trajec-
tories, and then these trajectories are transformed into the
top view of the playing field for more accurate analysis. In
the activity analysis stage, features (e.g., position and speed)
are extracted using the explicitly defined trajectories and a
model employed (e.g., Bayesian net, hidden Markov models
or SVM) to recognize the group activities such as different
types of offense and defense. These models are summarized
below.

Intille and Bobick [11] use Bayesian belief networks for
probabilistically representing and recognizing multi-agent
action fromnoisy trajectories inAmerican football. Blunsden
et al. [12] extract features from the trajectory data and clas-
sify different offense and defense types in European handball
using an SVM. Perse et al. [13] segment the play into three
different phases (offense, defense and time-out) in a bas-
ketball game using a mixture of Gaussians. Then a more

detailed analysis is performed to define a semantic descrip-
tion of the observed activity. Perse et al. [14] also present
another approach which uses petri nets (PNs) for the recog-
nition and evaluation of team activities in basketball. Hervieu
et al. [15] use a hierarchical parallel semi-Markov model to
represent and classify team activities in handball. Recently,
Dao et al. [16] have proposed a sequence of symbols which
are derived from the distribution of players’ positions in a
period of time to represent and recognize offensive types
(e.g., side attack and center attack) in soccer games. Li
and Chellappa [17] also address the problem of recognizing
offensive play strategies in American football using a prob-
abilistic model. Varadarajan et al. [18] introduced a topic
model approach to represent and classify American football
plays. They develop a framework that uses player trajectories
as inputs to maximum entropy discriminative latent Dirich-
let allocation (MedLDA) for supervised activity learning and
classification. Montoliu et al. [19] present a methodology for
team activity recognition in handball games based on Author
TopicModel (ATM). They use two synchronized and station-
ary bird’s-eye view cameras and extract optical flow-based
activity features from the video frames. The evolution of
motions and the recognition of team activities are based on
the ATM model.

In this paper, we present a framework for temporal seg-
mentation and recognition of team activities which is based
on players’ trajectories on the top view of the playing field.
Our motivation and contribution are explained below.

2 Ourmotivation and contribution

In team activities, there is a group of people (the team) per-
forming activities on the constrained playground. All of the
existing trajectory-based methods analyze the specific posi-
tions (set of points) obtained by either vision-based tracking
or GPS-based wearable sensors. There are two main draw-
backs in these approaches. First, the position information is
noisy. Second and the most important drawback is that they
use only specific positions and ignore the rest of the play-
ground. By its very nature, team activity takes place over the
whole playground as the entire team reconfigures itself to
either attack or defend. Thus, we believe that a more holistic
approach is required rather than simply considering a collec-
tion of specific player locations.

In this paper, we propose an approach that analyzes the
entire playground for activity feature extraction. Given the
team players’ positions from a plan view of the playing field
at any given time, we solve a particular Poisson equation
to generate a smooth distribution that we term the position
distribution of the team. The position distribution is com-
puted at each frame to form a sequence of distributions.
Then, we process the sequence of position distributions to
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Fig. 1 a Sample frame from the fixed Camera 1. b Sample frame from the fixed Camera 2. c The top view of the handball court. d Sample image
from the European handball game. e The top view of the field hockey playground. f Sample image from the field hockey game

extract motion-information images for each frame, where
the motion-information images are obtained using frame dif-
ferencing and optical flow. Finally, we compute weighted
moments (up to second order) of these images to represent
motion features at each frame. The proposed motion fea-
tures are experimented with support vector machine (SVM)
classification and evaluated on two different datasets: Euro-
pean handball and field hockey datasets. The European
handball dataset [20] is publicly available, and the position
information (trajectories) of the players is collected using a
similar multi-camera capture setup to those reported previ-
ously, where sample frames from these cameras are shown
in Fig. 1a, b. The top view of the European handball court
and a sample image from the handball game are shown in
Fig. 1c, d, respectively. We also created a larger dataset for a
different game with more activities, the field hockey dataset,
to conduct extensive experiments on team activity segmenta-
tion and recognition. In the field hockey dataset, the position
information is collected using GPS-based wearable sensors.

The top view of the field hockey playground and a sample
image from the game are shown in Fig. 1e, f. Results show
that we can temporally segment and recognize six different
team activities in handball, and eight different team activities
infield hockey.Wealsoperformbetter than amethod [12] that
analyzes the explicitly defined trajectories for recognition,
and better than a method based on pretrained convolutional
neural network (AlexNet) [21].

Our method is novel and different from other trajectory-
based methods presented in Sect. 1.2. These methods extract
activity features using the explicitly defined trajectories,
where the players have specific positions at any given time,
and ignore the rest of the playground. In our work, on the
other hand, given the specific positions of the team players
at a frame, we construct a position distribution for the team
on the whole playground and process the sequence of posi-
tion distribution images to extractmotion features for activity
recognition.As no tracking and positioning algorithm (vision
based or GPS based) can be 100% accurate, the position dis-
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Fig. 2 The Poisson equation is applied to generate the position distribution. a The top view of the handball court with player locations. b The
position distribution of the team. c The color-mapped position distribution with level sets

tribution accounts for the uncertainty of players’ positions
and it is defined on the whole playground which can be con-
sidered as an intensity image. Representing the positions of
the team players as an intensity image instead of a set of
points at any given time allows us to use frame differencing
and optical flow, which are important techniques for image
motion description.We extract motion features at each frame
using the sequence of position distribution images instead of
using the explicitly defined trajectories to represent activities.

Earlier versions of this work were presented in [22,23].
In [22] we verified that a particular Poisson equation can be
used to determine the region of highest population, corre-
sponding to the area with the highest density of the majority
of players, and to estimate the region of intent, corresponding
to the region toward which the team is moving as they press
for territorial advancement. Then in [23] we significantly
extended this early work [22] to perform full classification
of team activity. In [23], we were not concerned about the
region of intent or the region of highest population, and it
was an independent piece of work. However, the continuous
classification of team activities in [23] was only investigated
on European handball dataset, which is a publicly avail-
able small dataset. In this paper, we create and investigate
a larger and challenging dataset (i.e., field hockey). We con-
duct extensive evaluations for our method while comparing
with the most related method [12] that is designed to recog-
nize similar activities. In particular, we assess the accuracy
in detail, conduct time evaluations and study the effect of
window size.

3 Team position distribution generation

We illustrate the problem in the context of European hand-
ball, where the top view of the handball field of play with
the team player positions is shown in Fig. 2a. (A European
handball team has 7 players.) Given the positions of the team
players at any time, we aim to generate a position distribu-
tion of the team defined on the whole playground. There are
many possible probability distribution models (e.g., Gaus-
sians, Laplace orCauchy distribution), which can be centered

on each player position and then summed to generate a posi-
tion distribution of the team. Since the activity is performed
on the bounded playground and players have to be on the
playground tobe involved in the team-based activity, the posi-
tion distribution must be zero outside the playground. This
can be achieved by using the truncated versions (e.g., trun-
cated Gaussians) of the probability distributions. However,
most of the probability distributionmodelswhich can be used
to create a smooth distribution and account for uncertainty
for the positions are parameter dependent and the parameters
need to be adjusted to optimize the performance of the team
activity recognition. In our work, we choose to solve a par-
ticular Poisson equation to generate a position distribution
since it has a unique and steady-state solution with respect
to the given team player positions. The proposed Poisson
equation is parameter-free and can model zero probability
outside the playground without any truncation. The solution
of the proposed Poisson equation only depends on the players
positions.

