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Abstract
Automatic extraction of retinal vessels is of great significance in the field of medical diagnosis. Unfortunately, extracting
vessels in retinal images with uneven background is a challenging task. In addition, accurate extraction of vessels with
different widths is difficult. Aiming at these problems, in this paper, a new dynamic multi-scale filtering method together with
a dynamic threshold processing scheme was proposed. The image is first divided into sub-images to facilitate the analysis
of gray features. Then for each sub-image, the scales of the matched filter and the segmentation threshold are dynamically
determined in accordance with the Gaussian fitting results of the gray distribution. Compared with the current blood vessel
extraction algorithms based on multi-scale matched filter using uniform scales for the whole retinal image, the proposed
method detects many fine vessels drowned by noise and avoids an overestimation of the thin vessels while improving the
accuracy of segmentation in general.

Keywords Blood vessel segmentation · Multi-scale · Matched filtering · Gaussian fitting

1 Introduction

Retinal vessels are the only micro-vessels which can be
observed in a noninvasiveway. Its shape, curvature andwidth
are reliable diagnosis indicators for diabetic retinopathy [1–
8], glaucoma [9–11], hypertension [12,13] and retinal artery
occlusion [14,15]. There are complex non-vascular structures
in a retinal image as shown in Fig. 1, such as optic disk, reti-
nal boundary and lesion area. Several factors make retinal
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vessel detection extremely difficult. One is that central reflex
phenomenon leads to the problem that two vessels close to
each other may be identified as one vessel. The other is that
the vessel width which is an important indicator for disease
diagnosis has a large variation. Besides, the fundus image
is vulnerable to environmental noise. In summary, accurate
extraction of vessels with different widths in retinal images
with complex structure and uneven contrast is the bottleneck
for retinal vessel extraction.

The most frequently used automatic retinal vessel extrac-
tion method can be classified into three categories. One is
tracking-based method [17,18]. In [17], some seed points
were selected in accordance with the brightness. Then multi-
scale line tracking was performed based on these seed
points. In [18], a tracking algorithm which is not based on
image intensity level was proposed. The tracking problem is
transformed into the global inference problem in graphical
models. In general, the tracking-based method can achieve
more complete extraction of retinal vascular network com-
paredwith othermethods.However, it requiresmanual search
for seed points which leads to high computational complex-
ity. In addition, it is difficult to deal with the bifurcation point
of small vessels.

Classifier-based method [19–25] was also widely used. In
[19], the broad blood vessels were extracted by adaptive local
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Fig. 1 Retinal image

threshold and the narrow blood vessels submerged in debris
noise were extracted by support vector machine. In [20], the
dual-tree complexwavelet transform (DCWT)was employed
to describe the local features of the image. Random forest
was used as the classifier. In [21], a multi-scale and rota-
tion invariant local binary pattern (LBP) operator was used
to extract the feature vectors. The extracted feature vectors
were then classified using adaptive neuron fuzzy inference
system. In [22], Lattice Neural Network with Dendritic Pro-
cessing (LNNDP) was used as feature classifier. In recent
years, the deep neural network has been widely concerned
[23,24]. This method not only can effectively inhibit the phe-
nomenon of central vessel reflex, but also has a satisfactory
effect on the detection of fine blood vessels. In general, the
classifier-based segmentation has high accuracy. But it needs
some amount of a priori information of the retinal vessels to
construct an appropriate classification model to map the pix-
els in the retinal image to different categories. Meanwhile,
some classifier-based methods are very sensitive to noise.

Another typical approach is filtering-based method [25–
29]. The two-dimensional Gaussian-shaped matched filter
method was first used to extract blood vessels in [25]. The
algorithm is rooted in the fact that the gray distribution of
the cross section of the retinal blood vessels is similar with
a Gaussian function. A Gaussian matched filter was used to
match the vessels in different directions. When the scale of
the filter is consistent with vascular width, the vessels with
the width accordingly will be enhanced and a large convo-
lution response is generated. Single scale was used; thus,
it cannot make the vessels of various widths enhanced. In

