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Abstract
In sparse representation algorithms, a test sample can be sufficiently represented by exploiting only the training samples
from the same class. However, due to variations of facial expressions, illuminations and poses, the other classes also have
different degrees of influence on the linear representation of the test sample. Therefore, in order to represent a test sample
more accurately, we propose a new sparse representation-based classification method which can strengthen the discriminative
property of different classes and obtain a better representation coefficient vector. In our method, we introduce a weighted
matrix, which can make small deviations correspond to higher weights and large deviations correspond to lower weights.
Meanwhile, we improve the constraint term of representation coefficients, which can enhance the distinctiveness of different
classes and make a better positive contribution to classification. In addition, motivated by the work of ProCRC algorithm,
we take into account the deviation between the linear combination of all training samples and of each class. Thereby, the
discriminative representation of the test sample is further guaranteed. Experimental results on the ORL, FERET, Extended-
YaleB and AR databases show that the proposed method has better classification performance than other methods.

Keywords Sparse representation · Weighted matrix · Discriminative property · Representation coefficient

1 Introduction

Compared to other biometrics [1–3], face recognition [4–6]
has the following characteristics: nonmandatory, noncontact,
concurrency. In addition, face recognition is easy to oper-
ate and accords with human visual character. The keys to
the success of face recognition system are a cutting-edge
core algorithm, practical recognition rate and recognition
speed. Face recognition system integratesmany technologies
such as artificial intelligence [7–9],machine recognition [10–
12], machine learning [13–15], model theory [16–18], expert
system [19–21], video processing [22–24] and, moreover,
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combines the theory and implementation of intermediate
value processing. The realization of its core technology
shows the transformation from weak artificial intelligence
to strong artificial intelligence.

Numerous face recognition algorithms have emerged.
Among them, the typical algorithms include principal com-
ponent analysis (PCA) [25–27], linear discriminant analysis
(LDA) [28–30] and locality preserving projections (LPP)
[31–33]. Besides, Roweis et al. [34] proposed an unsuper-
vised learning algorithm, namely locally linear embedding
(LLE). Its main principle is that if there is a set of data with
nested manifolds, the order of the data points between the
nested space and the local field within the low-dimensional
space should be maintained. Belkin et al. [35] proposed a
nonlinear dimension reduction algorithm, which constructs
a representation of data sampled from a low-dimensional
manifold embedded in a higher-dimensional space, called
as Laplacian eigenmap. Another classical face recognition
algorithm called local binary patterns (LBP) has been pro-
posed by Ahonen et al. [36]. This algorithm considers both
shape and texture information to represent face images and
takes the extraction of local features as identification stan-
dards. LBP is insensitive to illumination variation.
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Wright et al. [37] proposed a very important approach
which applies sparse representation for robust face recog-
nition. Specifically, a test sample is sparsely coded by an
over-complete dictionary whose base elements are training
samples. Then, the test sample is assigned to a certain class
which yields the least coding error. This algorithm, namely
sparse representation-based classification (SRC), achieves a
great success in face recognition.Naseemet al. [38] proposed
linear regression classification (LRC) algorithm which can
address the problem of illumination invariant in face recog-
nition. It assumes that a test sample can be represented by
a linear combination of the training samples of each class,
respectively. Xu et al. [39] proposed a two-phase test sample
representation (TPTSR) algorithm. Although TPTSR also is
based on the idea of sparse representation, unlike SRC, its
first phase removes a great number of training samples that
are dissimilar to the test sample and takes the class labels of
the remaining training samples as candidate classes for the
test sample. This will be very helpful for the second phase to
more accurately represent the test sample. Zhang et al. [40]
raised questions about the pivotal role of l1-norm sparsity
on improving face recognition performance and presented a
collaborative representation classifier (CRC).

All of the above-mentioned algorithms have neglected
several key problems. First, in the conventional error loss
term, all the errors are treated equally, but the error difference
between different classes is ignored, and these differences
may be useful for classification. Second, for the constraint
term of the representation coefficients, most algorithms tend
to focus only on the use of norms, such as the l1-norm, l2-
norm, while ignoring the possibility that this item can be
improved to enhance the discriminability between differ-
ent classes. Therefore, in this paper, firstly, we introduce
weighted matrix into the error term between test samples
and its reconstructed values and further enhance the dif-
ferences between different classes. Secondly, we improve
the constraint term of the representation coefficients, while
maintaining sparsity, and enhance the discriminant of the
algorithm. Finally, in order to stabilize the target solution,
we added one item to the objective function. Specifically,
the deviations between the linear combination of all training
samples andof each class are taken into account. Experiments
show that the proposed method can achieve a very satis-
factory accuracy for face recognition. Our method has the
following advantages. (1) The weighted matrix is introduced
into the objective function. Smaller deviations are assigned
greater weight; larger deviations are assigned lesser weight.
(2)The improvement of representation coefficients constraint
term enhances the discrimination of different classes. (3) The
weightedmatrix is not fixed. Instead, theweightedmatrix and
representation coefficients are updated iteratively, until con-
vergence. Hence, the continuous updating of weights reflects
the flexibility of the proposed method.

The remainder of this paper is organized as follows. Sec-
tion2 presents the proposed method. Section3 describes the
underlying rationale of the proposed algorithm. Section4
shows experimental results. Section5 provides the conclu-
sion of the paper.

2 Related work

Because our proposed algorithm is based on the sparse rep-
resentation algorithm, we studied a large number of related
improved sparse representation algorithms, and our algo-
rithm is also inspired by these algorithms. Therefore, this
sectionmainly introduces these algorithms and gives our own
understanding about these algorithms.

Denget al. [41] proposed an extended sparse representation-
based classifier (ESRC) algorithm, which can extend SRC to
applications where there is a single training sample (or very
few training samples) per class. In ESRC, there is a basis
matrix that represents the universal intraclass variant bases.
These variations usually caused by exaggerated expressions,
occlusions or unbalanced lighting changes; we can obtain
these variant bases by subtracting the natural image from
other images of the same class. Finding a sparse represen-
tation of the test image in terms of the training set and the
intraclass variant bases, the object function of ESRC is

[
x̂1
β̂1

]
= argmin

∥∥∥∥
[
x
β

]∥∥∥∥
1
, s.t.