3.1 Background to the Poisson equation

In mathematics, the Poisson equation is an elliptic-type
partial differential equation [24] which arises usually in elec-
trostatics, heat conduction and gravitation. The general form
of the Poisson equation, in two dimensions, is given by,

∇2 I (x) = −Q(x), (1)

where Q is a real-valued function of a space vectorx = (x, y)
and it is known as the source term, I is the solution which
is also a real-valued function, and ∇2 is the spatial Lapla-
cian operator. Given a source term Q(x), we find a solution
for I (x) that satisfies the Poisson equation and the boundary
conditions over a bounded region of interest. There are three
general types of boundary conditions: Dirichlet, Neumann
and mixed. Here, we explain the Dirichlet condition, which
is used in our algorithm. In theDirichlet condition, the bound-
ary values (solutions) are specified on the boundary. These
values can be a function of space or can be constant. The
Dirichlet condition is represented as I (x) = Φ(x), where
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Φ(x) is the function that defines the solution at the boundary
layer.

3.2 The proposed Poisson equation and solution

The proposed Poisson equation and the resulting distribution
(solution) are obtained based on the following considera-
tions. The top-view image of the field of play is assumed to
be a binary image where the player positions are one and the
rest of the positions are zero at any time during the game.
Although players are expected to be in the play area dur-
ing the game, players sometimes can move a little outside
for a variety of different reasons, such as to serve the ball,
when the ball is out or in order to talk to the coach. Thus,
we expand the binary image of the field of play to include
the possibility that the players may move a little outside the
lines. The binary image is defined to be the source term in
the Poisson equation. The boundary condition is Dirichlet
which has a specific solution, I (x) = 0, at the boundaries of
the expanded field of play. This means that there is no pos-
sibility for a player to be outside the region of interest. The
proposed Poisson equation problem is,

∇2 I (x, y) = −
(

N∑
i=1

δ(x − xi , y − yi )

)

I (x, y) = 0, boundary condition, (2)

where N is the number of players in the team and (xi , yi ) is
the position of player i . The source function is assumed to
be a linear combination of Dirac delta functions δ(.) in two
dimensions. It is important to note that the proposed Poisson
equation has a unique and steady-state solution at each frame.
The solution is parameter-free, and it only depends on the
position of the players. Therefore, when players change their
position from the previous frame to the current frame, the
solution also changes in the current frame.

The numerical solution methods of the Poisson equation
can be categorized as direct and iterative methods. In [25],
Simchony et al. pointed out that direct methods are more
efficient than multi-grid-based iterative methods for solving
the Poisson equation on a rectangular domain, since direct
methods can be implemented using the fast Fourier trans-
form (FFT). In our work, since the field of play is rectangular,
we employ FFT-based direct methods to solve the proposed
Poisson equation. The proposed equation has a Dirichlet
boundary condition that needs discrete sine transforms (using
FFT) to achieve an exact solution, where the detailed descrip-
tion of the solution method is given in [25]. The solution to
the proposed equation forms peaks at the player positions. To
smooth these peaks, we applyGauss–Seidel iterations (5 iter-
ations), as a post-processing stage, to relax the surface while

maintaining the boundary condition (I (x) = 0) outside the
region of interest.

The resultant distribution provides the likelihood of a posi-
tion to be occupied by players at any given time, and it is
called the position distribution of the team. Figure 2b shows
the position distribution for the given example, and Fig. 2c
shows the same distribution with color mapping and with
level sets. For handball, the resolution of the position dis-
tribution image is 220 × 120 in our experiments. For field
hockey, it is 372 × 240.

4 Motion-information images and feature
extraction

Computing the position distribution for each frame pro-
vides a sequence of position distributions. We process
the sequence of distribution images to generate motion-
information imageswhich can describemotion at each frame.
The motion-information images are created using frame dif-
ferencing and optical flow.

4.1 Frame differencing

The simplest way in which we can detect motion is by image
differencing. Figure 3a shows the direction of movement of
the team players from the current frame to the next frame
(50 frames later), where the starting point of the arrow rep-
resents the position of the player at the current frame and
the end point represents the position of the player at the
next frame. We compute the position distribution for the
team at the current and at the next frames. Since the team
players move from the current positions to the next posi-
tions, they create higher position distribution values in the
direction of movement. To detect motion with the direc-
tion, we apply change detection by simply subtracting the
current distribution from the next distribution and keep the
positive values while setting the negative values to zero, i.e.,
(I (x, y, n + m) − I (x, y, n)) > 0, where I (x, y, n) repre-
sents the position distribution of the team at frame number n
and m is the number of frames between the current and the
next frames. Frame differencing is applied with 50 frames
(i.e., m = 50) of temporal extent in our experiments. Fig-
ure 3b shows the frame differencing whereby we keep the
positive values and set the negative values to zero for the
given example.

4.2 Optical flow

Although frame differencing can provide some information
about the movement, we cannot exactly see how the distri-
bution points move. In order to describe the position changes
at each frame, we compute optical flow vectors that can
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Fig. 3 Generating a motion-information image using frame differencing. a Team players movements. b The motion-information image

Fig. 4 Computing the directional speed images to represent themotion-
information images. a The position distribution and the estimated
optical flow. b The zoomed in image from the red box in (a). c Direc-

tional speed image in the direction of positive x-axis, d negative x-axis,
e positive y-axis and f negative y-axis (color figure online)

provide the displacement of the points with directions. We
employ the classical Horn and Schunck (HS) method [26]
for optical flow estimation. This is a differential approach
which combines a data term that assumes constancy of some
image property (e.g., brightness constancy and gradientmag-
nitude constancy) with a spatial term that models how the
flow is expected to vary across the image (e.g., smooth-
ness constraint). An objective function combining these two
terms is then optimized. In our experiments, we observed
that using the gradientmagnitude constancy assumption (i.e.,
|∇ I (x, y, n)| = |∇ I (x + u, y + v, n+m)|) instead of using
the brightness constancy (i.e., I (x, y, n) = I (x + u, y +
v, n + m)) can better estimate the optical flow, where u is
the horizontal optical flow and v is the vertical optical flow.
Therefore, in our work, we use the gradient magnitude con-
stancy assumption together with the smoothness constraint
to compute the optical flow on the playing field. The gradi-
ent of the position distribution is computed using the Sobel
operator, and the optical flow is computed from the current
frame to the next frame with 8 frames of temporal extent.

There are also two parameters that affect the solution of the
HS method: A parameter that reflects the influence of the
smoothness term is set to 0.1, and the number of iterations to
achieve the solution is set to 200. Figure 4a shows the posi-
tion distribution image and the estimated optical flow. For
better illustration, Fig. 4b shows the zoomed in image from
the red box in Fig. 4a. Note that this is a novel algorithm to
compute the motion field on the top view of the playground.
Kim et al. [27] compute the motion field on the top view of
the playground by interpolating the player’s motion vectors,
where the player’s motion vectors are generated using the
specific positions of the players. On the other hand, in our
algorithm, we use the specific positions to generate the posi-
tion distributions, and then estimate the motion field using
optical flow.