addition, the filter produces very strong response to both vas-
cular structure and non-vascular structure, which results in
misclassified pixels. To overcome the drawbacks, an extrac-
tion method using multi-scale matched filter with first-order
derivative of Gaussian was proposed in [26]. More blood
vessels with various widths were extracted. Besides, the
frequency responses to vascular structure and non-vascular
structure with step-edge were distinguished. Later, to get a
better estimation to the vessel widths, multi-scale production
of matched filter (MPMF) was proposed for segmentation
in [27]. Blood vessel pixels can be extracted and fused in
the scale production domain by multi-scale production of
matched filter responses. In [28], local entropy threshold was
used for narrow vessels and adaptive threshold was used for
broad vessels. The final results was obtained by the logical
OR operation on the extracted broad and narrow vessels. In
[29], a 2D image was lifted to a 3D orientation score domain
in which multi-scale filtering was done via the left-invariant
rotating derivative (LID) and the locally adaptive derivative
(LAD). In particular, the LAD filter on orientation scores is
capable of dealing with some difficult cases, such as cross-
ings and the phenomenon of the central arterial reflex.

Other approaches are also applied in vessel segmenta-
tion such as model-based segmentation and threshold-based
segmentation, etc. For example, in [30], the infinite active
contour model with hybrid region information of the image
was used to achieve the segmentation. In [31], the extrac-
tion of blood vessel network was completed by iterating and
updating the thresholds, which is very effective in abnormal
retinal images. Currently, there are numerous algorithms for
the segmentation of the retinal blood vessels; in this paper,
we focus on the matched filtering approach.

Though multi-scale matched filtering has been applied
into retinal vessel extraction, current studies process the
image as a whole whether in the stage of scale allocation or
threshold setting,which does not consider the local character-
istics of the image. In this paper, we proposed a new dynamic
multi-scale filtering method together with a dynamic thresh-
old processing scheme. Gaussian function was used to fit the
gray histogram of each sub-image. Based on the parameters
obtained from Gaussian fitting, we determined the types of
blood vessels and the contrast between medium and narrow
blood vessels which are the key factors that influence the
scales of filtering and the value of thresholds. The proposed
method considered both the extraction of tiny blood vessels
in the low-contrast regions and the inhibition of non-vascular
structures. It also avoided the overestimation of the width of
the vessels.

The rest of this paper is organized as follows. In Sect. 2,
the proposed algorithm is generally described. In Sect. 3, the
image preprocessing is introduced. In Sect. 4, the multi-scale
matched filtering scheme based on dynamic scales allocation
is proposed. In Sect. 5, the dynamic threshold processing is
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Fig. 2 Flow chart of the proposed algorithm

presented. In Sect. 6, the post-processing is briefly intro-
duced. In Sect. 7, the experimental results are presented to
illustrate the effectiveness of the proposed algorithm. Finally,
conclusions are drawn in Sect. 8.

2 Overview of the proposed algorithm

The proposed method is shown in Fig. 2, which includes the
stages of preprocessing, dynamic-scales allocation, matched
filtering, dynamic threshold segmentation and
post-processing. In the preprocessing stage, the contrast of
the image is enhanced. The green channel of the image is
extracted followed by the multi-scale top-hat transformation
which is used to extract the bright and dark region features
of the image. Then the histogram transformation is applied
to stretch the gray values to the entire gray level range. In
the dynamic-scale allocation stage, the image is first divided
into sub-blocks. Then Gaussian curve is used to fit the gray
histogram of each block to determine the types of blood ves-
sels in accordance with which we allocate the scales of the
matched filter. In the matched filtering stage, both the Gaus-
sian and first-order derivative of Gaussian filters are applied

to the sub-block image. In the stage of dynamic threshold
processing, blood vessel extraction is done based on the
thresholds which are adjusted by both the gray distribution
characteristics in the sub-block and the response of first-order
derivative of Gaussian filter. In the stage of post-processing,
the segmentation accuracy is further improved by eliminat-
ing the noise, smoothing vascular edges and connecting break
points.

3 The preprocessing

Most retinal vessel extraction algorithms based on matched
filtering have no preprocessing step because the Gaussian
matchedfilterswill not onlymake the blood vessels enhanced
but also suppress noise effectively. In this paper, the proposed
algorithm includes scales allocation and threshold setting
based on gray distribution characteristics. It would be helpful
for the judgment about the existence of vascular structures
and the types of blood vessels if the distribution of the gray
values has a large dynamic range. However, the distribution
of the gray levels of the original image is usually concen-
trated. Therefore, before subsequent processing, the contrast
of the image needs to be enhanced by a series of preprocess-
ing steps.

