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Abstract

Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots,
robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction
of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of
the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D
reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe
selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed
quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic
cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D
optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge,
this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for
a therapeutically relevant 3D map reconstruction.

Keywords Endoscopic capsule robots - 3D map reconstruction - Sparse-then-dense feature tracking

1 Introduction

Many diseases necessitate access to the internal anatomy of
the patient for diagnosis and treatment. Since direct access to
most anatomic regions of interest is traumatic, and sometimes
impossible, endoscopic cameras have become a common
method for viewing the anatomical structure. In particular,
capsule endoscopy has emerged as a promising new tech-
nology for minimally invasive diagnosis and treatment of
gastrointestinal (GI) tract diseases. The low invasiveness
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and high potential of this technology have led to substan-
tial investment in their development by both academic and
industrial research groups, such that it may soon be feasi-
ble to produce a robotic capsule endoscope with most of the
functionality of current flexible endoscopes.

Although robotic capsule endoscopy has high potential of
diagnostic and therapeutic capabilities, it continues to face
many challenges. In particular, there is no broadly accepted
approach for generating a comprehensive and therapeutically
relevant 3D map of the organ being investigated. This prob-
lem is made more severe by the fact that such a map may
require a precise localization method for the endoscope, and
such a method will itself require a map of the organ, a clas-
sic chicken-and-egg problem [1]. The repetitive texture, lack
of distinctive features, and specular reflections characteristic
of the GI tract exacerbate this difficulty, and the non-rigid
deformations introduced by peristaltic motions further com-
plicate the reconstruction task [2]. Finally, the small size of
endoscopic camera systems implies a number of limitations,
such as restricted fields of view (FOV), low signal-to-noise
ratio, and low frame rate; all of which degrade image quality
[3]. These issues, to name a few, make accurate and precise
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localization and reconstruction a difficult problem and can
render navigation and control counterintuitive [4].

Despite these challenges, accurate and robust three-
dimensional (3D) mapping of patient-specific anatomy
remains a difficult goal. Such a map would provide doctors
with a reliable measure of the size and location of a diseased
area, thus allowing more intuitive and accurate diagnoses. In
addition, should next-generation medical devices be actively
controlled, a map would dramatically improve the doctors
control in diagnostic, prognostic, and therapeutic operations
[5]. As such, considerable energy has been devoted to adapt
computer vision techniques to the problem of in vivo 3D
reconstruction of tissue surface geometry.

Two primary approaches have been pursued as work-
arounds for the challenges mentioned previously. First,
tomographic intra-operative imaging modalities, such as
ultrasound (US), intra-operative computed tomography (CT),
and interventional magnetic resonance imaging (iMRI),
have been investigated for capturing detailed information of
patient-specific tissue geometry [5]. However, surgical and
diagnostic operations pose significant technological chal-
lenges and costs for the use of such devices, due to the need
to acquire a high signal-to-noise ratio (SNR) without imped-
iment to the doctor. Another proposal has been to equip
endoscopes with alternative sensor systems in the hope of
providing additional information; however, these alternative
systems have other restrictions that limit their use within the
body.

This paper proposes a complete pipeline for 3D visual
map reconstruction using only RGB camera images, with
no additional sensor information. The pipeline is arranged
in a modular form and includes a preprocessing module for
removal of specular reflections, vignetting and radial lens
distortions, a keyframe selection module, a pose estima-
tion and image stitching module for registration of images,
and a shape-from-shading (SfS) module for reconstruction
of 3D structures. We provide both qualitative and quantita-
tive analysis of pose estimation and 3D map reconstruction
accuracy using a porcine pig stomach, an esophagus gastro-
duodenoscopy simulator, four different endoscopic camera
models, an optical motion tracker, and a 3D optical scan-
ner. In sum, our method proposes a substantial contribution
toward a more general, therapeutically relevant, and exten-
sive use of the information that capsule endoscopes may
provide.

2 Literature survey
Several studies in the literature have discussed 3D map
reconstruction for standard hand-held and passive capsule

endoscopes [6—13], etc. These methods may be broken into
four major classes, i.e.,
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shape from shading (SfS)
— structured light (SL)
time of flight (ToF)

Structured light and time-of-flight methods require additional
sensors, with a concomitant increase in cost and space; as
such, they are not covered in this paper. Stereo-based meth-
ods use the parallax observed when viewing a scene from
two distinct viewpoints to obtain an estimate of the distance
from observer to object under observation. Typically, such
algorithms have four stages in computing the disparity map
[14]: cost computation, cost aggregation, disparity computa-
tion and optimization, and disparity refinement.

With multiple algorithms reported per year, computa-
tional stereo depth perception has become an extremely
researched field. The first work reporting stereoscopic depth
reconstruction in endoscopic images was the work done
by [6], which implemented a dense computational stereo
algorithm. Later, Hager et al. developed a semi-global opti-
mization [7], which was used to register the depth map
acquired during surgery to preoperative models [8]. Stoy-
anov et al. used local optimization to propagate disparity
information around feature-matched seed points, and it has
also been reported to perform well for endoscopic images.
This method was able to handle highlights, occlusions, and
noisy regions. Similar to stereo vision, another method that
employs epipolar geometry and feature extraction is also
proposed in [15]. This work flow starts with camera calibra-
tion, and it relies on SIFT extraction and feature description.
Finally, the main algorithm calculates the 3D spatial point
location using extrinsic parameters, which is calculated from
matched features in consecutive frames. Although this sys-
tem exploits the advantage of sparse 3D reconstruction, the
strong dependency on feature extraction causes performance-
related issues for endoscopic type of imaging. Despite the
variety of algorithms and simplicity of implementation, com-
putational stereo techniques are affected by several important
disadvantages. To begin with, stereo reconstruction algo-
rithms generally require two cameras, since the triangulation
needs a known baseline between viewpoints. Further, the
accuracy of triangulation decreases with distance from the
cameras due to the shrinkage of relative baseline between
camera centers and reconstructed points. Most endoscopic
capsule robots have only one camera, and in those that
have more, the diameter of endoscope inherently bounds the
baseline. As such, stereo techniques have yet to find wide
application in endoscopy.