The motion-information images, using the optical flow,
are generated with the following considerations. The hori-
zontal and vertical components (i.e., u and v) of the flow
are two different scalar fields. Each of these components is
half-wave-rectified to generate four nonnegative channels:
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u+, u−, v+, v−, so that u = u+ − u− and v = v+ − v−.
These channels, u+, u−, v+ and v−, represent directional
speed images in the direction of positive x-axis, negative x-
axis, positive y-axis and negative y-axis, respectively. Note
that the directional speed images have also been used in [28]
for individual action recognition, but their usage for group
activity recognition as proposed here is novel. The direc-
tional speed images are illustrated in Fig. 4c–f for the given
example.

4.3 Feature extraction

We use five motion-information images to describe motion
at each frame, where one of them is obtained with frame
differencing and the other four are obtainedwith optical flow.
Frame differencing is applied with 50 frames of temporal
extent, while the optical flow is computed with 8 frames of
temporal extent, so that frame differencing captures motion
in a longer period of time, while the optical flow captures
motion in a shorter period of time. Our experiments show
that describing the motion in this way performs better than
other options.

Next, we compute weighted moments for each motion-
information image to represent motion features at that frame.
The discrete form of the equation is,

mpq =
∑
x

∑
y

w(x, y)x p yqΔxΔy. (3)

Here, mpq is the moment of order p and q, w(x, y) is
the weight function, which we substitute for each motion-
information image, and Δx = Δy = 1 are spacing sizes of a
pixel. We compute moments up to order p+q = 2, resulting
in 6 moments per image and 30 moments in total to describe
the motion at each frame.

5 Classification using themotion descriptors

We investigate the use of the proposed features with support
vector machine (SVM) classification. In SVM, a Gaussian
radial basis function kernel is used. SVM is a powerful
technique in classification; it maps training data to higher-
dimensional space and constructs a separating hyperplane
such that the distance between the hyperplane and a data
point is maximized. Test data are then classified by the dis-
criminant function.

In the handball dataset, the test frame is classified using
the 141-by-141 neighborhood frames (141 from past and 141
from future neighborhoods),which is determined experimen-
tally. This means that the window size is 283 (including the
test frame). Each of the frames in the window is labeled with
the SVMclassifier by using the one-against-all method. Then

Table 1 Team activities in handball with their numbering

1. Slowly going into offense

2. Offense against set up defense

3. Offense fast break

4. Fast returning into defense to prevent fast break

5. Slowly returning into defense

6. Basic defense

the most frequent class is selected to represent the activity
of the test frame. The scaling factor of the Gaussian kernel
function is 2.4. The upper bound on the Lagrange parameter
(i.e., the soft margin cost function parameter) is 10. In addi-
tion, we use the sequential minimal optimization method to
find the separating hyperplane since we have a large dataset
and this method is computationally efficient.

In the field hockey dataset, the test frame is classified using
the 112-by-112 neighborhood frames, which means that the
window size is 225 (including the test frame). Each of the
frames in the window is labeled with the SVM classifier by
using the one-against-all method, and then the most frequent
class represents the activity of the test frame. The scale factor
of the Gaussian kernel function is 2, and the upper bound on
the Lagrange parameters is 10. The sequential minimal opti-
mization method is used to find the separating hyperplane.

6 Evaluation and results

The proposed model is evaluated on European handball and
field hockey games. European handball is usually an indoor
game; on the other hand, the field hockey is an outdoor game
with a larger field of play.

6.1 Evaluation on European handball dataset

In handball, there are seven players and it is played on a 40-
by-20-meter court. The dataset for the handball game is from
the publicly available CVBASE dataset [20]. The dataset
consists of 10 min of a handball game. The playground coor-
dinates of the seven players of the same handball team are
available throughout the sequence. The sequence consists of
14978 frames (approximately 10 min). These trajectories are
extracted from two bird’s-eye view cameras, one above each
part of the court plane, with semiautomatic tracking, where
the details on trajectory extraction are given in [29]. The
dataset providers obtained error estimates on players’ posi-
tions in the playground between 0.3 and 0.5 meters. There
are mainly six different team activities in this dataset, where
the starting and end times of the activities are also annotated.
The definition of the six team activities with their number-
ing is given in Table 1. The length of each activity sequence
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ranges from 125 frames to 1475 frames. It should be noted
that some of these activities can be split into more complex
activity classes; however, more information is required such
as the ball trajectory or the trajectories of the opposing team
to represent more complex activities, which is not provided
in this dataset.

We evaluate our approachwhile comparingwith two other
models, namely amodel proposed byBlunsden et al. [12] that
analyzes the explicitly defined trajectories for team activity
recognition, and a model based on a pretrained convolutional
neural network (CNN) [21] that extracts CNN features from
themotion-information images, defined inSect. 4, for activity
representation. The model proposed by Blunsden et al. [12]
was designed to recognize the same activities in the same
dataset, which we believe to be one of the best comparisons
we can make given the current status of work in this area.
They extract 5 features (i.e., positions, speed, directions)
from each player trajectory, and then all the players’ fea-
tures are concatenated to form 35-dimensional feature vector
to represent the activity at each frame. A SVM classifier is
then trained upon these data. They use the one-against-all
method for classification. The test frame is classified using
the 99-by-99 neighborhood frames that make the window
size 199 (including the test frame). Each frame in the win-
dow is labeled with the SVM classifier, and then the most
frequent label represents the class of the test frame. A Gaus-
sian kernel function is used, and the scaling factor is 2.4.
The upper bound on the Lagrange parameters is 10. The
sequential minimal optimization method is used to find the
separating hyperplane.

We also compare the proposed features with a pretrained
convolutional neural network (i.e., AlexNet) [21] as a fea-
ture extractor. In particular, we keep the proposed system
architecture the same, but use CNN features instead of the
proposed features. We generate the five motion-information
images as defined in Sect. 4. Each image is resized toAlexNet
image requirements (i.e., 227 x 227). Then we extract CNN
features for each image using the last layer of the CNN (i.e.,
fc8 layer of the AlexNet which is the last layer before clas-
sification). We extract 1000-dimensional feature vector from
each image, and then features extracted from the five dif-
ferent images are concatenated to form 5000-dimensional
feature vector. This feature vector represents the activity
at each frame. Finally, we use a linear SVM to train and
classify activities.Weuse the one-against-allmethod for clas-
sification. The test frame is classified using the 100-by-100
neighborhood frames thatmake thewindow size 201 (includ-
ing the test frame). Each frame in the window is labeled with
the SVM classifier, and then the most frequent label repre-
sents the class of the test frame. The upper bound on the
Lagrange parameters is 0.01. The sequential minimal opti-
mization method is used to find the separating hyperplane.