3.1 Green channel extraction

The original color retinal image contains three channels: red,
green and blue. Compared with the red and blue channel
components, the green channel component usually has bet-
ter contrast between blood vessels and background and has
lower noise content. Thus the green channel component is
selected as the processing object of the whole algorithm.

3.2 Multi-scale top-hat transform

The top-hat transform in [32] is used to extract the bright
and dark region features of the image. The bright region fea-
tures are extracted using the white top-hat transform, which
is defined as

WT Hi (x, y) = f − f ◦ Bi (1)

and the dark region features are extracted using the black
top-hat transform, which is defined as

BT Hi (x, y) = f • Bi − f (2)

where f is the gray image. The symbol “ ◦” denotes opening
operation and the symbol “•” denotes closing operation. Bi is
the ith structure element for mathematical morphology oper-
ations. The top-hat transform is carried on ten times using
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disk shape structure elements with different sizes. The initial
size is 3 and then the size is increased by 2 each time. The
optimal bright and dark region features are obtained using
Eqs. (3) and (4), where f opw represents the optimal bright
region features, and f opb shows the optimal dark region fea-
tures,

f opw = max
0≤i≤10

{WT Hi } (3)

f opb = max
0≤i≤10

{BT Hi } (4)

The optimal bright and dark region edges f dw and f db are
obtained using Eqs. (5) and (6),

f dw = max
0≤i≤10

{WT Hi+1 − WT Hi } (5)

f db = max
0≤i≤10

{BT Hi+1 − BT Hi } (6)

After feature extraction by the above steps, the final multi-
scale top-hat transform is defined as,

fend = f +
(
f opw + f dw

)
−

(
f opb + f db

)
(7)

3.3 Histogram specification

The contrast of the image has been improved after the
green component extraction and multi-scale top-hat trans-
form. Next we try to stretch the gray values to the entire gray
level range. It has been shown that the gray values of the reti-
nal image is approximately normal distribution [32]. Thus
we can use Gaussian curve, shown in Eq. (8), to fit the gray
histogram approximately,

P (x) = ae− (x−b)2

c2 (8)

where a and b represent the peak value and the mean value
of the Gaussian curve, respectively. c reflects the range of
the gray level distribution. It is known that the area under the
Gaussian curve within [b − 3c, b + 3c] accounts for almost
99% of the total area. Therefore, it is reasonable to take S1 =
b − 3c and S2 = b + 3c as the minimum and the maximum
of the gray level, respectively. Let f (x, y) represents input
gray image. S1 and S2 are linearly mapped to 0 and 255,
respectively. The final gray image fs (x, y) is obtained by,

fs (x, y)

=

⎧⎪⎨
⎪⎩

0, f (x, y) ≤ S1(
255

S2−S1

)
[ f (x, y) − S1] , S1 < f (x, y) ≤ S2

255, f (x, y) > S2

(9)

An Example after preprocessing is shown in Fig. 3. It
can be seen that the image contrast is improved effectively.

Fig. 3 Retinal vascular enhancement: a the original image (image19 in
the DRIVE database); b the green channel image; c image after multi-
scale top-hat transform; d image after gray stretching

Compared with the original retinal image, not only better
visual effect is obtained but also more details are shown.

4 Dynamic multi-scale matched filtering

Since the scale allocation and the multi-scale matched filter-
ing are closely related to each other. We present these two
stages together.

4.1 Image sub-blocking

Although the contrast of the image after the preprocessing
has been improved, the heterogeneity of blood vessels and
the heterogeneity of background is still a problem, which
makes it difficult to set the appropriate matching filter scales.
In fact, if we use a matched filter with one scale for the
entire large retinal image, some vessels whose widths do
not consist with the scale of the matched filter will not be
extracted properly. Considering that heterogeneity in local
area is relatively small, the whole image is divided into 20
sub-images with equal size, as shown in Fig. 4. These blocks
are numbered from top to bottom and from left to right. Then
the gray distribution characteristics of each sub-image are
analyzed to determine whether there is vascular structures in
the sub-image and the types of blood vessels, based on which
the scales of the matched filter are adjusted dynamically.
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Fig. 4 Division of retinal image

4.2 Determination of blood vessels types

In accordance with the location of the 20 sub images, they
are divided into three categories.