Due to the difficulty in obtaining stereo-compatible hard-
ware, efforts have been made to adapt passive monocular
three-dimensional reconstruction techniques to endoscopic
images. These techniques have been focused on research in
computer vision for decades and have the distinct advan-
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tage of not requiring extra hardware equipment in addition
to existing endoscopic devices. Two main methods have
emerged as useful in the field of endoscopic images: shape
from motion (SfM) and shape from shading (S£S). SfS, which
has been studied since the 1970s [16], has demonstrated some
suitability for endoscopic image reconstruction. Its primary
assumption is that there is a single light source on the scene,
of which the intensity and pose relative to the camera are
known. Both assumptions are mostly fulfilled in endoscopy
[11-13]. Furthermore, the transfer function of the camera can
be included in the algorithm to additionally refine estimates
[17]. Additional assumptions are that the object reflects light
obeying lambertian model and that the object surface has a
constant albedo. If these assumptions hold to a degree and the
equation parameters are known, SfS can use the brightness of
a pixel to estimate the angle between cameras depth axis and
the shape normal at that pixel. This has been demonstrated
to be effective in recovering details, although global shape
recovery often fails.

Both methods have been demonstrated to have disadvan-
tages: SfS often fails in the presence of uncertain information,
e.g., bleeding, reflections, noise artifacts, and occlusions; fea-
ture tracking-based SfM methods tend to fail in the presence
of poorly textured areas and occlusions.

Therefore, many state-of-the-art works are mainly based
on the combination of these two techniques: In [18], a
pipeline for 3D reconstruction of endoscopy imaging using
SfS and SfM techniques is presented. In this work, the
pipeline starts with basic preprocessing steps and focuses
on 3D map reconstruction, which is independent of light
source position and illumination. Finally, the framework ends
with frame-to-frame feature matching to solve the scaling
issue of monocular images. This paper proposes interesting
methods for the difficult task of reconstruction. However,
enhanced preprocessing and especially less dependency on
feature extraction and matching are still needed. In the recent
work of [19], SfS and SfM are fused together to reach a bet-
ter 3D map accuracy. With SFM, a sparse point cloud is
obtained and a dense version of this cloud is generated by
means of SES. For better performance of SFS, they also pro-
pose a refined reflectance model. One notable idea based
on SfS and SfM fusion is proposed in [20]. This method-
ology first reconstructs a sparse 3D map using SfM and
iteratively refines the final reconstruction using SfS. The
approach does not directly address the difficulties caused by
the ill-posed illumination and specular reflectance, although
the proposed geometric fusion tries to eliminate such issues.
And the strong reliance on the establishment of feature cor-
respondence remains unsolved. Attempts to solve the latter
problem with template-matching techniques have had some
success, but tend to be computationally very complex which
makes it unsuitable for real-time performance. In [21], only
SFS is used for reconstruction and 2D features are pre-

ferred for estimating the transformation. Similarly, [22] and
[23] combine SFM and SFS for 3D reconstruction without
any preprocessing and with the Lambertian surface assump-
tion. In [24], machine learning algorithms are applied for
3D reconstruction. Basically, training is completed with an
artificial dataset and real endoscopy images are used for
test data. Another state-of-the-art pipeline is proposed in
[25], which presents a workflow combining RGB camera
and inertial measurement sensors (IMU). Besides improved
results, this hardware makes the overall flow more com-
plex and costly. Moreover, IMU sensors occupy extra place
and they are not accurate enough. In addition, they inter-
fere with the magnetic actuation systems which makes them
unsuitable for the next generation of actively controllable
endoscopic capsule robots. The main common issue remain-
ing for 3D reconstruction of endoscopic-type datasets is the
visual complexity of these images. The challenges which
we mentioned in the abstract and introduction affect the
performance of standard computer vision algorithms. In par-
ticular, the proposed method must be robust to specular
view-dependent highlights, noise, peristaltic movements, and
focus-dependent changes in calibration parameters. Unfortu-
nately, a quantitative measure of algorithm robustness has not
been suggested in the literature until today, despite its clear
value for the evaluation of algorithmic dependability and pre-
cision. Moreover, all of the mentioned methods in that section
were developed and evaluated on only one specific camera
model, which makes it impossible to justify the robustness of
the framework in the case of different camera choices with
limited specifications such as lower resolution and image
quality.

Our paper proposes a full pipeline consisting of cam-
era calibration, reflection detection and suppression, radial
undistortion, de-vignetting, keyframe selection, pose estima-
tion, frame stitching, and SfS to reconstruct a therapeutically
relevant 3D map of the organ under observation. Both syn-
thetic and real pig stomachs are used for evaluation. Among
other contributions, an extensive quantitative analysis has
been proposed and performed to demonstrate the influence
of pipeline modules on the accuracy and robustness of the
estimated camera pose and reconstructed 3D map. To our
knowledge, this is the first such comprehensive quantitative
analysis to be enacted in endoscopic type of image process-
ing.