6.1.1 Temporal segmentation and recognition

In our evaluation, the second half of the video is used for
training (i.e., 7600 frames, 5 min and 4 s) and the first half
is used for testing (i.e., 7328 frames, 4 min and 53 s). Both
the first and second halves include the six different team
activities. In the first half, there are 1, 3, 3, 1, 2 and 3 instances
and in the second half there are 3, 3, 2, 2, 2 and 4 instances for
activity number 1, 2, 3, 4, 5 and 6, respectively. Since proper
training is required for robust classification, we choose the
second half for training purposes. The second half includes
more activity samples than the first half, e.g., the activity
number 1 is performed once in the first half and three times in
the second half. In the training, there are at least two segments
and at most four segments to represent an activity. On the
other hand, in the testing, there are at least one segment and
at most three segments to represent an activity. In addition,
since we are testing the continuous sequence, there are also
time-out segments which occur when the ball is out or when
play is stopped. In handball, when it is time-out, teams keep
moving and start to perform the next activity, e.g., if they
are serving the ball, they move around to create space; on the
other hand, if the opponent team is serving the ball, theymove
around to prevent the pass. Therefore, each of the time-outs
in the test sequence is defined to be the following activity in
our experiments.

In continuous classification, we classify all individual
frames.We evaluate our featureswith the SVMclassification,
and all the details related to the classification are provided
in Sect. 5. The same evaluations are also conducted for the
method proposed by Blunsden et al. [12], and for the method
based on CNN features [21] for comparison. In evaluations,
the method proposed by Blunsden et al. [12] is denoted by
FET+SVM, which means that features are obtained using
the explicitly defined trajectories and the classification is
achieved using the support vector machines. On the other
hand, the method based on CNN features [21] is denoted by
CNN+SVM,whichmeans that CNN features are trained and
classified using support vectormachines. Figure 5a shows the
temporal segmentation and recognition results obtained by
the FET+SVM, Fig. 5b shows the temporal segmentation
and recognition results obtained by the CNN+SVM, while
Fig. 5c shows the results obtained by the proposed features
with SVM(proposed features+SVM), respectively. The blue
graph represents the ground truth and the red graph represents
the prediction. It is observed that the proposed features with
SVM achieves better temporal segmentation and recogni-
tion than the FET+SVM and CNN+SVM. The FET+SVM
and CNN+SVM cannot identify activity number 4, which
is fast returning into defense, and confuses this with activ-
ity number 5, which is slowly returning into defense. The
FET+SVM also confuses between activity numbers 2 and 5,
which is offense against set up defense and slowly returning
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Fig. 5 Temporal segmentation and recognition of activities. a
FET+SVM (proposed by Blunsden et al. [12]), b CNN features with
SVM and c proposed features with SVM

Table 2 Correct classification rates (CCR%) of the proposed fea-
tures+SVM,CNNfeatures+SVMandFET+SVM(total frames: 7328)

Methods FET+SVM [12] CNN+SVM Proposed fea-
tures+SVM

CCR% 89.74% 92.97% 94.61%

into defense, respectively. There are also some errors when
the activity switches in FET+SVM and CNN+SVM. The
proposed features with SVM can recognize the six different
activities, and the errors occur when the activity switches.

As stated by Ward et al. [30], there are two alternatives
for scoring in the evaluation of activity recognition: frames
and events. Our evaluation is based on scoring the frames
which is an acceptable validation method and which we
believe puts us in line with best practice especially when
we both segment and classify continuous videos. We clas-
sify 7328 test frames in the evaluation, and Table 2 shows
the correct classification rate (CCR%) for each method. The
CCR% is computed as CCR% = (Cc/Tc) × 100, where Cc

is the number of correct classification and Tc is the num-
ber of total classification. The FET+SVM achieves 89.74%,
the CNN+SVM achieves 92.97%, and the proposed features
with SVM achieves 94.61% recognition rate. Results show
that the proposed features with SVM performs around 4.9%
better than the FET+SVM, and around 1.6% better than the
CNN+SVM. Results show that the proposed features per-
form significantly better than the other features with the same
classifier, i.e., SVM.

Table 3 illustrates the precision and recall results, for each
activity class, obtained using each method. Here, the preci-
sion for a class is defined as P% = (Pc/Pt ) × 100, where
Pc is the number of frames correctly predicted as belonging
to that class and Pt is the total number of frames predicted
as belonging to that class. The recall for a class is defined as
R% = (Rc/Rt ) × 100, where Rc is the number of frames
correctly predicted and Rt is the total number of frames that
actually belong to that class. In this table, both the precision
and recall must be high for a method to show that it can
handle activity switches and provide sufficient discrimina-
tion. There is only one activity, i.e., activity 6, in Table 3,
where the FET+SVM [12] has slightly better precision and
better recall than the proposed features+SVM. In general,
the proposed features+SVM has better performance than
the FET+SVM [12]. The main problem of the FET+SVM
method is that it cannot discriminate activity number 4 and
it is sensitive to activity switches. The CNN+SVM has the
same problem with FET+SVM. The CNN+SVM method
cannot discriminate activity number 4, and it is also sensitive
to activity switches. On the other hand, the proposed features
withSVMcandiscriminate all activities and canhandle activ-
ity switches better than the FET+SVM and CNN+SVM.
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Table 3 Precision (P%) and
recall (R%) of the proposed
features+SVM, CNN
features+SVM and FET+SVM
for each activity in handball
dataset

Act. No. # of frames FET+SVM [12] CNN+SVM Prop. features+SVM

(P%) (R%) (P%) (R%) (P%) (R%)

1. 164 82.41 100.0 100.0 73.78 88.17 100.0

2. 2914 86.48 98.79 94.42 99.97 97.98 98.28

3. 675 96.96 61.48 95.44 80.59 84.76 84.88

4. 225 0.0 0.0 0.0 0.0 97.38 66.22

5. 675 83.92 70.37 75.94 84.15 99.46 82.07

6. 2675 94.19 98.80 96.46 99.70 92.79 98.28

Table 4 Confusion matrix for FET+SVM [12]

1 2 3 4 5 6
1 1 0 0 0 0 0
2 0.01 0.99 0 0 0 0
3 0 0.15 0.62 0 0 0.23
4 0 0.64 0 0 0.36 0
5 0 0.27 0.02 0 0.70 0.01
6 0 0.01 0 0 0 0.99

The number at row and column is the proportion of row class which is
classified as column class at frame level

Table 5 Confusion matrix for CNN features with SVM
1 2 3 4 5 6

1 0.74 0.26 0 0 0 0
2 0 1 0 0 0 0
3 0 0.11 0.81 0 0 0.08
4 0 0.23 0 0 0.77 0
5 0 0 0.04 0.06 0.84 0.07
6 0 0 0 0 0 1

Table 6 Confusion matrix for proposed features with SVM

1 2 3 4 5 6
1 1 0 0 0 0 0
2 0.01 0.98 0.01 0 0 0
3 0 0.09 0.85 0 0 0.06
4 0 0 0 0.66 0 0.34
5 0 0 0.05 0 0.82 0.13
6 0 0 0.02 0 0 0.98

Tables 4, 5 and 6 show the confusion matrix for six dif-
ferent activities by FET+SVM [12], CNN+SVM and the
proposed features+SVM, respectively. The number at row
and column is the proportion of row class which is classified
as column class at frame level. For example, in Table 6, 85%
of the activity 3 class frames is correctly classified as activ-
ity 3 class, 9% is misclassified as activity 2 class, and 6% is
misclassified as activity 6 class.