Type one: The blocks are located in the four corners of the
original image, numbered 1, 4, 17 and 20.

Type two: The blocks are located in the center of the orig-
inal image, numbered 6, 7,10,11,14 and 15.

Type three: The blocks are located in the edge of the orig-
inal image, numbered 2, 3, 5, 8, 9, 12, 13, 16, 18 and 19.

Two examples of type one are shown in Fig. 5. Figure 5
(a) contains high-contrast vessels but the number of pixels
belonging to the blood vessels is extremely small portion of
the total number of pixels in the whole sub-image. A more
general case is shown in Fig. 5b in which almost no blood
vessels exist. In summary, for type one blocks, the number
of blood vessel pixels is quiet small. In order to simplify
the processing, no further analysis is done and medium-size
scale is given to the sub-images of type one.

For sub-images of type two, the width of the blood ves-
sels was classified into three categories: broad, medium and
narrow. The type of the vessels is determined as follows.
1) Broad blood vessels
This kind of sub-images does not contain black background
outside the retina. Therefore, a peak in the low gray range
in the histogram is not caused by background but by the
existence of broad blood vessels. Based on DRIVE database,
the frequency of pixel points in the range of 0–50 gray level in
gray histogram, denoted as gb, is counted. If it is greater than
a threshold gb_thr the block contain broad blood vessels;

Fig. 5 Examples of the blocks located in the corners

otherwise, there are no broad vessels. This can be illustrated
by Fig. 6a.
2) Medium or/and narrow blood vessel
Two examples of type two are shown in Fig. 6b, c. We can
see that the gray histograms are quite different for sub-image
mainly with medium and narrow blood vessels and sub-
image mainly with narrow blood vessels. To quantitatively
analyze the difference, the gray histogram is fitted to a Gaus-
sian curve as shown in Eq. (8). The peak a and the variance
c of the Gaussian function is used to distinguish the types
of the vessels. To determine the existence of medium or/and
narrow blood vessels, two facts should be noted.

a) The existence of narrow blood vessels will make the peak
a larger since the difference of the gray values between
narrow blood vessels and the background is very small.

b) The existence of medium blood vessels will make the
variance c larger since the gray values of medium blood
vessels are quite different with that of the background
and narrow blood vessels.

Based on the above two understandings, the decision method
was proposed as shown in Fig. 7. Two thresholds for the
peak and variance are found, denoted as a_thr and c_thr ,
respectively. After fitting, the types of the blood vessels are
determined as follows,

a) contains narrow vessels when
a > a_thr and c ≤ c_thr .

b) contains medium vessels when
a ≤ a_thr and c > c_thr .

c) contains narrow and medium vessels when
a > a_thr and c > c_thr .

d) No narrow or medium vessels when
a ≤ a_thr and c ≤ c_thr .

For sub-images of type three, the types of the blood vessels
are determined similarly as type two. It should be noted that
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Fig. 6 Central sub-images and its gray histogram a sub-image mainly
with broad vessels; b sub-image mainly with medium and narrow ves-
sels; c sub-image mainly with narrow vessels

Fig. 7 Different values of a and c and the four categories

because of black background in the sub-images of type two,
the threshold for determining the broad vessel is larger than
the one for the sub-images of type two, as shown in Fig. 8a.

Fig. 8 Edge sub-image and its gray histogram

The parameters gb_thr , a_thr and c_thr could influence
the whole performance of the algorithm. Improper values of
gb_thr , a_thr and c_thr result in misclassification of vessel
types. The sub-images with misclassified vessel types will
not bematched bymatch filterswith proper scales,whichwill
reduce the accuracy of vessel segementation. We determine
these parameters using grid-searching method. Let us use
gb_thr as an example. FirstDRIVEdataset is partitioned into
two parts, a training set with true value label and a testing
set. Then for the image in the training set, the histogram
of each sub-image is analyzed to get the gb value. Among
these values, themaximum andminimumvalues of gb can be
obtained. Next, grid-searching method is used to determine
the gb_thr according to the accuracy of the classification
obtained by comparing the experimental results with the true
value label. The selected gb_thr is then evaluated and fine
adjusted by applying it to the testing set. In the similar way,
a_thr and c_thr are determined.