3 Method

This section represents the proposed framework in more
depth. Preprocessing steps, keyframe selection, pose estima-
tion, frame stitching, and SfS module will be discussed in
detail.
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3.1 Preprocessing

The proposed modular endoscopic 3D map reconstruction
framework starts with a preprocessing module which per-
forms intrinsic camera calibration, reflection detection and
suppression, radial distortion correction, and de-vignetting.
Specular reflections are a common problem causing inac-
curate depth estimation and map reconstruction. Therefore,
eliminating specular artifacts is a fundamental endoscopic
image preprocessing step to ensure lambertian surface prop-
erties and increase the quality of the 3D map. On the other
hand, specularities can deliver useful information for pose
estimation, especially orientation information. For the reflec-
tion detection task, we propose an original method which
determines the reflection regions by making use of geometric
and photometric information. To determine the locations of
the reflection areas, the gradient map of the input gray-scale
image is created and a morphological closing operation is
applied to fill the gaps inside reflection-distorted areas. For
the closing operation, we used OPENCYV function close(). In
parallel, a photometric method applies adaptive threshold-
ing determined by the mean and standard deviation of the
gray-scale image / to identify the specular regions:

0, I<pr+tor
1, otherwise

Maskj, = { (D

where ; and o; are the mean and standard deviation of the
intensity levels of the gray-scale image /. The pixel-wise
combination of both detection strategies leads to a robust
reflection detection approach. Once specular reflection pix-
els are detected, the inpainting method proposed by [26] is
applied to suppress the saturated pixels by replacing the spec-

ularity by an intensity value derived from a combination of
neighboring pixel values.

As anext step, the Brown-Conrady [27] undistortion tech-
nique is applied to handle the radial distortions. Vignetting,
referring to an inhomogeneous illumination distribution rel-
ative to the image center, primarily caused by camera lens
imperfections and light source limitations, is handled by
applying a radial gradient symmetry enforcement-based
method (Fig. 1). Our framework applies the vignetting cor-
rection approach proposed by [28] which de-vignettes the
image by enforcing the symmetry of the radial gradient
from center to boundaries. An example of input image and
vignetting-corrected output image can be seen in Fig. 1.
De-vignetting is demonstrated in Fig. 2, where it is clearly
observable that the intensity levels of de-vignetted image
have a more homogeneous pattern.

3.2 Keyframe selection

Endoscopic videos generally contain thousands of highly
overlapping frames (more than %75 overlap) due to slow
endoscopic capsule movement during organ exploration. A
subset of the most relevant keyframes has to be chosen auto-
matically. The minimum amount of key frames required
to recover the entire stomach surface with approximately
%50 overlapping area between keyframes is around 300
frames. Thus, at least every tenth frame could be selected
as a keyframe. However, since the endoscopic capsule robot
motion is not constant during organ exploration, it is not
a good practice to blindly assign keyframes with a con-
stant interval. We developed an adaptive keyframe selection
method based on Farneback optical flow (OF) estimation
between frame pairs. Farneback OF is chosen due to its

Reflection supression

Radial Undistortion

Raw input image Reflection supression

De-vignetting

Radial Undistortion

Fig.1 Preprocessing pipeline: reflection removal, radial undistortion, de-vignetting
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Fig.2 Demonstration of the de-vignetting process

improved performance relative to other optical flow meth-
ods applied to our dataset. We add the magnitudes of optical
flow values for each frame pair and normalize the sum by
total image resolution. If the normalized sum does not exceed
a predefined threshold T = 30 pixels, the overlap between
reference keyframe and keyframe candidate is accepted as
being high (more than %70 overlap). In that case, candidate
frame fails and the algorithm goes to the next frame. The loop
starts again and runs until a keyframe is found. The key frame
selection procedure and termination criteria are represented
in algorithm 1:

Algorithm 1 Keyframe selection algorithm

1: Extract Farneback optical flow between reference keyframe and can-
didate keyframe.

2: Sum the magnitude values of the optical flow vectors for each pixel

pair.

: Normalize the sum by total pixel number.

4: If the normalized sum is less than predefined threshold r = 30
pixels, go to the next frame; else identify the frame as a keyframe
and go tho the first step.

5: If fifteen frames failed to fulfill the key frame conditions, and still
t = 30 pixels could not be exceeded, assign the frame with highest
7 value among these fifteen frames as a key frame and go to the first
step.

(95

3.3 Keyframe stitching

A state-of-the-art image stitching pipeline contains several
stages:

— Feature detection, which detects features in input image
pair.

— Feature matching, which matches features between input
images.

— Homography estimation, which estimates extrinsic cam-
era parameters between the image pairs.

y coordinates

— Bundle adjustment, which is a postprocessing step to cor-
rect drifts in a global manner.

— Image warping, which warps the images onto a composit-
ing surface.

— Gain compensation, which normalizes the brightness and
contrast of all images.

— Blending, which blends pixels along the stitch seam to
reduce the visibility of seams.

Stitching algorithms fall broadly into two categories:
direct alignment-based methods and feature-based methods.
Direct alignment-based methods attempt to match every pixel
between the frame pair using iterative optimization tech-
niques. These methods have the benefit of using all the
available data which is a good practice for low-textured
images such as endoscopic type of images. However, direct
methods require a good initialization so that they do not con-
verge into local minima. Moreover, they are very susceptible
to varying brightness conditions. Feature-based methods, on
the other hand, first find unique feature points such as cor-
ners and try to match them. These methods do not require an
initialization, but the features are not easy to detect in low-
textured images and detected features can be susceptible to
illumination changes, scale changes caused by zoom-in and
out and viewpoint changes. Our keyframe stitching technique
makes use of both alignment methods in a coarse-to-fine fash-
ion combining Farneback OF-based coarse alignment with
patch-wise fine alignment. Farneback OF delivers the ini-
tial 2D motion estimation, whereas the SSD-based energy
minimization applied to circular regions of interest with a
radius of 15 pixels around each inlier point refines this estima-
tion. Patch-wise fine alignment estimates the parameters of
affine transformation by minimizing an intensity difference-
based energy cost function. The affine transformation maps
an image I, onto the reference image I, where x’ , y’ repre-
sent the transformed and x, y the original pixel coordinates,
and a1, a, az, ag, tx, ty the parameters of affine transfor-
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mation matrix A, respectively. We define a cost function
measuring the pixel intensity similarity between the image
pair (Eq. 4), which is supposed to be minimized by the cor-
responding affine transformation parameters.