∥∥∥∥[A,DI ]

[
x
β

]
− y

∥∥∥∥
2

� ε,

(1)

where A = [A1, . . . ,Ak] ∈ Rd×n stands for a training sam-
ples matrix, and k denotes the number of classes.DI ∈ Rd×p

is a matrix of intraclass variant bases. y ∈ Rd is a test sam-
ple, and ε > 0 is an optimal error tolerance. x, x̂ ∈ Rn and
β, β̂ ∈ Rp. Then computing the residuals

ri (y) =
∥∥∥∥y − [A, DI ]

[
δi
(
x̂1
)

β̂1

]∥∥∥∥
2

. (2)

Finally, the label of the test sample is I denti t y(y) =
argmini ri (y). The ESRC algorithm can achieve higher per-
formance with a smaller number of bases.

Tang et al. [42] designed an weighted group sparse repre-
sentation classification (WGSRC). Each class usually plays a
different role in representing a test sample. WGSRC assigns
each class weights according to the similarity between a test
sample and training samples of each class. For representing
a test sample, the training samples from the neighbors and
the highly relevant classes of it are taken into account. In
the WGSRC algorithm, more structure information and dis-
criminative information are considered. In WGSRC, there is
a l2,1-norm regularization function
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β ′∗ = min
β

∥∥∥y − XS−1β

∥∥∥2
2
+ λ

c∑
i=1

‖βi‖2, (3)

where X is training samples matrix, and y is a test sam-
ple. The matrices S = diag ([s1, s2, . . . , sc]), and si =[
si1, si2, . . . , sini

]T, s jk = w j d jk , d jk = exp
( ‖y−xik‖2

σ2

)
(i = 1, 2, . . . , c; j = 1, 2, . . . , ni ) are used to assess the
relative importance of training samples per class for repre-
senting a test sample. According to Eq. (3), compute the
sparse coefficient β∗ = S−1β ′∗. Then, the label of a test
sample is Identity (y) = argmini

∥∥y − Xiβ
∗
i

∥∥
2.

Timofte et al. [43] improved collaborative representations
with regularized least squares and proposed a weighted col-
laborative representation classifier (WCRC). Because the
training samples are not equally discriminative in classifi-
cation, the training samples or features are weighted. Wu
et al. [44] proposed a learned collaborative representation-
based classifier (LCRC) and attempted to explain why such
choice ofweightsworks and how to optimize thoseweights in
WCRC. Xu et al. [45] proposed a new discriminative sparse
representation method for robust face recognition via l2 reg-
ularization. The objective function of this method is defined
as

min
B

‖y − XB‖2 + γ

L∑
i=1

L∑
j=1

∥∥XiBi + X jB j
∥∥2, (4)

where B = [B1,B2, . . . ,BL ] is representation coeffi-
cient, Bi = [bm(i−1)+1, . . . , bmi ]T (i = 1, 2, . . . , L). γ

is a positive constant. Representation coefficient B is cal-
culated by using B = (

(1 + 2γ )XTX + 2γ LM
)−1XTy,

where M =
⎡
⎢⎣
XT
1 X1 · · · 0
...

. . .
...

0 · · · XT
L XL

⎤
⎥⎦. According to p =

argmin
i

‖XiBi − y‖22, test sample y is classified to the p-th

class.
Cai et al. [46] analyzed the algorithm theory of CRC and

proposed a probabilistic collaborative representation-based
classifier (ProCRC). The object function is

(
α̂
) = argmin

α

{
‖y − Xα‖1 + λ ‖α‖22 + γ

K

K∑
k=1

‖Xα − Xkαk‖22
}

.

(5)

Solving Eq. (5), α̂ can be obtained, i.e.,

α̂ =
(
XTX + γ

K

∑K
k=1

(
X̄′

k
)T
X̄′

k + λI
)−1

XTy,where X̄′
k =

X − X′
k , and X′

k = [0, . . . ,Xk, . . . , 0]. According to
j = argmin

k

∥∥Xkδk
(
α̂
)− y

∥∥2
2, test sample y is classified

to the j-th class.

3 Proposedmethod

For convenience of the following description of algorithms,
here we normalize mathematical notations and expres-
sions. Assume that there are c known classes. Let X =
[X1, . . . ,Xi , . . . ,Xc] be a set of d-dimensional training sam-
ples from c classes, where X = [X1, . . . ,Xi , . . . ,Xc] is the
training samples of class i , i.e.,Xi = [

x(i−1)n+1, x(i−1)n+2,

. . . , xin], x(i−1)n+1, x(i−1)n+2, . . . , xin are column vectors.
The total number of training samples of each class is n.
Then the total number of training samples for all classes
is N , i.e., N = nc. Column vector y denotes a test sam-
ple.

3.1 Sparse representation-based classification

Sparse representation is referred to as compressed sensing
theory and has been widely applied to various areas of signal
processing. As a special kind of signal, face images have
sparse characteristic in many cases. Therefore, the intro-
duction of sparse representation theory to face recognition
has become a research hot spot. In all sparse representation
algorithms, on the premise of an over-complete input dictio-
nary, these algorithms select a small amount of atoms in the
dictionary to represent a signal y and enable representation
coefficients vector to achieve sparse. It should be noted that
the basic elements of the dictionary are called as atoms. In
face recognition, face images are regarded as the basic ele-
ments of the dictionary (i.e., atoms), and the signal y refers
to a test sample. In other words, an arbitrary test sample y
can be represented by a linear combination of all the training
samples, i.e.,

y = X1β1 + X2β2 + · · · + Xcβc

= x1b1 + · · · + x(i−1)n+1b(i−1)n+1 + · · · + xinbin + · · · + xN bN

= Xβ,

(6)

where β = [
b1, . . . , b(i−1)n+1, . . . , bin, . . . , bN

] ∈ RN

is representation coefficients vector. Representation coeffi-
cients vector β can be obtained by solving the following
formula,

min
β

‖y − Xβ‖22 + λ‖β‖p, (7)

where λ is a constant. Its role is to balance the contribu-
tion of reconstruction error and representation coefficients
vector, meanwhile, to make the least square solution sta-
ble. After getting the optimal coefficients vector, the test
sample can be, respectively, reconstructed by exploiting the
training samples of each class, i.e., y = Xi β̂i , where β̂i is
the representation coefficients vector associated with class
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i (i = 1, 2, . . . , c). Finally, the test sample y can be clas-
sified into class k with minimum reconstruction error, i.e.,

k = argmin
i

∥∥∥y − Xi β̂i

∥∥∥
2
. (8)