4.3 Dynamic-scale allocation

To determine the proper scale for the matched filter, it is
important to find the relationship between the filter scale
and the blood vessel width. The gray distribution of the
vascular cross section is approximately a Gaussian curve.
The width of the vascular is usually defined as the length
of the projection of the curve on the horizontal axis. As we
have mentioned in Sect. 3, the area under the Gaussian curve
within [b − 3c, b + 3c] accounts for almost 99% of the total
area. Therefore the width of the vascular d can be consid-
ered approximately equal to 6c. Since the filter scale is the
variance of Gaussian function and had better be close to the
vascular width, we have

σ = c ≈ d/6 (10)
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Table 1 Scale selection criteria

Scale Conditions

σbroad gb > gb_thr

σbroad,σmedium_1 c > c_thr

σnarrow_1,σnarrow_2 a > a_thr

We first determine a series of reference scales, based
on which the actual scales can be obtained. Suppose the
range of vascular length is [d1, d2], in accordance with (10),
we have the minimum and the maximum reference scales
σmin = d1/6 and σmax = d2/6 , respectively. Then we have
(σmin + σmax) /2 as the medium reference scale. Since the
gray ranges of narrow vascular and medium vascular are
partly overlapped, to increase the extraction performance,
we added one more reference scale for both narrow and
medium vascular, which also allows more blood vessels to
be extracted. The reference scales are shown in Eq. (11),

σbroad = σmax = d2/6

σmedium_1 = (σmin + σmax) /2

σmedium_2 = σmedium − (σmedium − σmin) /3

σnarrow_1 = σmin = d1/6

σnarrow_2 = σmin + (σmedium − σmin) /3 (11)

The actual scales are found around the reference scales.
For example, it is shown in [25] that the range of vascular
width is [2,10] for DRIVE database. The actual scales used
are 0.2 and 0.5 for narrow vascular, 0.7 and 1 for medium
vascular, and 2 for broad vascular. In accordance with Eq.
(11) and the determination of the blood vessel types, the
scales selection criteria is shown in Table 1. For example,
if we have gb > gb_thr and c > c_thr , the scales σbroad
σmedium_1, and σmedium_2 should be used.

4.4 Matched filtering

When the Gaussian matched filter is used, the filter response
has high amplitude if there is a vascular structure with Gaus-
sian gray distribution or a non-vascular structure with step
edge, as shown in Fig. 9. Using threshold segmentation to
determine whether a pixel belongs to the blood vessel will
inevitably lead to the situation that some non-vascular struc-
tures are wrongly judged as vascular structures. Therefore,
two matched filter templates, Gaussian matched filter tem-
plate and Gaussian first derivative matched filter are adopted,
as shown in Eqs. (12) and (13)

f (x, y) = 1√
2πσ

exp

(
− x2

2σ 2

)
− m, |x | ≤ 3σ, |y| ≤ L/2

(12)

Fig. 9 Simulation of the response of vascular and non-vascular signals
with Gaussian filter. Both a, d represent Gaussian filters; b the vascular
structure modeled by Gaussian function; e non-vascular structure mod-
eled using step-edge; c, f are the convolution response of vascular and
non-vascular structures with Gaussian filter, respectively

g (x, y) = x√
2πσ 3

exp

(
− x2

2σ 2

)
, |x | ≤ 3σ, |y| ≤ L/2

(13)

where L is the length of the segment for which the vessel
is assumed to have a fixed orientation [26]. m represents the
mean of coefficients in the Gaussian filter template, defined
in Eq. (14)

m =
∑
pi∈N

f (x, y)/Q (14)

where Q denotes the number of points in the filter template.
N is a neighborhood. pi is the point in corresponding rotated
coordinate system. In addition, the matched filter template
needs to be rotated accordingly to detect the vessel of differ-
ent orientations.