X2 ay ay Iy X1
wl=\a as t, |-|n (2)
1 0 O 1 1

Since the cost function has to ignore the pixels lying outside
the circular patches defined around inlier points, a weighting
function w(x, y) is defined:

0,if (x —x)> 4+ (y — yo)? > r?

Lif(x—x)? 4+ (v — yo)? < 12 3

w(x,y) ={

where x and y. are the coordinates of inlier point and r the
radius of the circular image region around this inlier point
center. The resulting cost function has a bias toward smaller
overlapping solutions; thus a normalization of it by the over-
lapping area is necessary, resulting in the mean squared pixel
error (MSE):

Yoo, yox!, y)(h(x], y) —
Yoo, yo(x], y)

I (x;i, )’l))

emsg(A)=
4

The affine transformation matrix A is iteratively determined
by the image transformation that minimizes ey sg using
Gaussian—Newton optimization. CUDA library was utilized
to achieve better performance and reduce execution time of
GN Optimization through parallelism. The system architec-
ture diagram of the proposed frame stitching algorithm is
demonstrated in Fig. 3.

The termination criteria of the Gaussian—Newton opti-
mization were defined by a threshold T = 6_9, whereas the
optimization stops when the ejpssg drops below the thresh-
old T or maximum number of iterations have already been
reached. Once the optimization has converged and the affine
transformation parameters are estimated, bundle adjustment
is performed to correct drifts for all the camera parameters
jointly and to minimize the accumulative errors. At the next
step, all keyframes I; are transformed into the coordinate
system of the anchor keyframe 74. In areas where several
keyframes overlap, corresponding image pixels often do not

|
Input Optical Flow Key frame Feature point Homography
Frame Estimation selection selection Estimation
Energy Cost ] : z
gy_ Gaussian Newton Bundle Gain Multi-band
Function g s ; )
s Minimization Adjustment compensation blending
Definition
Fig.3 Image stitching flowchart
Gaussian image Laplacian Fused Laplacian
pyramid pyramid pyramid
m? 17 L k& LS?
— M2 - I L? Q /\ LS? R?
@ < Nt
Q [}
= | &
2 5
3 & Y ‘Q
a) mp 1P L2 & \_/ Ls? RO
| Blended
Dialate mosaic

Fig.4 Multi-band blending flowchart
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Fig. 5 Demonstration of the keyframe stitching process for the non-rigid esophagus gastroduodenoscopy simulator (left) and real pig stomach

(right)

have the same intensity due to illumination changes, scale
changes, and intensity level variations. Multi-band blending
method is applied to overcome these issues. The overview
of multi-blending approach is shown in Fig. 4. For further
details, the reader is referred to the original work of [29].
Algorithm 2 summarizes the steps of keyframe stitching
module. Results of the stitching process for the real pig stom-
ach and nonrigid simulator are shown in Fig. 5.

Algorithm 2 Proposed endoscopic keyframe stitching mod-

ule
1: Identify the next keyframe.
2: Match pixels between the reference keyframe and the identified next
keyframe using optical flow estimation.
: Use RANSAC to detect inlier points.
4: Use optical flow vectors between inlier matches as initialization for
the GN optimization.
: Define circular regions around each inlier point.
: Calculate the intensity difference-based energy cost function.
7: Execute iterative Gaussian—Newton optimization (GN) to minimize
the energy cost function.
8: Perform GPU-based multi-core bundle adjustment to globally opti-
mize all of the camera poses jointly [30].
9: Perform frame warping.
10: Perform gain compensation [31].
11: Perform multi-band blending.

(95}

[oX9)]

3.4 Deep learning and frame stitching

A major drawback of our frame stitching module is the need
for an extensive engineering and implementation effort. To
overcome these issues, we investigated the applicability of
deep learning techniques to the endoscopic capsule robot
pose estimation [2]. Deep learning (DL) has been drawing
the attention of the machine learning research community
over the last decade. Much of its success roots on having
made available models and technologies capable of achiev-
ing ground-breaking performances in a variety of traditional
fields of application of machine learning, such as machine
vision and natural language processing. Admittedly, some

of the DL flagships, like NLP and image processing, have
their implications in medical fields, e.g., in extracting infor-
mation from the images taken from patients’ records to find
anomalous patterns and detect diseases. With that motiva-
tion, we are trying to extend the application of DL technology
into endoscopic capsule robot localization. The core idea of
our DL-based method is the use of deep recurrent convolu-
tional neural networks (RCNNs) for the pose estimation task,
where convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are used for the feature extraction
and inference of dynamics across the frames, respectively
[2]. Using this pretrained neural network, we are able to
achieve pose estimation accuracies comparable our sparse-
then-dense pose alignment [2]. Thus, as a future step, we
might consider to integrate DL-based pose estimation into
our frame stitching module to decrease the complexity of
our stitching method and relax the extensive engineering
and implementation efforts required in this study. Since DL-
based pose estimation is out of scope of this paper, the reader
is referred to the original paper [2] for further details.