Moreover, it needs to be pointed out that different p
norm constraints represent different algorithms in Eq. (7).
When the value of p is 1, the corresponding algorithm is
sparse representation-based classification (SRC) algorithm.
Initially, in order to seek the sparsest solution of y = Xβ,
l0-norm is used to regularize representation coefficient vec-
tor β. l0-norm can count the number of nonzero elements
in coefficients vector. However, according to the literature
[47], solving the sparsest solution of an linear optimization
equations is NP-hard. Fortunately, it has been certified that
the solution acquired by exploiting l0-norm minimization
is equal to the solution of l1-norm minimization [48–50].
If p = 2, i.e., minβ ‖y − Xβ‖22 + λ ‖β‖22, this is classi-
cal collaborative representation-based classification (CRC)
algorithmwhichmakes l2-norm as the constraint of represen-
tation coefficients vector. The coefficients vector of CRC is
not inclined to absolute zero and does not have sparse theoret-
ically. In other words, the coefficients vector obtained using
the l2-norm regularization are not as sparse as those obtained
using the l1-norm regularization. But it is not necessary to
use the strong l1-norm. By using the much weaker l2-norm
regularization, we can have similar classification results but
with lower complexity. Moreover, the effectiveness of CRC
algorithm is also reflected in the final classification process.

The reconstruction error of each class ei =
∥∥∥y − Xi β̂i

∥∥∥2
2
can

be used for classification in SRC. In fact, ei =
∥∥∥y − Xi β̂i

∥∥∥2
2

can be readily derived that

ei =
∥∥∥y − Xi β̂i

∥∥∥2
2

= ∥∥y − ŷ
∥∥2
2 +

∥∥∥ŷ − Xi β̂i

∥∥∥2
2
, (9)

where ŷ is the reconstruction approximation of the test sam-
ple y.

e∗
i =

∥∥∥ŷ − Xi β̂i

∥∥∥2
2
plays a major role in classification.

According to the geometric interpretation of this formula

e∗
i =

∥∥∥ŷ − Xi β̂i

∥∥∥2
2
in the literature [40], if y belongs to

the i-th class, and collaborative representation is applied to
the linear representation of the test sample y. The angle
between ŷ and Xi β̂i will be small, and the angle between
Xi β̂i and

∑
j �=i X j β̂ j will be big. Such a double detection

makes ei =
∥∥∥y − Xi β̂i

∥∥∥2
2
used in classification more reli-

able. In addition, the sparsity of
∥∥∥β̂i

∥∥∥
2
can contribute some

discriminant information for classification. Hence, the final

classification rule of CRC is k = argmini

∥∥∥y−Xi β̂i

∥∥∥
2∥∥∥β̂i

∥∥∥
2

, and

then the test sample y is classified to the k-th class.

3.2 Description of the proposedmethod

In fact, image features (e.g., pixels) have different contribu-
tions to image classification. Furthermore, due to variations
of facial expressions, illuminations and poses, the pixels in
the same region of the identical human face vary widely.
These variations can be called generalized noises. In conven-
tional sparse representation-based classification algorithms,
the first term of the objective function is the deviation
between a real sample (i.e., test sample) and a sparse lin-
ear combination of training samples. This deviation can be
viewed as the noisesmentioned above. The existence of noise
means that it is impossible to precisely express the test sample
as a sparse linear combination of training samples. The devia-
tion can be coarsely explained as a sumof difference between
the test sample and each class. However, in a conventional
sparse representation algorithm, difference between the test
sample and each class is treated equally, which weakens the
distinctiveness of different classes. It is useful for image
classification methods to enhance the difference of differ-
ent classes based on a prior knowledge. Thus, we adopt a
weighted least square algorithm. In addition, we also opti-
mize the constraint term of the coefficients vector. Moreover,
motivated by ProCRC, we take the deviation between the
linear combination of all training samples and of each class
into account. The aim of our method is to strengthen the dis-
criminant property of different classes and obtain an optimal
representation coefficients vector. The objective function of
the proposed method is defined as

min
β

1

2
(y − Xβ)TW (y − Xβ)

+ γ

c∑
i=1

c∑
j=1

βT
i X

T
i X jβ j + λ

c∑
i=1

‖Xβ − Xiβi‖22, (10)

where γ and λ are positive constants and are used to bal-
ance the three terms in the objective function of the proposed
method.W is a weighted matrix. y is a test sample. It is also
a column vector. β denotes coefficients vector. The above
objective function is a convex function. Therefore, we can
exploit the derivative of the function to get the extremum of
the function. Because the convex function can avoid falling
into local extremum, we can obtain an optimal solution.
There are two unknown variables in the objective function,
namely coefficient vector β and weighted matrix W. For
improving the computing efficiency, the weighted matrix is
set as
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W (i, i) = 1
/|X (i, :) β − yi |, (11)

where yi stands for the i-th row of y. X (i, :) denotes the
i-th row of X. In this way, it allows that small deviations
are given greater weights, and large deviations are given
smaller weights. Because small deviations mean that the
corresponding elements have the key information which is
useful for the classification, giving large weights allows key
information to be strengthened. Likewise, the information
which is useless to the classification will be artificially weak-
ened. Hence we only need to calculate the derivative with
respect to β. (Please refer to “Appendix 1” for the proof.)
So the derivative over β of 1