5 Threshold processing

The contrast and the information of non-vascular structures
included in the gray histogram are used to guide the selec-
tion of the thresholds. Compared with the single threshold
selection formula in [27], the proposed method considers
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both the extraction of tiny blood vessels in the low-contrast
regions and the inhibition of non-vascular structures. In the
following discussion, let us use A to represent the convolu-
tion response of the Gaussian matched filter and the retinal
image and using B to represent the convolution response of
the Gauss first derivativematched filter and the retinal image.
A and B denotes the local mean of A and B.

5.1 Distinguish contrast betweenmedium and
narrow vessels

In order to accurately extract more blood vessels, it is nec-
essary to consider the contrast between medium and narrow
vessels. When the contrast is low (the gray levels of narrow
and medium vessels are quite similar), we get one Gaussian
curve after Gaussian fitting. When the contrast is high (the
gray levels of narrow andmediumvessels are quite different),
we get two Gaussian curves (the gray values of medium ves-
sels form one and the gray values of narrow vessels form one)
with smaller variances than that of the low contrast case after
Gaussian fitting. Therefore, the variance c of Gaussian fitting
can indicate the contrast between medium and narrow ves-
sels. For the high-contrast case c > cth and the low-contrast
case c ≤ cth , different sets of thresholds are used.

If the contrast between the two types of vessels is low,
we further try to separate the narrow and medium vessels
into two sections in the gray histogram as much as possible.
In general, there is a peak value in the gray area coinci-
dent with the overlap of gray distribution of narrow and
medium vessels. Therefore, the whole gray range is divided
into two sections using the peak value in 50–250 gray scale
range, denoted as gth , as the threshold. After this treatment,
the vascular types of each section are relatively simple. In
low-contrast case, for points belonging to different sections,
different thresholds are used.

5.2 Distinguish whether there is a step edge

There are some other non-structures, such as optic disk,
bright spots, retinal exudate, retinal boundary, etc. The
brightness of these non-structures is significantly higher than
other adjacent structures. Thus, their gray distribution is char-
acterized by the step edge. To distinguish the existence of step
edge, the frequency of pixel points in the range of 200–255
gray level in the histogram is added up and then compared
with a threshold sth .

s =
255∑

k=200

gray_ f requeny(k) (15)

Next the position of a non-vascular structure with a step
edge needs to be determined. Traversing all points in local

mean response B , if amplitude of a point is greater than a
certain threshold bth , it is believed that there are pixels of
non-vascular structures with step edges in the neighborhood.
Otherwise, there are vascular pixels near the point. For dif-
ferent types of vascular, the value of bth is different.

5.3 Threshold selection

The calculation of threshold value includes two steps. First,

the reference threshold matrix T̂
(n,σ )

is determined. n is the
serial number of the sub-image, and σ is the scale of the

matched filter. We use T̂
(n,σ )

i, j to denote the reference thresh-

old for the pixel at position (i, j) in the sub-image. T̂
(n,σ )

i, j
can be obtained by Eq. (16),

T̂
(n,σ )

i, j =
(
1 + B

(n,σ )

i, j

)
A

(n,σ )

i, j (16)

where A
(n,σ )

i, j and B
(n,σ )

i, j are the local means of responses
of the Gaussian filter and Gaussian first derivative matched
filter for pixel at position (i, j), respectively. Then element of
the threshold matrix T(n,σ )

i, j is calculated by multiplying the

reference value with an adjusting parameter h(n,σ )
i, j , as shown

in Eq. (17)

T(n,σ )
i, j = T̂

(n,σ )

i, j × h(n,σ )
i, j (c, g, s) (17)

where h(n,σ )
i, j is influenced by the contrast indicator c , the

gray level g and the step edge indicator s. The selection of
the adjusting parameter h(n,σ )

i, j (c, g, s) is shown in Table 2.