6.1.2 The effect of window size

We present the effect of differing window size in the classi-
fication performance (CCR%). Figure 6a shows the CCR%

for the proposed features with SVM, for CNN+SVMmodel
[21] and for the FET+SVM model [12]. The window size
ranges from 51 to 351 in our evaluation. It is observed that
the proposed features with SVM performs better than the
other models at each window size. The optimal window size
for the proposed features+SVM is 283. For the FET+SVM
model, it is 199. For the CNN+SVM model, it is 201.

6.1.3 The effect of motion-information images

We present the influence of motion-information images and
report what the temporal segmentation and the classifica-
tion results would be if only frame differencing or only
optical flow was used. Figure 6b shows the result obtained
by using only frame differencing (one motion-information
image). Figure 6c shows the result using only optical flow
(four motion-information images), and Fig. 5c illustrates
the result using the combination (five motion-information
images). Frame differencing alone achieves 90.96%, optical
flowachieves 92.82%, and the combination achieves 94.61%.
Results indicate that using the combination improves the
CCR% and the discrimination.

6.1.4 The effect of SVM kernel function

Wepresent the influence of different SVMkernel functions in
handball dataset. Three different kernel functions are experi-
mented, which are linear kernel function, polynomial kernel
function and Gaussian radial basis kernel function. Table 7
shows the performance of the proposed method with respect
to these kernel functions. It is observed that the proposed
method performs best with the Gaussian radial basis ker-
nel function. Parameters of the kernel functions are selected
using the fivefold cross-validation and grid search. We apply
the cross-validation and grid search to the training part of
the video. In linear SVM, we have a single parameter that is
for the soft margin cost function (C). The optimal cost func-
tion parameter (C) is 0.25. In polynomial SVM, we have two
parameters: the cost function parameter (C) and the order
of polynomial function (P). The optimal parameter values
are C = 0.01 and P = 3. Finally, in Gaussian radial basis
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Fig. 6 Effect of window size and the effect of motion-information images. a Classification performances (CCR%) with differing window size. b
Temporal segmentation and recognition using only frame differencing and c only optical flow

Table 7 Evaluation of SVM classifier with respect to different kernels
in handball dataset

SVM kernel function CCR%

Proposed features+SVM (Gaussian radial
basis function kernel)

94.61

Proposed features+SVM (polynomial kernel) 94.33

Proposed features+SVM (linear kernel) 93.83

kernel function there are two parameters: the cost function
parameter (C) and the Gaussian scale factor (S). The optimal
parameter values are C = 10 and S = 2.4.

6.1.5 Computational efficiency

The computational time for each stage of the methods is
given in Table 8. We also report the computation times if
only frame differencing or only optical flow is used in our
method. Results are obtained using MATLAB 7 on a Win-
dows 7 operating system with Intel Core i3-870, 2.93 GHz
and 8 MB RAM. It is observed that the FET+SVM method
is more efficient than the proposed method with SVM and
CNN+SVM especially in feature extraction. Although the
proposed features (combination) with SVM is computation-
ally less efficient than FET+SVM in feature extraction, it
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Table 8 Computation time for each stage of the methods in handball dataset

Stages Feature extraction in
whole video

Training activities in
the second half

Classifying activities
in the first half

FET+SVM [12] 1.51 s 19.1 s 0.33 s

CNN+SVM 14,793.42 s 28.31 s 0.29 s

Proposed features+SVM (combination) 13,516.51 s 24.12 s 0.25 s

Proposed features+SVM (frame differencing) 983.28 s 55.23 s 0.27 s

Proposed features+SVM (optical flow) 12,524.34 s 30.5 s 0.24 s

has significantly better classification accuracy in compari-
son with FET+SVM and CNN+SVM.

6.2 Evaluation on field hockey dataset

Field hockey is an outdoor team sport. There are eleven play-
ers in a team, and the size of playground is 91.4×55 meters.
The position data were collected using a SPIproX Global
Positioning System (GPSports Systems Limited, Australia)
[31]. The SPIproX equipment was supplied by Statsports
company [32] (the UK and Ireland distributor of GPSsports).
These GPS devices are one of the most advanced GPS-based
tracking technologies on themarket. TheGPS devices record
the position coordinates of players at a frequency of 15Hz (15
data points per second). The validity and reliability of GPS
usage in field hockey were studied by Macleod et al. [33].
They concluded that GPS is a reliable and validmeasurement
tool for assessing themovement patterns of field hockey play-
ers.

We collected a position dataset by recording a match
between Irish national teams, i.e., U18s ladies versus U16s
ladies. Note that U18s means that all of the team players are
under 18 years old. We collected the positions of nine play-
ers of U18s team for a period of approximately 35 min of a
game. There are eleven players in a team, but unfortunately
two of the sensors stopped working during the game, and the
position data of two players (i.e., the goalkeeper and a for-
ward player) are missing in our dataset. This is a very natural
condition in real-world situations, and our experiments are
conducted with nine player positions to segment and recog-
nize team activities.

We also recorded the same field hockey match using two
different broadcast cameras, so that we can annotate team
activities. The cameras capture 25 frames per second (fps); on
the other hand, GPS sensors capture 15 fps. To synchronize
the GPS data with the broadcast video data, we simply inter-
polate the GPS data, using linear interpolation, so that the
position data are also at 25 fps. Finally, in total, the sequence
consists of 53,201 frames (approximately 35 min). For eval-
uation, the dataset is divided into two parts, approximately
from the middle. The first half has 26,599 frames, and the
second half has 26,602 frames. Thus, we can train activities

Table 9 Team activities in field hockey with their numbering

1. Slowly going into offense

2. Offense against set up defense

3. Offense fast break

4. Fast returning into defense to prevent fast break

5. Slowly returning into defense

6. Basic defense

7. Stalemate middle right

8. Stalemate middle left

in the first half and test the activities in the second half, or we
can train the activities in the second half and test the activities
in the first half. There are eight different team activities in
this dataset, where the starting and end times of these activi-
ties are annotated. The definition of the eight team activities
with their numbering is given in Table 9. The length of each
activity sequence ranges from 49 frames to 1975 frames.

Note that there are two more activities in this dataset in
comparison with the handball dataset. In field hockey, the
playground is larger and there are more possible movements
for a team. The stalemate middle right activity (i.e., activity
number 7) is a transient state between offense and defense. In
this activity, the team moves to the middle right to intercept
the ball or to pass the ball patiently before the next activity.
The stalemate middle left activity (i.e., activity number 8) is
also a transient state between offense and defense. The team
moves to the middle left to intercept the ball or to pass the
ball before the next activity.

6.2.1 Temporal segmentation and recognition

In the first experiment, we train the activities in the first half
of the video (i.e., 26,599 frames, approximately 17 min and
44 s) and test the activities in the second half (i.e., 26,602
frames, approximately 17 min and 44 s). Then, in the second
experiment, we train the activities in the second half of the
video and test the activities in the first half. Both the first and
second halves include the eight different team activities.