2 (y − Xβ)TW (y − Xβ) +
γ
∑c

i=1
∑c

j=1 βT
i X

T
i X jβ j + λ

∑c
i=1 ‖Xβ − Xiβi‖22 is

∂

∂β

⎛
⎝1

2
(y − Xβ)TW (y − Xβ) + γ

c∑
i=1

c∑
j=1

βT
i X

T
i X jβ j

+ λ

c∑
i=1

‖Xβ − Xiβi‖22
)

= −XTW (y − Xβ) + 2γXTXβ

−2γMβ + 2λ

[
c∑

i=1

(Zi )
TZi

]
βn. (12)

Based on the characteristic of convex function and the
extremum of one variable function, we can get the optimal
value of β is

β̂ =
[
XTWX+2γXTX−2γM+2λ

c∑
i=1

(Zi )
TZi

]−1

XTWy.

(13)

By summarizing the above analysis and description, we
present the main steps of the proposed method in Algo-
rithm 1.

Algorithm 1

1: Normalize the columns of X to have unit l2-norm.
2: W (i.e., W (i, i)=1

/|X(i, :) β−yi |) and β̂ are updated iteratively,
until converge.

3: Compute the residuals ri (y) =
∥∥∥y − Xi β̂i

∥∥∥
2
, where β̂i is the

coefficient vector associated with class i .
4: Output the identity of y as Identity(y) = argmin

i
ri (y).

4 Theoretical analysis of the proposed
method

In order to make our method easier to understand, this sec-
tion analyzes the rationales and advantages of the proposed
method.

4.1 Rationales of the proposedmethod

The purpose of face recognition is to identify the class of the
test sample by exploiting the identification algorithm. Thus,
it is necessary to use the algorithm to perform training before
recognition. In this process, a large number of training sam-
ples are needed, and these training samples are from different
classes. In general, the contribution of each training sample
in classification has difference. In traditional sparse represen-
tation algorithms, the residuals between a test sample and the
linear representation of the training samples of each class are
different. It may lead to the existence of heteroscedasticity
in the algorithmic model. The so-called heteroscedasticity
means that the dispersion degree of a test sample y around
the regression line y = X1β1 + X2β2 + · · · + Xcβc varies
with samples. It is pointed out that if the algorithmicmodel is
proved to be heteroscedastic, developing a new algorithmic
model is necessary. The weighted least squares algorithm
is one of the most frequently used algorithms. In the least
square algorithm, each residual is treated equally. But based
on prior knowledge, it is expected that great contributions
correspond to higher weights, and less contributions have
lower weights. It is the reason why we introduce a weighted
matrix in our objective function. In our method, the deter-
mination of the weighted matrix is adaptive to (dependent
on) the test sample. Moreover, the samples are depicted by
pixels whose values are different from each other. The pixel
features in the face region are more helpful in recognition
than those on the background or edge regions. Hence, for
simplifying the calculation, we define the weighted matrix
as W (i, i) = 1

/|X (i, :) β − yi |. The size of W is d × d,
where d is the dimension of a sample.

Wright et al. mentioned that SRC inherently possesses
discrimination. In other words, the sparse representation
algorithm can select the class whose the linear representa-
tion is closest to the real test sample, and can eliminate the
candidate classes which cannot compactly represent the test
sample. However, it is not enough to solely rely on the natu-
ral discrimination of the sparse representation algorithm. So,
further enhancing the differences of different classes is very
useful. Our method can strengthen the discrimination capa-
bilities of all classes, which are beneficial to obtain discrimi-
native sparse code β and interclass difference, also beneficial
to better classify the test sample. In our objective func-
tion, the term γ

∑c
i=1

∑c
j=1 βT

i X
T
i X jβ j plays an important

role on enhancing discrimination capabilities for all classes.
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Specifically, γ
∑c

i=1
∑c

j=1 βT
i X

T
i X jβ j can be rewritten as

γ
∑c

i=1
∑c

j=1 βT
i X

T
i X jβ j = γ

∑c
i=1

∑c
j=1 (Xiβi )

TX jβ j .

Further, (Xiβi )
TX jβ j can also be expressed as (Xiβi )

TX jβ j

= ‖Xiβi‖2
∥∥X jβ j

∥∥
2 cos θ , where θ is the angle between

Xiβi andX jβ j . Therefore, minimizing βT
i X

T
i X jβ j is equiv-

alent to the minimization of ‖Xiβi‖2
∥∥X jβ j

∥∥
2 cos θ , i.e.,

min
(
βT
i X

T
i X jβ j

) = min
(‖Xiβi‖2

∥∥X jβ j
∥∥
2 cos θ

)
.Accord-

ing to the properties of the cosine function, the smaller the
cosine function cos θ is, the greater the angle θ is. This can
reduce the correlation of the linear representations of the test
sample from different classes. Thus, there is a maximum dif-
ference between the representation results of the i-th class
and the j-th class, which can enhance discrimination capa-
bilities for representation results of different classes.

The convex function is a kind of widely used special
function. An important property of the convex function is
that an extreme small value of the convex function is also a
minimum value, and the local minimum value is the global
minimum value. The objective function constructed in this
paper enables complex problems to be readily solved. Before
exploiting the properties of convex function to solve themini-
mumvalue, it is necessary to prove that our objective function
is a convex function. Fortunately, our objective function sat-
isfies the condition, as we proved in “Appendix 2.”