The threshold matrix of the whole image is T(σ ) =⋃
n T

(n,σ ). Then comparing the threshold matrix with the
response of the image to Gaussian filter point by point, the
judgment can be made to extract the blood vessel network,
as shown in Eq. (18)

V(σ ) =
{
1 A(σ ) ≥ T(σ )

0 A(σ ) < T(σ ) (18)

Since multi-scale matched filtering is used, the final extrac-
tion result is obtained by an operation of logicalOR, as shown
in Eq. (19),

V =
⋃
σ

V(σ ) (19)

6 Post-processing

The post-processing operations can further improve the accu-
racy of blood vessel segmentation. First is by the use of
connected domain-processing method for noise removal.
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Table 2 Selection of adjusting
parameter h(n,σ )

i, j (c, g, s)
Contrast between medium
and narrow vessels

With step edge s > sth Without step edge s ≤ sth

Low c > cth High gray level hvh (vascular) hvh (vascular)

When g > gth hnh (non-vascular)

Low gray level hvl (vascular) hvl (vascular)

When g ≤ gth hnl (non-vascular)

High c ≤ cth hv (vascular) hv (vascular)

hn (non-vascular)

Secondly is by the use of mathematical morphology oper-
ation to smooth burr on the edge of the blood vessels. Next,
the mask images provided in DRIVE database are used to
find the locations of the pixels on the FOV boundary and
then to eliminate it, as shown in Fig. 10. Finally, some discon-
tinuous small blood vessels are connected to the breakpoints
in the binary image using closing operation in mathematical
morphology.

7 Experimental results

The retinal images in the open DRIVE database are used to
test the effectiveness of the proposed algorithm. The database
contains a training set and a test set. Each of them contains
20 images. These retinal images are digitized at 24 bits with
a spatial resolution of 565×584 pixels. Hand-labeled images
are also available in this database. The first expert manual
segmentation results are used to evaluate the performance
of the algorithm (ground truth). Three indexes are adopted
for performance comparison, accuracy (ACC), true-positive
rate (T PR) and false-positive rate (FPR). They are defined
as follows:

ACC = T N + BN

Nvp + Nuvp
(20)

T PR = T N

Nvp
(21)

FPR = FN

Nuvp
(22)

where T N is the number of correctly detected vessel pixels
inside FOV and BN is the number of correctly classified
non-vessel pixels inside FOV (FOV : the part of within
the retinal image boundary). Nvp is the number of vessel
pixels inside FOV , and Nuvp is the number of non-vessel
pixels inside FOV . FN is the number of misclassified non-
vessel pixels inside FOV . ACC is the average accuracy rate
for retinal vessel segmentation. T PR is defined as the ratio
of correctly classified vessel pixels inside FOV . FPR is
defined as the ratio of misclassified non-vessel pixels inside
FOV .

Fig. 10 a Mask image of the retinal image, b retinal boundary

A number of experiments were carried out. The extrac-
tion performances of blood vessel network in three cases,
maximizing T PR, maximizing ACC and balancing T PR
and ACC were considered. These experiments are realized
by adjusting the segmentation thresholds. The range of the
adjustable parameter h(n,σ )

i, j (ct , g, s) is from 1 to 10 in the
experiments.
1) Maximizing T PR
For the regionswith low contrast, the gray distribution ranges
of the blood vessels and the background are very close. It is
difficult to extract the blood vessels completely out of the
background. Adjusting the h(n,σ )

i, j in Eq. (17) to lower the
threshold in such regions will lead to a better extraction of
narrow blood vessels. Therefore, T PR will be improved.
However, it is inevitable that some of the background pix-
els are segmented by mistake. These error points will lead
to a decline of ACC . The average segmentation results of
20 retinal images are T PR: 0.7526, FPR: 0.0331, ACC :
0.9393.
2) Maximizing ACC
There are some regions in which the narrow blood vessels
are submerged by the background noise. Adjusting h(n,σ )

i, j
in Eq. (17) to increase the threshold in such regions will
lead to a better suppression of background noise. Therefore,
ACC will be improved. However, some tiny vessels cannot
be extracted which leads to a decreased T PR. The average
segmentation results of 20 retinal images are T PR: 0.74690
FPR: 0.03175, ACC : 0.93989.
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Fig. 11 a The original image 18 in the DRIVE database; b the ground
truth vessel map; (c1) the results of maximizing T PR; (c2) the results
of the maximizing ACC ; (c3) the results of balancing T PR and ACC

3) Balancing T PR and ACC
We can find this balance by observing the blood vessel
network obtained after threshold adjustment. This is the
trade-off between the performance index T PR and ACC .
The average simulation results are T PR: 0.74841 FPR:
0.03231, ACC : 0.93958.