3.5 Endo-VMFusenet and frame stitching

Even though the proposed sparse-then-dense alignment-
based visual pose estimation achieves very promising results
for endoscopic capsule robot localization, it fails in case of
very fast frame-to-frame motions. This is a common issue of
any vision-based odometry algorithm. If the overlap between
consecutive frames becomes less than a certain percentage,
any vision-based pose estimation approach fails. It can even
occur that due to drifts of endoscopic capsule robot, the over-
lap area between frame pairs decreases drastically, which can
even be zero in some cases. To overcome this issue, we devel-
oped a supervised sensor fusion approach based on an end-
to-end trainable deep neural network consisting of multi-rate
long short-term memories (LSTMs) for frequency adjust-
ment between sensors and a core LSTM unit for fusion of the
adjusted sensor information. Detailed evaluations indicate
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that our pretrained DL-based sensor fusion network detects
whether visual odometry fails and instantaneously makes use
of magnetic localization until visual odometry path again
recovers. The same applies if magnetic sensor-based local-
ization fails. Additionally, monocular cameras suffer with the
absence of real depth information which causes any measure-
ments made by them to be recoverable only up to a scale. This
condition is known as scale ambiguity. Another contribution
of our DL-based sensor fusion approach is the accurate scale
estimation by using absolute position information obtained
by the magnetic localization system. In that way, doctors will
have a 3D map of exactly same size of the explored inner
organ, which will not only help the exact estimation of the
diseased region size, but also enable biopsy-like treatments
or local drug delivery onto the diseased region. Since it is out
of scope, for further details of our DL-based sensor fusion
approach, the reader is referred to our paper [4].

3.6 Depth image creation

Once the final mosaic image is obtained, the next module
creates its depth image using the SfS technique of Tsai and
Shah [32]. Tsai—Shah SfS method is based on the following
assumptions:

— The object surface is lambertian.
— The light comes from a single-point light source.
— The surface has no self-shaded areas.

Lambertian surface assumption is not obeyed by raw endo-
scopic images due to the specular reflections inside the
organs. We addressed this problem through the reflection sup-
pression technique previously described. Subsequently, the
above assumptions allow the image intensities to be modeled
by

I(x,y) = p(x,y,z2)-cos O, &)

where [ is the intensity value, p is the albedo (reflecting
power of surface), and theta is the angle between surface
normal N and light source direction S. With this equation,
the gray values of an image / are related only to albedo and
angle theta. Using these assumptions, the above equation can
be rewritten as follows:

I(x,y)=p-N.S, (6)

where (.) is the dot product, N is the unit normal vector of the
surface, and S is the incidence direction of the source light.
These may be expressed respectively as

_ (=py), —q(x, ). D
- (pz 4 6]2 4 1)(1/2)

(N
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S = (cost -sino,sint - sino, coso) ®)

where (7) and (o) are the slant and tilt angles, respectively,
and p and ¢ are the x and y gradients of the surface Z:

0Z(x,
p(x,y)=¥ ©)
X
0Z(x,
g(r,y) = # (10)
y

The final function then takes the form

I(x,y)

' (coso + p(x,y)-cost-sinog +¢g(x,y)-sint -sino)
((p(x, Y)? + (q(x, y))? + DI/

= R(Px,y’ QX,y)- (1)

Solving this equation for p and g essentially corresponds to
the general problem of SfS. The approximations and solu-
tions for p and ¢ yield the reconstructed surface map Z. The
necessary parameters are tilt, slant, and albedo, and can be
estimated as proposed in [33]. The unknown parameters of
the 3D reconstruction are the horizontal and vertical gradi-
ents of the surface Z, p, and g. With discrete approximations,
they can be written as follows:

px,y)=2Z(x,y) = Z(x = 1,y) 12)
qx,y) =Z(x,y) = Z(x,y = 1), 13)

where Z(x, y) is the depth value of each pixel. From these
approximations, the reflectance function R(pyx_y, gx,y) can be
expressed as

R(Z(x,y) —Z(x = 1,y), Z(x,y) = Z(x,y = 1)). (14

Using equations 12, 13, and 14, the reflectance equation may
also be written as

f(Z(.X, y)a Z(xay - 1)5 Z(x - 17 y), I(.X, y))
= I(X, )’) - R(Z(.X, )’) - Z(x - 17 )’),
Z(x,y)—Z(x,y — 1) =0. (15)

Tsai and Shah proposes a linear approximation using a first-
order Taylor series expansion for function f and for depth
map Z"~!, where Z"~! is the recovered depth map aftern— 1
iterations. The final equation is

fZ0 D, y)

n — 7((n-1) L= Il

2" y) = 2"V oy) = (16)
d(Z(x,y))

where f is a predefined function, constrained by

df(Zz"=D(x,

EZ_CID (1424 12) (17

dZ(x,y)
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and

. sin o

iy =COST - (18)
cos o

) . sino

iy =sint - . (19)
coso

The nth depth map Z” is calculated by using the estimated
slant, tilt, and albedo values.

4 Evaluation

We evaluate the performance of our system both quanti-
tatively and qualitatively in terms of pose estimation and
surface reconstruction. We also report the computational
complexity of the proposed framework.