4.2 Advantages of the proposedmethod

Our method uses the ideas of discriminative and weighted
matrix, which are also exploited by other algorithms such as
PCRC [51], weighted group sparse representation (WGSR)
and ProCRC. Even so, our proposed method still has its
own uniqueness. Firstly, PCRC and WGSR put emphasis
on applying weighted matrix into sparse constrain term,
but ignore reconstruction error term. By comparison, our
proposed method is more elaborate. Besides, PCRC just
regards the distance between each training sample and the
test sample as weight value, while our proposed method
not only improves the constrain term of the coefficients
vector, but also introduces the weighted matrix into the
reconstruction error term to ensure each residual can be
treated differently. Moreover, the subsequent experimen-
tal results show that our method is more efficient than
the PCRC. Secondly, our method enhances the discrim-
ination between different classes by enlarging the angle
between the reconstructed vectors of every two classes. We
have described the concrete implementation principle in
detail in Sect. 4.1. Thirdly, three terms of the our objec-
tive function (i.e., λ

∑c
i=1 ‖Xβ − Xiβi‖22) are the same with

that of ProCRC (
(
α̂
) = argminα‖y − Xα‖1 + λ ‖α‖22 +

η
∑C

k=1 ‖Xα − Xkαk‖22). They both aim to further guarantee
to obtain a stable coefficients vector. The difference between
our proposed method and ProCRC is the first two terms.

Especially on the constraint term of coefficients vector (i.e.,
‖α‖22), by improving this term,we achieve the goal of enhanc-
ing the discrimination between different classes.

The representation coefficients β produced by sparse rep-
resentation algorithm can reflect the importance of each
training sample for expressing the test sample. Training sam-
ples from the same class as the test sample will contribute
greatly. On the contrary, training samples from other classes
only make a small contribution. If maximizing this con-
tribution difference, it is helpful for sparse representation
algorithm to obtain better recognition result. The proposed
method is committed to expand the contribution difference
of different classes, make different classes more discrimi-
native and enhance the discriminability of the representation
coefficients β. Figures1, 2, 3 and 4 present the representation
coefficients and the residuals between the approximate linear
representation of the test sample generated from each class
and the test sample, respectively. Here we adopt our method,
PCRC and CRC to make comparison. From Figs. 1a and 3a,
we can observe that when using our method, the maximum
coefficient is about 0.63, the closest coefficient value to it
is 0.3, and the difference between them is 0.33. In contrast,
the maximum coefficient value obtained using CRC is less
than 0.15, the closest coefficient value to it is 0.06, and the
difference between them is about 0.09. Similarly, from Figs.
2a and 4a, the maximum coefficient value obtained using
our method is about 2.3, the closest coefficient value to it is
about 0.5, and their difference is about 1.8. While the max-
imum coefficient value obtained using PCRC is about 0.24,
the closest coefficient value to it is about 0.14, and their dif-
ference is about 0.1. Hence, we can see that our method can
assign higher weights to the class with great contribution and
assign lower weights into the classes with less contribution
and thereby widen the difference between them. Then, we
can see that the minimum residual corresponding to the class
is the true class of the test sample from Figs. 1b, 2b, 3b and
4b. Moreover, for our method, the residuals between the test
sample and each class tend to be stable except for the true
class of the test sample. However, the residuals between the
test sample and each class fluctuate greatly when CRC and
PCRC are used. This phenomenon illustrates that ourmethod
weakens the effects of other classes on the test sample, and
reinforces the difference between the correct class and the
other classes.

The relationship between the reconstructed test sample
(i.e., Xβ) and each class (i.e., Xiβi , i = 1, . . . , c) should be
considered. Because the connection between things is often
multifaceted, a change in the dependent variable (i.e., Xβ)
may be affected by several other independent variables (i.e.,
Xiβi , i = 1, . . . , c). Therefore Xβ = X1β1 +X2β2 + · · · +
Xcβc can be regarded as a regression model. Xβ − Xiβi

denotes the deviation between the reconstructed test sam-
ple and the linear representation of each class. Minimizing
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Fig. 1 a Representation coefficients on the first test sample from the
second class obtained using the proposed method on the ORL face
database. The first five face images of each subject are used for training

samples, and the rest images are used for test samples. b The resid-
uals between the approximate linear representation of the test sample
generated from each class and the test sample

these deviations explains a phenomenon that Figs. 1b and 2b
show less fluctuation in comparison with Figs. 3b and 4b.
Our method can not only enhance the discriminative infor-

mation in the representation coefficients β, but also weaken
the influence of each class on the test sample.
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Fig. 2 a Representation coefficients on the sixth test sample from the
first class obtained using the proposed method on the Extended-YaleB
face database. The first ten face images of each subject are used for

training samples, and the rest images are used for test samples. b The
residuals between the approximate linear representation of the test sam-
ple generated from each class and the test sample

As for computational complexity, we assume that there
are R test samples in all. The dimension of each sam-
ple is d. The main computational load of CRC is ρ =

(
XTX + λI

)−1XTy. The computational complexity of XTX
is O

(
dN 2

)
. Let H1 = XTX + λI and H1 is a N by N

matrix; hence, the computational complexity of (H1)
−1 is
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Fig. 3 a Representation coefficients on the first test sample from the
second class obtained using CRC on the ORL face database. The first
five face images of each subject are used for training samples, and

the rest images are used for test samples. b The residuals between the
approximate linear representation of the test sample generated from
each class and the test sample

O
(
N 3
)
; the computational complexity of H2 = (H1)

−1XT

is O
(
dN 2

)
. Then, CRC has a computational complexity of

O
(
dN 2 + N 3 + dN R

)
. Similarly, the computational com-

plexity of PCRC is O
(
dN 2 + N 3 + N 2 + Nd2 + dN R

)
.

Next, we analyze the computational complexity of our pro-
posed method. Due to the existence of iterative operation,
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Fig. 4 a Representation coefficients on the sixth test sample from the
first class obtained using PCRC on the Extended-YaleB face database.
The first five face images of each subject are used for training samples,

and the rest images are used for test samples. b The residuals between
the approximate linear representation of the test sample generated from
each class and the test sample

we assume that the number of iteration is T . Our pro-
posed method mainly calculates vector β̂ = [

XTWX + 2γ

XTX − 2γM + 2λ
∑c

i=1 (Zi )
TZi

]−1
XTWy.