In the first half, there are 18, 8, 6, 3, 11, 11, 13 and 15
instances and in the second half there are 19, 4, 3, 8, 8, 13,
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Table 10 Quantity of the training sets for each activity

Activity number First half Second half

Total Training Total Training

1. 6257 3500 4840 3500

2. 1776 1750 5282 3500

3. 445 445 957 957

4. 1761 1500 651 651

5. 1809 1800 3094 2500

6. 6264 3000 5131 3000

7. 5174 3300 3487 2500

8. 3116 2800 3083 2500

17 and 14 instances for activity number 1, 2, 3, 4, 5, 6, 7 and
8, respectively. In continuous classification, we classify all
individual frames and all the details related to the classifica-
tion are provided in Sect. 5. The same evaluations are also
conducted for the FET+SVM [12] and CNN+SVM [21] for
comparison purpose. In FET+SVM, the second half is clas-
sified using the 89-by-89 neighborhood of the test frame that
makes the window size 179 (including the test frame). The
first half is classified using the 81-by-81 neighborhood of
the test frame that makes the window size 163 (including the
test frame). In SVM, the scaling factor of the Gaussian kernel
function is 3.2. The upper bound on the Lagrange parame-
ters is 10. The sequential minimal optimization method is
used to find the separating hyperplane. In CNN+SVM, the
second half is classified using the 96-by-96 neighborhood
of the test frame that makes the window size 193 (including
the test frame). The first half is classified using the 100-by-
100 neighborhood of the test frame that makes the window
size 201 (including the test frame). In SVM, the upper bound
on the Lagrange parameters is 0.01. The sequential minimal
optimization method is used to find the separating hyper-
plane.

6.2.2 Training set selection

Training set selection is crucial for supervised classifiers.
Large training sets usually increase the computation time
and complexity of the training stage. In addition, training
sets which include outlier features degrade the performance
of the classifier during the testing phase. Outliers in pattern
recognition could be defined as patterns whose characteris-
tics are different from the majority of the patterns within the
same class. In our domain, outliers could result from human
annotation errors (i.e., especially at the activity transition
points) or GPS device noise. Therefore, to optimize the com-
putation time of the training stage and enhance the classifier
performance, there is a need to clean and reduce the size of
training set for each activity.

In our work, we use an outlier detection method to reduce
the size of training sets. We use local reconstruction weight
(LRW) [34,35] to detect and remove the outlier features. The
LRW algorithm is based on a dimensionality reduction tech-
nique called locally linear embedding [34,35]. It starts with
determining the k-nearest neighbors of all the points in the
training set. Then it reconstructs each point as a linear combi-
nation of its neighbors. The reconstruction is donewith linear
regression, and points with large reconstruction weights will
be outliers in the training set. There are two parameters to be
set in this method: The number of nearest neighbors of each
data point is 12, and the regularization parameter is 0.001. To
reduce the size of training sets, we use the outlier detection
MATLAB toolbox provided by Onderwater [36]. Table 10
shows the total number of samples (frames) in the first and
second halves, and howmany of these sampleswere included
in the training set for each activity. For example, in the sec-
ond half, there are 5131 samples from the activity class 6,
and 3000 samples are used for training. The outlier detection
method is used to reduce the size of samples, and the one-
against-all method is used to train SVM classifiers. So when
we train activity class 6, we use 3000 samples to represent
class 6 and use the combination of samples from the other
seven classes to represent the non-activity class 6. We select
about 500 samples from each of the other seven training sets
to form the not-activity class 6 samples. Note that if the total
number of samples is less than 1000 for an activity, for exam-
ple activity class 4 has 651 samples in the second half, all of
the 651 samples are included in the non-activity class 6, since
the size of the training set is already very small and we do
not want to miss important information. The same training
sets are used in all of the methods: our method, FET+SVM
and CNN+SVM methods.

6.2.3 Second-half testing

We train the first part of the annotated video and test the sec-
ond part. Figure 7a–c illustrates the temporal segmentation
and recognition by the FET+SVM, by the CNN+SVM and
by the proposed features with SVM, respectively. The blue
graph represents the ground truth, and the red graph repre-
sents the prediction. It is observed that the proposed features
with SVMperforms better temporal segmentation and recog-
nition than the FET+SVM.

We classify 26,602 test frames in the evaluation, and
Table 11 shows the correct classification rate (CCR%)
for each method. The FET+SVM achieves 71.24%, the
CNN+SVM achieves 75.61%, and the proposed features
with SVM achieves 88.06% recognition rate. Results show
that the proposed features with SVM performs around 17%
better than the FET+SVM.

Table 12 shows the precision and recall results, for each
activity class, obtained using each method. It is observed
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904 C. Direkoǧlu, N. E. O’Connor

Fig. 7 Temporal segmentation and recognition of activities in the second half. a FET+SVM (proposed by Blunsden et al. [12]), b CNN fea-
tures+SVM and c the proposed features with SVM
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Table 11 CCR%of theproposed features+SVM,CNNfeatures+SVM
and FET+SVM in the second half (total frames: 26602)

Methods FET+SVM [12] CNN+SVM Proposed fea-
tures+SVM

CCR% 71.24% 75.61% 88.06%

that the proposed features with SVM has better precision and
recall than the other methods for almost each activity class.
This means that our method can handle activity switches
and provide sufficient discrimination better than the other
methods.

Tables 13, 14 and 15 illustrate the confusion matrix
for eight different activities by FET+SVM, CNN fea-
tures+SVM and the proposed features+SVM, respectively.
The number at row and column is the proportion of row
class which is classified as column class at frame level. It
is observed that the FET+SVM method cannot classify the
activity classes 3, 4 and 5 well and confuses them with other
activities. On the other hand, our method is significantly
better than the othermethods in discrimination and classifica-
tion. In our method, errors generally occur when the activity
switches.

6.2.4 First-half testing

We train the second part of the video and test the first part.
Figure 8a–c shows the temporal segmentation and recog-
nition by the FET+SVM, by the CNN+SVM and by the
proposed features+SVM, respectively. It can be observed
that the proposed method has better temporal segmentation
and recognition than the other methods in the first half of the
dataset as well.

We classify 26,599 test frames in the first half of the
video, and the CCR% for each method is given in Table 16.
The FET+SVM achieves 72.69%, the CNN+SVM achieves
74.21%, and the proposed features+SVM achieves 84.05%
recognition rate. The proposed method achieves around 12%

Table 13 Confusion matrix for FET+SVM [12] in the second half

1 2 3 4 5 6 7 8
1 0.79 0.02 0 0 0 0.11 0.05 0.03
2 0.08 0.87 0 0 0.02 0 0.03 0
3 0.21 0.28 0.51 0 0 0 0 0
4 0.03 0 0 0.53 0 0.3 0 0.14
5 0.08 0.11 0.01 0.08 0.33 0.02 0.18 0.19
6 0.05 0 0 0.01 0.01 0.89 0.01 0.03
7 0.08 0.1 0 0 0.04 0.14 0.61 0.03
8 0.27 0.04 0 0.01 0 0.02 0.03 0.63

Table 14 Confusion matrix for CNN+SVM in the second half
1 2 3 4 5 6 7 8

1 0.65 0.03 0.03 0 0.02 0.04 0.14 0.09
2 0 0.86 0 0 0.07 0 0.06 0
3 0.33 0.31 0.35 0 0 0 0 0
4 0 0 0 0.26 0.07 0.46 0 0.2
5 0.06 0 0 0 0.70 0.03 0 0.21
6 0.05 0 0 0 0 0.86 0.07 0.01
7 0.01 0.01 0 0 0.05 0.01 0.90 0.02
8 0 0.03 0 0 0.03 0 0.10 0.83

Table 15 Confusion matrix for the proposed features with SVM in the
second half

1 2 3 4 5 6 7 8
1 0.85 0.01 0.01 0.01 0.02 0.03 0.06 0.01
2 0.03 0.91 0 0 0.05 0 0.01 0
3 0.13 0 0.77 0 0.03 0 0 0.07
4 0.02 0 0 0.80 0 0.11 0.03 0.04
5 0.02 0 0 0.02 0.59 0.03 0.06 0.28
6 0.03 0 0 0 0 0.97 0 0
7 0.01 0.01 0 0 0 0.03 0.93 0.02
8 0.03 0 0 0 0 0.04 0.03 0.90

better performance than the FET+SVM, and around 11%
better performance than the CNN+SVM.