Potensic Awaiba

4.1 Dataset

We created our own dataset from a real pig stomach and from
anon-rigid open GI tract model EGD (esophagus gastroduo-
denoscopy) surgical simulator LM-103 (Figs. 6, 7). The EGD
surgical simulator was used for quantitative analyses, and the
real pig stomach for qualitative evaluations. Synthetic stom-
ach fluid was applied to the surface of the EGD simulator
to imitate the mucosa layer of the inner tissue. To ensure
that our algorithm is not tuned to a specific camera model,
four different commercially available endoscopic cameras
were employed for the video capture varying in their reso-
lution, pixel size, depth of focus, and image quality. A total
of 17010 endoscopic frames were acquired by these four
camera models which were mounted on our robotic magnet-
ically actuated soft capsule endoscope prototype (MASCE)
(Fig. 8, [34,35]). The first sub-dataset, consisting of 4230
frames, was acquired with an Awaiba NanEye camera (Table

Misumi-I

Fig.6 Non-rigid esophagus gastroduodenoscopy simulator dataset overview for different endoscopic cameras

Awaiba

Potensic

Fig.7 Real pig stomach dataset overview for different endoscopic cameras

Misumi-| Misumi-I
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Fig. 8 Robotic magnetically actuated soft capsule endoscopes
(MASCE) [34,35]

Table 1 Awaiba Naneye monocular endoscopic camera

Resolution 250 x 250 pixel
Footprint 2.2 x 1.0 x 1.7mm
Pixel size 3 x 3 pm?

Pixel depth 10 bit

Frame rate 44 tps

1). The second sub-dataset, consisting of 4340 frames, was
acquired by the Misumi V3506-2ES endoscopic camera with
the specification shown in Table 2. The third sub-dataset
of 4320 frames was obtained by the Misumi V5506-2ES
endoscopic camera with the specification shown in Table 3.
Finally, the fourth sub-dataset of 4120 frames was obtained
by the Potensic mini camera with the specification shown
in Table 4. We scanned the open stomach simulator using
the 3D Artec Space Spider image scanner and used this
3D scan as the ground truth for the 3D map reconstruction
framework (Fig. 9). Even though our focus and ultimate goal
is an accurate and therapeutically relevant 3D map recon-
struction, we also evaluated the pose estimation accuracy
of the proposed framework quantitatively since a precise
pose estimation is a prerequisite for an accurate 3D map-
ping. Thus, an Optitrack motion-tracking system consisting
of eight Prime-13 cameras and a tracking software was uti-
lized to obtain a 6-DoF localization ground truth data of the
endoscopic capsule motion with a sub-millimeter precision
(Fig. 9).

4.2 Trajectory estimation
To evaluate the pose estimation performance, we tested our

system on different trajectories of various difficulty levels.
The absolute trajectory (ATE) root-mean-square error metric

@ Springer

Table2 Misumi-V3506-2ES monocular camera

Resolution 400 x 400 pixel
Diameter 8.2mm

Pixel size 5.55 x 5.55 wm?
Pixel depth 10 bit

Frame rate 30 fps

Table 3 Misumi-V5506-2ES

monocular camera Resolution 640 x 480 pixel
Diameter 8.6mm
Pixel size 6.0 x 6.0 um?
Pixel depth 10 bit
Frame rate 30 fps

Table 4 Potensic monocular mini camera

Resolution 1280 x 720 pixel
Diameter 8.8mm

Pixel size 10.0 x 10.0 wm?
Pixel depth 10 bit

Frame rate 30 fps

(RMSE) is used for quantitative pose accuracy evaluations.
The absolute trajectory (ATE) root-mean-square error met-
ric measures the root-mean-square of Euclidean distances
between the estimated endoscopic capsule robot poses and
the ground truth poses estimated by the motion capture sys-
tem. Table 5 shows the results of the trajectory estimation for
six different trajectories. Trajectory 1 is an uncomplicated
path with very slow incremental translations and rotations.
Trajectory 2 follows a comprehensive scan of the stom-
ach with many local loop closures. Trajectory 3 contains
an extensive scan of the stomach with more complicated
local loop closures. Trajectory 4 consists of more challenge
motions including fast rotational and translational frame-to-
frame motions. Trajectory 5 is the same of trajectory 4, but
included synthetic noise to evaluate the robustness of sys-
tem against noise effects. Before capturing trajectory 6, we
added more synthetic stomach oil into the simulator tissue to
have heavier reflection conditions. Similar to the trajectory
5, trajectory 6 consists of very loopy and complex motions.
As seen in Table 5, the system performs very robust and
accurate in terms of trajectory tracking in all of the chal-
lenge datasets. Tracking accuracy is only decreased for very
fast frame-to-frame movements, motion blur, noise, or heavy
spectral reflections occurring frequently in last trajectories
especially.

RMSE results for pose estimation before and after appli-
cation of reflection suppression, de-vignetting, and radial
undistortion were evaluated and compared to quantitatively



Sparse-then-dense alignment-based 3D...

355

EGD surgical simulator LM-103

Magnetically actuated
soft capsule endoscopes

Artec 3D Space Spider

Real pig stomach

Fig. 9 Schematics of the experimental setup for 3D visual map reconstruction: a real pig stomach, an esophagus gastroduodenoscopy simulator
for surgical training, 3D image scanner, Optitrack system, endoscopic camera, and active robotic capsule endoscope

Table 5 Comparison of ATE RMSE for different trajectories and cam-
eras

Lengthincm  Potensic  Misumi-I Misumi-Il  Awaiba
Traj1 1235 4.10 4.23 4.17 6.93
Traj2 1324 4.14 445 432 7.12
Traj3 124.6 5.23 5.54 5.43 7.42
Traj4 128.2 5.53 5.67 5.47 7.51
Traj5 128.2 6.32 5.45 532 8.32
Traj6 123.1 7.73 6.72 6.51 8.73

analyze their effects in terms of pose estimation accuracy.
Results shown in Table 6 for Misumi camera-II indicate that
reflection suppression leads to a decrease in pose estimation
performance. This decrease might be related to the fact that
such saturated peak values contain orientation information.
Thus, in consideration of pose estimation, reflection suppres-
sion should be avoided. On the other hand, radial undistortion
and de-vignetting operations both increase pose estimation
accuracy of the framework as expected.