Let P = XTWX + 2γXTX − 2γM + 2λ
∑c

i=1 (Zi )
TZi .

After we calculate XTX, we can directly obtain M and∑c
i=1 (Zi )

TZi , and no extra computational complexity is
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Fig. 5 Some face images in the
ORL database

Table 1 The comparative recognition rates of the ORL database with
the number of training samples per class increases

Training samples 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

Proposed 73.89 87.81 90.00 94.58 95.00 96.88

CRC 71.94 84.06 86.79 91.67 90.50 92.50

KRBM 68.06 80.94 84.29 90.00 88.00 91.87

INNC 72.22 81.87 83.57 89.17 89.50 91.25

CFKNNC 72.22 81.56 82.86 89.17 88.50 92.50

NFRBC 73.33 87.50 91.07 90.42 91.00 93.13

SRC(L1LS) 66.67 82.81 85.71 90.00 88.50 87.50

MI-SRC 73.06 83.13 88.21 87.92 89.50 90.63

LRC 67.50 79.37 81.79 86.25 88.00 94.37

PCRC 67.78 81.56 83.57 86.67 89.00 91.87

needed. But XTWX needs extra computational complexity,
i.e., O

(
dN 2 + Nd2

)
. Because P is an N by N matrix, the

computational complexity of (P)−1 is O
(
N 3
)
. The computa-

tional complexity of P1 = P−1XT is O
(
dN 2

)
, the computa-

tional complexity of P2 = P1W is O
(
Nd2

)
, and the compu-

tational complexity of P3 = P2y is O (Nd). So, in summary,
the computational complexity of our proposed method is
O
(
TdN 2 + T Nd2 + T N 3 + TdN 2+T Nd2 + TdN R

)
.

5 Experiments

In order to verity the effectiveness of the proposed method,
we conduct experiments on several common face databases,
including ORL, FERET, Extended-YaleB and AR face
databases. Meanwhile, several excellent algorithms are
used in the experiments for comparison with our method.
These algorithms include CRC, INNC [52], CFKNNC [53],
NFRBC [54], KRBM [55], SRC, LRC, PCRC and MI-SRC
[56].

5.1 Experiment on the ORL database

We adopt the Olivetti Research Laboratory (ORL) face
database [57] in this experiment. This database contains a

Table 2 The comparative recognition rates of the FERETdatabasewith
the number of training samples per class increases

Training samples 1 (%) 2 (%) 3 (%) 4 (%)

Proposed 50.67 66.80 58.37 63.00

CRC 42.50 57.60 48.38 57.83

KRBM 37.58 47.80 37.12 41.33

INNC 43.50 58.30 50.50 57.33

CFKNNC 49.33 63.40 57.13 60.17

NFRBC 45.50 63.60 58.05 62.33

SRC(L1LS) 32.25 61.60 26.62 32.00

PCRC 50.62 59.00 43.75 57.17

series of face images taken between April 1992 and April
1994 at the laboratory. There are 400 grayscale images taken
from 40 objects, and these objects come from different ages,
genders and races. Each object provides ten different images.
The size of each image is 92 × 112 pixels, with 256 gray
levels per pixel. The background of image is black. Facial
expressions and details have made some changes, such as
smiling or not smiling, open or closed eyes, glasses or no
glasses. Facial pose is also varied, and its depth of rotation
and revolution of plane can reach 20 degrees. Illumination
condition has different changes. This database is currently
one of the most widely used standard databases, which con-
tains a larger number of comparative results. The first one,
two, three, four and five face images of each object are used
for training samples, and the rest images are treated as test
samples in our experiment. Each image is resized to 32× 32
pixels. Figure 5 shows some face images in this database.
Experimental results are shown in Table 1.

From Table 1, with the increase of the number of train-
ing samples, the classification accuracy of our method and
other methods also increases. It also shows the importance
of adequate training samples for image classification. On the
whole, our method is superior to other methods. When the
number of the training samples per class is six, the recogni-
tion rates of most methods are over 90%. The accuracy of our
method has reached 96.88% and is higher 2.51% than that

Fig. 6 Some face images in the
FERET database
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Fig. 7 Some face images in the
Extended-YaleB database

of LRC. Moreover, the remarkable features of this database
are that facial expressions and poses change variously. So,
to some extent, our method is insensitive to the variations of
facial expressions and poses.

5.2 Experiment on the FERET database

In order to promote the research and application of face
recognition algorithm, Counterdrug Technology Transfer
Program (CTTP) launched a Face Recognition Technol-
ogy (FERET) engineering, which includes a generic face
database and general test standard [58]. Each object provides
a number of images, including different facial expressions,
lighting, poses, gender and ages. Most of them are western-
ers, and there are 14,051 grayscale images. This database is
also one of the most widely used face database and helpful
for the research of face recognition. In this experiment, we
use 1400 images taken from 200 objects, and each object pro-
vides seven different face images. Each image is resized to
40×40 pixels. Then we use the first one, two, three, four and
five face images of each object as training samples and take
the remaining images as test samples. Several face images in
the FERET face database are shown in Fig. 6. Table 2 shows
the classification accuracy obtained using different methods.

From Table 2, it is obvious that the proposed method
can achieve lower the recognition error rates compared to
other methods. For example, we used the first two face
images of each subject as training samples and the rest face
images as test samples. The classification accuracy rate of our
method can outperform the CRC, KRBM, INNC, CFKNNC,
NFRBC, SRC and PCRC algorithms by a margin of 9.20,
19.00, 8.50, 3.40, 3.20, 5.20 and 7.80%, respectively.