The precision and recall results, for each activity class, are
shown in Table 17. In general, it is observed that the proposed
features with SVM has better results than the other methods.

Table 12 Precision (P%) and
recall (R%) of the proposed
features with SVM, CNN
features+SVM and FET+SVM
for each activity in the second
half

Act. No. # of frames FET+SVM [12] CNN+SVM Prop. features+SVM

(P%) (R%) (P%) (R%) (P%) (R%)

1. 6257 70.90 78.92 86.05 64.60 91.49 84.86

2. 1776 58.79 87.16 76.07 86.43 94.11 90.93

3. 445 90.51 51.46 43.49 35.28 83.82 76.85

4. 1761 82.49 52.98 98.04 25.55 94.39 79.27

5. 1809 67.52 33.44 62.35 69.65 82.18 59.15

6. 6264 72.77 89.29 82.57 86.37 89.02 96.95

7. 5174 79.01 60.90 72.35 90.07 88.16 92.96

8. 3116 64.07 62.71 64.13 83.41 77.70 90.15
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Fig. 8 Temporal segmentation and recognition of activities in the first half. a FET+SVM (proposed by Blunsden et al. [12]), bCNN features+SVM
and c the proposed features with SVM
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Table 16 CCR%of theproposed features+SVM,CNNfeatures+SVM
and FET+SVM in the first half (total frames: 26599)

Methods FET+SVM [12] CNN+SVM Proposed fea-
tures+SVM

CCR% 72.69% 74.21% 84.05%

Tables 18, 19 and 20 show the confusion matrix obtained
by FET+SVM, CNN features+SVM and the proposed fea-
tures+SVM, respectively. It is observed that the FET+SVM
method cannot discriminate the activity class 3 and usually
confuses with the activity class 1. The FET+SVM also can-
not classify the activity classes 5 and 8 well and confuses
them with other activities. The proposed features+SVM can
discriminate all of the activities and performs better classifi-
cation than the FET+SVM and CNN+SVM.

6.2.5 Overall performances

We also present overall performances of the FET+SVM and
the proposed features+SVM methods. Overall, we classify
53,201 test frames, i.e., 26,602 (second half) + 26,599 (first
half) = 53,201. The overall CCR% for each method is shown
in Table 21. Ourmethod achieves 86.05%,while FET+SVM
achieves 71.97%. The proposed method performs approxi-
mately 14% better than the FET+SVM.

The overall precision and recall results for each activity
class are also shown inTable 22.Theoverall confusionmatrix
for FET+SVM and our method is given in Tables 23 and 24,
respectively. The FET+SVM cannot discriminate activity
class 3 (i.e., offense fast break) and confuses with the activ-
ity class 1 (i.e., slowly going into offense). The FET+SVM
method also does not performwell for activity classes 4, 5 and
8.On the other hand, the proposed featureswithSVMcandis-
criminate all of the activities and achieves better results than
the FET+SVM. Results show that the proposed method is
effective in temporal segmentation and recognition of activi-
ties. Figure 9a–d shows sample frameswith the automatically
recognized activities by the proposed features with SVM.

Table 18 Confusion matrix for FET+SVM [12] in the first half

1 2 3 4 5 6 7 8
1 0.87 0.06 0 0 0.01 0.03 0.02 0.01
2 0.03 0.94 0 0 0.01 0 0.02 0
3 0.49 0.28 0.04 0 0 0.16 0.03 0
4 0.04 0 0 0.71 0.03 0.1 0 0.12
5 0.16 0.12 0 0.01 0.50 0.08 0.08 0.05
6 0.17 0 0 0 0 0.82 0 0.01
7 0.11 0.02 0 0.01 0.10 0.05 0.71 0
8 0.33 0.15 0 0 0 0.06 0.02 0.44

Table 19 Confusion matrix for CNN features with SVM in the first
half

1 2 3 4 5 6 7 8
1 0.66 0.05 0.02 0 0.03 0.01 0.06 0.17
2 0.01 0.94 0.01 0 0.04 0 0 0
3 0.51 0.27 0.11 0 0.03 0 0 0.08
4 0.11 0 0 0.85 0 0 0 0.04
5 0 0.09 0 0 0.64 0.04 0.12 0.11
6 0.10 0 0 0.02 0 0.86 0 0.02
7 0.14 0.06 0 0 0.03 0.11 0.62 0.06
8 0.15 0.01 0 0.05 0 0 0.03 0.75

Table 20 Confusion matrix for the proposed features with SVM in the
first half

1 2 3 4 5 6 7 8
1 0.89 0.04 0 0 0 0.03 0 0.04
2 0.04 0.83 0.03 0 0.09 0 0.01 0
3 0.16 0.05 0.65 0 0.05 0.09 0 0
4 0.08 0 0 0.92 0 0 0 0
5 0.05 0.01 0.01 0.03 0.75 0.06 0.06 0.03
6 0.07 0 0 0.05 0 0.85 0.01 0.02
7 0.04 0.01 0.01 0 0.01 0.03 0.83 0.07
8 0.01 0.02 0.01 0.02 0 0.03 0.01 0.90

Table 21 CCR% of the proposed features+SVM and FET+SVM in
overall (total frames: 53201)

Methods FET+SVM [12] Proposed features+SVM

CCR% 71.97% 86.05%

Table 17 Precision (P%) and
recall (R%) of the proposed
features with SVM, CNN
features+SVM and FET+SVM
for each activity in the first half

Act. No # of frames FET+SVM [12] CNN+SVM Prop. features+SVM

(P%) (R%) (P%) (R%) (P%) (R%)

1. 4840 55.17 87.23 60.76 66.41 79.93 88.97

2. 5282 77.77 94.04 83.37 94.36 93.86 83.38

3. 957 100.0 3.87 39.55 11.08 70.06 65.52

4. 651 87.08 71.43 67.03 84.64 58.65 92.17

5. 3093 75.33 50.34 81.39 64.05 79.63 75.56

6. 5131 80.89 81.41 88.61 85.54 86.99 84.95

7. 3562 82.92 71.67 74.69 61.62 89.06 82.76

8. 3083 80.93 44.05 59.26 75.25 82.96 90.04
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Table 22 Precision and recall of
the proposed features with SVM
and FET+SVM for each
activity in overall

Activity number # of frames FET+SVM [12] Proposed features+SVM

Precision (P%) Recall (R%) Precision (P%) Recall (R%)