The experimental results of the three cases are presented
in Fig. 11. From Fig. 11, we can see that the details of
the red rectangular box marked in (c1) are not accurately
extracted in (c2) and (c3). However, there are background
noise points segmentedwrongly in (c1). It is found that T PR
is more sensitive to the change of threshold compared with
ACC . Therefore, in the regions with low contrast we can
obtain an obvious increase of T PR by reducing the thresh-
old only slightly while keeping the decrease of ACC within
the acceptable range.

All 20 images of the test set in DRIVE database were
used to evaluate the performance of the proposed algorithm.
In Table 3, current studies on blood vessel segmentationwere
listed in groups according to the approaches used. It can be
seen that the performance of the proposed algorithm is very
competitive compared with other algorithms. For filtering
approach, the LAD-OS method performs best. However, it
needs to lift the 2D image to 3D orientation scores which
increase the complexity. The proposed algorithm does not
need domain transformation and performs better than the
currentmatched filteringmethods such asMF-FDOG in [26],
MPMF in [27], the method in [28] and LID-OS in [29].

It is especially meaningful to compare the proposed algo-
rithm with the algorithm in [26] since the two studies use the

Table 3 Comparison of
segmentation results (with FOV)

Method Approach T PR FPR ACC

2nd Human observer Tracking 0.7761 0.0275 0.9473

Vlachos et al. [17] 0.7470 0.0710 0.9550

De et al. [18] Tracking − − 0.9429

Soares et al. [3] Classifier 0.7283 0.0212 0.9466

Xu and Luo [19] Classifier − − 0.9328

Sadeghzadeh et al. [20] Classifier − − 0.9340

Abdolhossein Fathi [21] Classifier 0.7442 0.0391 0.9418

Vega Roberto et al. [22] Classifier 0.7444 0.0400 0.9412

P Liskowski et al. [23] Classifier − − 0.9495

Q Li et al. [24] Classifier 0.7569 0.0184 0.9527

Yitian Zhao et al. [30] Model-based 0.7420 − 0.9540

Sohini Roychowdhury et al. [31] Model-based 0.7390 − 0.9490

Bob Zhang [26] Filtering 0.7120 0.0276 0.9382

Li Qin et al. [27] Filtering 0.7154 0.0284 0.9343

Yang et al. [28] Filtering − − 0.9365

Zhang et al. LAD-OS [29] Filtering 0.7743 0.0275 0.9476

Zhang et al. LID-OS [29] Filtering 0.7473 0.0236 0.9474

Proposed algorithm Filtering 0.7526 0.0331 0.9393
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Fig. 12 a The original image 3 in the DRIVE database; bMF-FDOG;
c the proposed algorithm; d the ground truth vessel map

same matched filter templates. The difference of these two
studies is that the proposed one used dynamic-scale allo-
cation and dynamic threshold processing. The experimental
results are shown in Fig. 12. It can be seen that the accuracy of
the blood vessel segmentation using the proposed algorithm
shown in Fig. 12c is improved obviously compared with the
algorithm in [26] shown in Fig. 12b. More narrow blood
vessels are extracted. The enhancement of the performance
comes from using dynamic multi-scale matched filtering and
dynamic threshold processing based on histogram fitting.

Experiments on DRIVE database showed that the pro-
posed method has a good inhibitory effect on the noise and
non-vascular structure in the image. However, its perfor-
mance deteriorates obviously for images with poor lighting
conditions, which is worth further investigation.

We recorded the time consumption of the proposed
approach on DRIVE dataset. All the experiments were con-
ducted on an Intel Core I7 3.2 GHzCPU. For a single 565584
image, the proposed approach takes 32.63 s in a MATLAB
2014 software, which could be further reduced after code
optimization for the actual scene.

8 Conclusion

In this paper, a new retinal blood vessel extraction method
using dynamic multi-scales allocation and dynamic thresh-
old processing based on histogram fitting was proposed.
The method can not only effectively inhibit the non-vascular
structureswith step edges but also can extractmore tiny blood

vessels which are submerged by noise under the premise
of the correct estimation of the blood vessel width. More
importantly, the method has a low complexity and is easy
to implement. The effectiveness of this algorithm has been
proved by experiments.
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