5.3 Experiment on the Extended-YaleB database

The database used in this experiment includes face images
fromYaleB and Extended-YaleB face databases under differ-
ent illumination conditions [59]. This database consists of 10
objects from YaleB database and 28 objects from Extended-
YaleB database, and each object has 64 face images captured
under different lighting condition and poses. The first five,
ten, fifteen, twenty, twenty-five and thirty face images of
each object are treated as training samples, and the rest face
images are used as test samples, respectively. Each image is
resized to 32×32 pixels. Figure 7 shows some face images in

Table 3 The comparative recognition rates of the Extended-YaleB
database with the number of training samples per class increases

Training samples 5 (%) 10 (%) 15 (%) 20 (%) 25 (%)

Proposed 52.81 75.05 77.39 81.34 88.26

CRC 45.36 63.50 70.03 73.44 75.71

KRBM 45.54 54.87 55.42 55.74 57.76

INNC 45.14 59.02 62.62 65.37 62.55

CFKNNC 43.04 53.17 59.24 63.34 65.59

NFRBC 65.48 65.79 65.74 69.14 71.66

SRC(L1LS) 51.43 68.42 70.52 72.24 78.54

MI-SRC 42.42 71.20 72.07 77.57 85.12

LRC 45.95 70.89 74.24 73.58 79.10

PCRC 53.61 74.32 76.37 79.67 84.62

the Extended-YaleB database. The comparative recognition
rates obtained using different methods are shown in Table 3.

From Table 3, we can see that the classification accuracy
of our method increases as the number of training samples
per class increases.When the number of training samples per
class is 25, ourmethod achieves a recognition rate of 88.26%,
which is higher 3.14% than MI-SRC. In addition, although
our method is lower 12.67% than NFRBC when the number
of training samples per class is five, with the increase of
training samples, the classification accuracy of our method
quickly surpassed that of NFRBC, and the rising range of
our method is significantly higher than that of NFRBC. The
notable feature of this database is the obvious changes in
illumination, so these experimental results illustrate that our
method is insensitive to variations of illuminations to some
extent.

5.4 Experiment on the AR database

The AR face database is established by the Barcelona com-
puter vision center in Spain,which contains 3288 face images
taken from 116 objects [60]. In the acquisition environment,
the parameters of camera, illumination conditions and cam-
era distance are strictly controlled. Moreover, image feature
frontal view faces with different facial expressions, illu-
mination conditions and occlusions (sunglasses and scarf).
Images in the database are divided into two time stages; each
stage has thirteen pictures. Facial expressions and illumina-
tion have seven variations, and facial occlusion uses three
sunglasses and three scarves. We use a subset of the AR
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Fig. 8 Some face images in the
AR database

Table 4 The comparative recognition rates of the AR database with the
number of training samples per class increases

Training samples 2 (%) 4 (%) 5 (%) 6 (%)

Proposed 71.74 70.15 71.31 71.04

CRC 68.33 67.54 70.99 70.83

KRBM 64.97 65.00 66.43 68.50

INNC 69.62 68.45 69.17 69.08

CFKNNC 65.76 63.52 63.33 64.42

NFRBC 68.13 68.43 70.99 71.04

SRC(L1LS) 55.14 63.99 70.07 64.93

MI-SRC 65.66 53.30 58.25 57.92

LRC 59.00 59.96 59.84 68.37

PCRC 68.30 68.75 70.63 70.58

database. This subset contains 3120 face images taken from
120 objects, with each object providing 26 face images. Each
image is resized to 50 × 40 pixels. The first two, four, five,
six, eight and ten face images are regarded as training sam-
ples, and the rest images are used as test samples. Figure 8
shows several face images in the AR database. Experimental
results are shown in Table 4. From these results, our method
outperforms the other competing algorithms.

6 Conclusion

A new effective sparse representation-based classification
method is proposed for face recognition in this paper.
In traditional sparse representation algorithms, the residu-
als between the test sample and the linear representation
obtained using the training samples of each class are treated
equally. But based on prior knowledge, each residual is dif-
ferent, which is the specific embodiment of the existence
of differences between classes. These differences can make
the classification task easier. Therefore, each residual men-
tioned above should be treated differently,which can enhance
the distinctiveness of different classes. So we introduce a
weightedmatrix in sparse representationmethod. It canmake
small deviations correspond to higher weights, and large
deviations correspond to lower weights. The constraint term
of representation coefficients is improved, and the devia-
tion between the linear representation of all training samples
and of each class is taken into account. Then we exploit the
obtained optimal representation coefficients to perform clas-

sification. According to experimental results on the ORL,
FERET, Extended-YaleB and AR databases, our method has
good adaptive capability for variety of external factors, such
as illumination change, facial expression variations, poses
variety and occlusion interference.
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Appendix 1: The derivative over β of
1
2(y − Xβ)TW (y − Xβ) + γ

∑c
i=1

∑c
j=1

βT
i X

T
i Xjβj + λ

∑c
i=1 ‖Xβ − Xiβi‖22

First, d
dβ

( 1
2 (y − Xβ)TW (y − Xβ)

) = −XTW (y − Xβ).

Next, letting f (β) = γ
∑c

i=1
∑c

j=1 βT
i X

T
i X jβ j , we can

calculate the partial derivatives ∂ f
∂βk

. Then d f
dβ

can be obtained

by using all ∂ f
∂βk

k = 1, . . . , c. Based on mathematical expe-
rience,

βT
i X

T
i X jβ j = (Xiβi )

TX jβ j

= 1

2

(∥∥Xiβi + X jβ j
∥∥2
2 − ‖Xiβi‖22 − ∥∥X jβ j

∥∥2
2

)
.

So f (β) can be rewritten as

f (β) = γ

c∑
i=1

c∑
j=1

βT
i X

T
i X jβ j

= γ

2

⎡
⎢⎢⎣

∑
i=1,...,c
i �=k

(
‖Xiβi + Xkβk‖22 − ‖Xiβi‖22 − ‖Xkβk‖22

)

+
∑

j=1,...,c
j �=k

(∥∥Xkβk + X jβ j
∥∥2
2 − ‖Xkβk‖22 − ∥∥X jβ j

∥∥2
2

)

+
∑

i=1,...,c
i �=k

∑
j=1,...,c
j �=k

(∥∥Xiβi + X jβ j
∥∥2
2 − ‖Xiβi‖22 − ∥∥X jβ j

∥∥2
2

)
⎤
⎥⎥⎦
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= γ
∑

i=1,...,c
i �=k

(
‖Xiβi + Xkβk‖22 − ‖Xiβi‖22 − ‖Xkβk‖22

)

+ γ

2

∑
i=1,...,c
i �=k

∑
j=1,...,c
j �=k

(∥∥Xiβi + X jβ j
∥∥2
2 − ‖Xiβi‖22 − ∥∥X jβ j

∥∥2
2

)
.