1. 11097 62.66 82.54 85.93 86.65

2. 7058 72.23 92.31 93.93 85.28

3. 1402 91.72 18.97 74.37 69.12

4. 2412 83.96 57.96 79.78 82.75

5. 4902 72.97 44.10 80.41 69.50

6. 11395 76.03 85.74 88.16 91.55

7. 8736 80.71 65.29 88.50 88.80

8. 6199 70.05 53.43 80.23 90.10

Table 23 Confusion matrix for FET+SVM[12] in overall

1 2 3 4 5 6 7 8
1 0.82 0.04 0 0 0 0.08 0.04 0.02
2 0.04 0.92 0 0 0.02 0 0.02 0
3 0.40 0.28 0.19 0 0 0.11 0.02 0
4 0.03 0 0 0.58 0.01 0.25 0 0.13
5 0.13 0.12 0 0.04 0.44 0.06 0.11 0.1
6 0.10 0 0 0 0.01 0.86 0.01 0.02
7 0.1 0.06 0 0 0.07 0.10 0.65 0.02
8 0.3 0.1 0 0.01 0 0.04 0.02 0.53

Table 24 Confusion matrix for proposed features with SVM in overall

1 2 3 4 5 6 7 8
1 0.87 0.02 0.01 0 0.01 0.03 0.03 0.03
2 0.03 0.85 0.02 0 0.09 0 0.01 0
3 0.15 0.03 0.69 0 0.05 0.06 0 0.02
4 0.04 0 0 0.83 0 0.08 0.02 0.03
5 0.04 0.01 0.01 0.02 0.69 0.05 0.06 0.12
6 0.05 0 0 0.02 0 0.91 0.01 0.01
7 0.02 0.01 0 0 0.01 0.03 0.89 0.04
8 0.02 0.01 0 0.01 0 0.04 0.02 0.90

6.2.6 The effect of window size

We study the effect of changing window size in the clas-
sification performance (CCR%). Figure 10a, b shows the
performance of each method with changing window size for
the second half and the first half. The window size ranges
from 3 to 551 in our evaluation.

From figures, it is observed that the proposed method per-
forms better than the FET+SVM method and CNN+SVM
method at each window size. Table 25 shows the optimal
window sizes for each method, in the field hockey dataset,
for the second half and the first half.

6.2.7 The effect of motion-information images

We also study the influence of motion-information images in
the field hockey dataset. For the second half of the dataset,
Figure 11a, b shows the result obtained by using only frame
differencing (one motion-information image) and using only
optical flow (four motion-information images), respectively.
Figure 7c illustrates the result using the combination (five
motion-information images).

For the first half of the dataset, Fig. 12a, b shows the result
by using only frame differencing and using only optical flow,
respectively. Figure 8c shows the result using the combina-
tion.

Table 26 also shows the CCR% obtained by only frame
differencing, only optical flow and their combination for each
stage in the field hockey dataset. In overall, only frame differ-
encing achieves 53.77%, only optical flow achieves 83.55%,
and the combination achieves 86.05%. Results indicate that
using the combination improves the performance.

6.2.8 The effect of SVM kernel function

We also present the effect of different SVM kernel func-
tions in field hockey dataset. We experiment three different
kernel functions: linear kernel function, polynomial kernel
function and Gaussian radial basis kernel function. Table 27
shows the performance of the proposed method with respect
to these kernel functions. It is observed that the best perfor-
mance of the proposed method is achieved with the Gaussian
radial basis kernel function. Parameters of the kernel func-
tions are selected using the fivefold cross-validation and grid
search. For the second-half testing case, we apply the cross-
validation and grid search to the first half (training part) of
the video. For the first-half testing case, we apply the cross-
validation and grid search to the second half (training part) of
the video. In linear SVM, we have a single parameter that is
for the soft margin cost function (C). The optimal cost func-
tion parameter (C) is 0.25 and 0.2 for the second-half testing
and first-half testing, respectively. In polynomial SVM, we
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Fig. 9 Activity of the black-uniform-wearing team is automatically recognized by the proposed features with SVM

Fig. 10 Classification performances (CCR%) with differing window size for a the second half and b the first half

Table 25 Optimal window size
for each stage of the methods in
field hockey dataset

Stages FET+SVM [12] CNN+SVM Proposed features+SVM

Second half 179 193 225

First half 163 201 217

123
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Fig. 11 Temporal segmentation and recognition in the second half a using only frame differencing and b using only optical flow

have two parameters: the cost function parameter (C) and
the order of polynomial function (P). The optimal parame-
ter values appear to be C = 0.02 and P = 4 both for the
second-half testing and for the first-half testing, respectively.
Finally, in Gaussian radial basis kernel function there are two
parameters: the cost function parameter (C) and theGaussian
scale factor (S). The optimal parameter values appear to be
C = 10 and S = 2 both for the second-half testing and for
the first-half testing, respectively.

6.2.9 Computational efficiency

Table 28 shows the computational time required for each
stage of the methods. Results are obtained using MAT-
LAB 7 on a Windows 7 operating system with Intel Core

i3-870, 2.93 GHz and 8 MB RAM. In feature extraction,
the FET+SVM method is more efficient than the proposed
method and theCNN+SVM.On the other hand, the proposed
method (combination) has significantly better classification
accuracy in comparison with the other methods.

7 Conclusion

We have presented an approach for temporal segmentation
and recognition of team activities in sports based on a new
activity feature extraction strategy. Given the positions of
team players from a plan view of the playing field at any
given time,we solve a particular Poisson equation to generate
a position distribution for the team. Computing the position
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Fig. 12 Temporal segmentation and recognition in the first half a using only frame differencing and b using only optical flow

Table 26 Effect of
motion-information images in
the field hockey dataset

Motion-information images Only frame differencing Only optical flow Combination

Second-half performance (CCR%) 53.09 86.73 88.06

First-half performance (CCR%) 54.46 80.37 84.05

Overall performance (CCR%) 53.77 83.55 86.05

Table 27 Evaluation of SVM
classifier with respect to
different kernels in hockey
dataset

SVM kernel function Second half (CCR%) First half (CCR%)

Proposed features+SVM (Gaussian radial basis kernel) 88.06 84.05

Proposed features+SVM (polynomial kernel) 84.85 81.38

Proposed features+SVM (linear kernel) 77.04 74.02
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Table 28 Computation time for each stage of the methods in field hockey dataset

Stages FET+SVM
[12]

CNN+SVM Proposed features+SVM
(combination)

Proposed features +
SVM (frame differ-
encing)

Proposed features +
SVM (optical flow)

Feature extraction in whole video 11.05 s 67,654.61 s 65,428.04 s 10,512.47 s 54,932.51 s

Training activities in the first half 65.22 s 55.93 s 53.86 s 67.34 s 60.12 s

Classifying activities in the second half 0.59 s 0.64 s 0.61 s 0.64 s 0.63 s

Training activities in the second half 61.27 s 66.72 s 63.06 s 62.38 s 63.56 s

Classifying activities in the first half 0.61 s 0.66 s 0.63 s 0.59 s 0.64 s

distribution for each frame provides a sequence of distribu-
tions, which we process to extract motion features at each
frame. Then the motion features are used to classify team
activities. Our method is evaluated on two different datasets,
i.e., the European handball and the field hockey datasets.
Results show that the proposed approach is effective and
performs better than the method (FET+SVM) that extracts
features from the explicitly defined trajectories, and better
than the method (CNN+SVM) that uses a predefined con-
volutional neural network for feature extraction.
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