4.3 Surface reconstruction

We evaluated the surface reconstruction accuracy of our
system on the same dataset that we used for the trajec-

Table 6 Comparison of ATE RMSE for MISUMI-II camera and dif-
ferent combinations of preprocessing operations

RS NRS RS+RUD RS+RUD+DV
Traj 1 5.45 4.12 4.01 4.03
Traj 2 6.44 4.23 4.07 4.04
Traj 3 6.57 5.13 4.97 4.98
Traj 4 7.55 5.34 5.16 5.08
Traj 5 8.43 5.43 5.14 5.02
Traj 6 8.69 5.64 5.25 5.12

NPR No preprocessing applied, RS reflection suppression applied, RUD
radial undistortion applied, DV de-vignetting applied

Table 7 Comparison of surface reconstruction accuracy results on the
evaluated datasets

Depth Potensic Misumi-I ~ Misumi-II Awaiba
Traj 1 63.42 2.82 2.32 2.14 3.42
Traj2  63.45 2.56 2.45 2.16 4.14
Traj3  63.41 3.16 2.76 2.45 4.45

Quantities shown are the mean distances from each point to the nearest
surface in the ground truth 3D model in cm

tory estimation framework as well. We scanned the open
non-rigid esophago-gastroduodenoscopy (EGD) simulator to
obtain the ground truth 3D data using a highly accurate com-
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Fig. 10 Qualitative 3D reconstructed map results for different cameras [(real pig stomach (left), synthetic human stomach (right)]
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Table 8 Comparison of ATE

RMSE for diffarent trajeetorics NPR RSM RSPM RSPM+RUD RSPM+RUD+DV
and combinations of Traj 1 5.45 3.65 3.42 2.02 2.14
preprocessing operations on the .
evaluated dataset Traj 2 6.44 3.91 3.71 2.08 2.16

Traj 3 6.54 423 3.94 227 245

Traj 4 7.5 453 4.14 3.02 3.14

Traj 5 8.35 495 4.63 3.34 3.52

Traj 6 8.95 5.55 5.14 3.55 3.82

Quantities shown are the mean distances from each point to the nearest surface in the ground truth 3D model

in cm

NPR No preprocessing applied, RSPM reflection suppression applied for both pose estimation and map
reconstruction, RSM reflection suppression applied only for map reconstruction, RUD radial undistortion
applied, DV de-vignetting applied, MISUMI-II camera were used

mercial 3D scanner (Artec 3D Space Spider). The final 3D
map of the stomach model obtained by the proposed frame-
work and the ground truth scan were aligned using iterative
closest point algorithm (ICP). The absolute depth (ADE)
RMSE was used to evaluate the performance of map recon-
struction approach, which measured the root-mean-square of
Euclidean distances between estimated depth values and the
corresponding ground truth depth values. A lowest RMSE of
2.14 cm (Table 7) proves that our system can achieve very
high map accuracies. Even in more challenge trajectories
such as trajectory 3, our system is still capable of providing
an acceptable 3D map of the explored inner organ tissue.
Three-dimensional reconstructed maps of real pig stomach
and synthetic human stomach are represented in Fig. 10 for
visual reference.

To evaluate the contributions of each preprocessing mod-
ule on the map reconstruction accuracy, we tested the
approach with leave-one out strategy leaving one module
each time. As shown in Table 8, each preprocessing operation
has a certain influence on the RMSE results. One important
observation is that even though pose accuracy increases with
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existence of reflection points, these saturated pixels have neg-
ative influence on the map accuracy, as expected. Therefore,
disabling reflection suppression during pose estimation and
enabling it for map reconstruction are the best option to fol-
low.

4.4 Computational performance

To analyze the computational performance of the proposed
framework, we determined the average frame pair process-
ing time across the trajectory sequences. The test platform
was a desktop PC with an Intel Xeon E5-1660v3-CPU at
3.00, 8 cores, 32GB of RAM, and an NVIDIA Quadro
K1200 GPU with 4GB of memory. Three-dimensional recon-
struction of 100 frames took 80.54s to process, whereas
processing of 200 frames took 180.83s, and processing of
300 frames 290.12 s, respectively. That indicates an average
frame pair processing time of 919.15 ms, implying that our
pipeline needs to be accelerated using more effective parallel
computing and GPU power in order to reach real-time perfor-
mance. To achieve this, we developed a RGB-Depth SLAM
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method, which is capable of capturing comprehensive and
globally dense surfel-based maps of the inner organs in real
time, by using joint photometric—volumetric pose alignment,
dense frame-to-model camera tracking, and frequent model
refinement through non-rigid surface deformations [1]. The
execution time of the RGB-Depth SLAM is dependent on
the number of surfels in the map, with an overall average
of 48 ms per frame scaling to a peak average of 53 ms,
implying a worst case processing frequency of 18 Hz. Even
though RGB-Depth SLAM is much faster than our sparse-
then-dense alignment-based 3D reconstruction method, the
map quality decreases due to the use of surfel elements.
Moreover, the joint photometric—volumetric pose alignment
is prone to converge into local minima in low-textured areas.
For further details of our RGB Depth SLAM method, the
reader is referred to our paper [1].