The calculation procedure of ∂ f
∂βk

is as follows,

∂ f

∂βk
= ∂

∂βk

⎛
⎝γ

c∑
i=1

c∑
j=1

βT
i X

T
i X jβ j

⎞
⎠

= ∂

∂βk

⎛
⎜⎜⎝γ

∑
i=1,...,c
i �=k

(
‖Xiβi + Xkβk‖22 − ‖Xiβi‖22 − ‖Xkβk‖22

)
⎞
⎟⎟⎠

= γ
∑

i=1,...,c
i �=k

(
2XT

k (Xiβi + Xkβk) − 2XT
kXkβk

)

= γ
∑

i=1,...,c
i �=k

(
2XT

kXiβi

)
= 2γ

⎡
⎣
⎛
⎝ ∑

i=1,...,c

XT
kXiβi

⎞
⎠− XT

kXkβk

⎤
⎦

= 2γXT
kXβ − 2γXT

kXkβk .

Thus, the derivative over β of f (β) is d f
dβ

=

⎡
⎢⎢⎢⎢⎣

∂ f
∂β1

...

∂ f
∂βc

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
2γXT

1Xβ − 2γXT
1X1β1

...

2γXT
kXβ − 2γXT

kXkβk

⎤
⎥⎥⎥⎦ = 2γXTXβ − 2γMβ ,

where M =
⎛
⎜⎝
XT
1X1 . . . 0
...

. . .
...

0 · · · XT
cXc

⎞
⎟⎠ .

As for ∂
∂β

(
λ
∑c

i=1 ‖Xβ − Xiβi‖22
)
, we need to analyze∑c

i=1 ‖Xβ − Xiβi‖22 and deduce the deformation formula
of
∑c

i=1 ‖Xβ − Xiβi‖22 for convenience of calculation. Due

to Xβ = [X1, . . . ,Xc]

⎡
⎢⎢⎢⎣

β1

β2
...

βc

⎤
⎥⎥⎥⎦ = X1β1 + · · · + Xcβc, we

have Xβ − Xiβi = X1β1 + · · · + Xi−1βi−1 + Xi+1βi+1 +
· · · + Xcβc. Letting Si = [0, . . . ,Xi , . . . , 0] and Zi = X −
Si = [

X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xc
]
, we can obtain the

deformation formula ofXβ−Xiβi , i.e.,Xβ−Xiβi = Ziβ =
X1β1+· · ·+Xi−1βi−1+Xi+1βi+1+· · ·+Xcβc. Therefore,
the derivative over β of λ

∑c
i=1 ‖Xβ − Xiβi‖22 is

∂

∂β

(
λ

c∑
i=1

‖Xβ − Xiβi‖22
)

= ∂

∂β

(
λ

c∑
i=1

‖Ziβi‖22
)

= 2λ

[
c∑

i=1

(Zi )
TZi

]
β.

Eventually, the derivative overβ of 12 (y−Xβ)TW(y−Xβ)

+ γ
∑c

i=1
∑c

j=1 βT
i X

T
i X jβ j + λ

∑c
i=1 ‖Xβ − Xiβi‖22 is

∂

∂β

(
1

2
(y − Xβ)TW (y − Xβ)

+ γ

c∑
i=1

c∑
j=1

βT
i X

T
i X jβ j + λ

c∑
i=1

‖Xβ − Xiβi‖22
⎞
⎠

= −XTW (y − Xβ) + 2γXTXβ − 2γMβ

+ 2λ

[
c∑

i=1

(Zi )
TZi

]
β.

Appendix 2: Proof of our objective function
is convex function

In the literature [49], there is a description that one func-
tion is a convex function as long as it satisfies some certain
conditions. Specifically, suppose f is a twice differentiable
function, namely, its second derivative or Hessian ∇2 f is
continuous and exists at each point in dom f , where dom f
is open. Then, f is a convex function if and only if dom f
is convex, and also the Hessian of f is positive semidefi-
nite, i.e., ∇2 f (x) � 0, all x ∈ dom f . In addition, there is an
example which can help us to better explain and prove the
convex characteristic of the objective function, as follows.

Example 1 Consider the quadratic function f : Rn → R,
with dom f = Rn , given by f (x) = (

1
/
2
)
xTPx+qTx+r ,

where P is a symmetric matrix of size n × n, q ∈ Rn , and
r ∈ R. Due to∇2 f (x) = P for all x , f is convex if and only
if P�0.

Let g (β) = 1
2 (y − Xβ)TW (y − Xβ) + γ

∑c
i=1

∑c
j=1

βT
i X

T
i X jβ j + λ

∑c
i=1 ‖Xβ − Xiβi‖22.

Then according to the aforementioned theorem and exam-
ple, we can infer that the function g (β) is convex func-
tion if ∇2g (β) �0 is proved to be valid, that is, ∇2g (β)

is a positive semidefinite matrix. As for the problem of
how to determine a matrix is positive semidefinite matrix,
as long as this matrix is a real symmetric matrix and
all order principal minor determinant are greater than or
equal to zero, we can conclude that it is positive semidef-
inite matrix. From Eq. (7), we can get ∇1g (β), i.e.,
∇1g (β) = −XTW (y − Xβ) + 2γXTXβ − 2γMβ +
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2λ
[∑c

i=1 (Zi )
TZi

]
β, and then ∇2g (β) = −XTWX +

2γXTX−2γM+2λ
∑c

i=1 (Zi )
TZi . Because∇2g (β) satis-

fies the above determination conditions of positive semidef-
inite matrix, it is concluded that our objective function is
convex function.
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