4.5 Conclusion

In this study, we proposed a therapeutically relevant and very
detailed 3D map reconstruction approach for endoscopic
capsule robots consisting of preprocessing, key frame selec-
tion, a sparse-then-dense pose estimation, frame stitching,
and shading-based 3D reconstruction. Detailed quantitative
and qualitative evaluations show that the proposed system
achieves sub-millimeter precision for both 3D map recon-
struction and pose estimation. In future, we aim to achieve
real-time operation for the proposed framework so that it
can be used for active navigation of the robot during endo-
scopic operations, as well. Moreover, we plan to incorporate
magnetic localization and scale estimation module into our
method to develop even more robust endoscopic reconstruc-
tion tools.

Acknowledgements Open access funding provided by Max Planck
Society.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: A
non-rigid map fusion-based direct SLAM method for endoscopic
capsule robots. Int. J. Intell. Robot. Appl. (2017a)

2. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.:
Deep EndoVO: a recurrent convolutional neural network (RCNN)
based visual odometry approach for endoscopic capsule robots.
Neurocomputing (2017b)

3. Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim,
S., Diller, E.: Biomedical applications of untethered mobile

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

milli/microrobots. Proceedings of the IEEE 103(2), 205-224
(2015)

. Turan, M., Almalioglu, Y., Gilbert, H. , Sari, A.E. Soylu, U.,

Sitti, M.: Endo-VMFuseNet: deep visual-magnetic sensor fusion
approach for uncalibrated, unsynchronized and asymmetric endo-
scopic capsule robot localization data. arXiv:1709.06041 [cs.RO]
(2017¢)

. Turan, M., Shabbir, J., Araujo, H., Konukoglu, E., Sitti, M.: A

deep learning based fusion of RGB camera information and mag-
netic localization information for endoscopic capsule robots. J.
Intell. Robot. Appl, Int (2017). https://doi.org/10.1007/s41315-
017-0039-1

. Devernay, F., Mourgues, F., Coste-Manire, E.: Towards endoscopic

augmented reality for robotically assisted minimally invasive car-
diac surgery. In: International Workshop on Medical Imaging and
Augmented Reality (MIAR), pp. 16-20 (2001)

. Hager, G., Vagvolgyi, B., Yuh, D.: Stereoscopic video overlay

with deformable registration. In: Medicine Meets Virtual Reality
(MMVR) (2007)

. Su, L.M.,, Vagvolgyi, B.P.,, Agarwal, R., Reiley, C.E., Taylor, R.H.,

Hager, G.D.: Augmented reality during robot-assisted laparoscopic
partial nephrectomy: toward real-time 3D-CT to stereoscopic video
registration. Urology 73, 896-900 (2009)

. Stoyanov, D., Scarzanella, M., Pratt, P., Yang, G.: Real-time stereo

reconstruction in robotically assisted minimally invasive surgery.
In: Medical Image Computing and Computer-Assisted Intervention
MICCAL pp. 275-282 (2010)

Stoyanov, D., Mylonas, G., Deligianni, F., Darzi, A., Yang, G.: Soft-
tissue motion tracking and structure estimation for robotic assisted
MIS procedures. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCALI), vol.
3759, pp. 114-121 (2005)

Wu, C., Narasimhan, S.G., Jaramaz, B.: A multi-image shape-from-
shading framework for near-lighting perspective endoscopes. Int.
J. Comput. Vis. 86, 211-228 (2010)

Yeung, S., Tsui, H., Yim, A.: Global shape from shading for an
endoscope image. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp.
318-327 (1999)

Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope
image by shape from shading technique for a point light source at
the projection center. Comput. Vis. Image Underst. 66, 119-131
(1997)

Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. Int. J. Comput. Vis.
47, 7-42 (2002)

Fan, Y., Meng, MQ-H., Li, B.: 3D reconstruction of wireless cap-
sule endoscopy images. In: 2010 Annual International Conference
of the IEEE Engineering in Medicine and Biology (2010)

Horn, B.: Shape from shading. Cambridge: Massachusetts Institute
of Technology. Int. J. Comput. Vis. 5(1), 37-75 (1970)

Rai, L., Higgins, W.E.: Method for radiometric calibration of an
endoscopes camera and light source. In: SPIE Medical Imaging:
Visualization, Image-Guided Procedures, and Modeling, pp. 691—
813 (2008)

Visentini-Scarzanella, M., Stoyanov, D., Yang, G.-Z.: Metric depth
recovery from monocular images using shape-from-shading and
specularities. IEEE International Conference on Image Processing
(ICIP), Orlando, FL (2012)

Wang, R, et al.: Improving 3D surface reconstruction from endo-
scopic video via fusion and refined reflectance modeling. (2017)
Zhao, Q., Price, T., Pizer, S., Niethammer, M., Alterovitz, R.,
Rosenman, J.: The Endoscopogram: A 3D model reconstructed
from endoscopic video frames. In: Ourselin, S., Joskowicz, L.,
Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Comput-
ing and Computer-Assisted Intervention - MICCAI2016. MICCAI

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.06041
https://doi.org/10.1007/s41315-017-0039-1
https://doi.org/10.1007/s41315-017-0039-1

358

M. Turan et al.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

2016. Lecture Notes in Computer Science, vol. 9900. Springer,
Cham (2016)

Kaufman, A., Wang, J.: 3d Surface Reconstruction from Endo-
scopic Videos, Visualization in Medicine and Life Sciences, pp.
61-74. Springer, Berlin (2008)

Malti, A., Bartoli, A.: Combining conformal deformation and
cooktorrance shading for 3-D reconstruction in laparoscopy. IEEE
Trans. Biomed. Eng. 61(6), 1684-1692 (2014)

Malti, A., Bartoli, A., Collins, T.: Template-based conformal
shape-from-motion-and-shading for laparoscopy. In: International
Conference on Information Processing in Computer-Assisted Inter-
ventions. Springer, Berlin (2012)

Nadeem, S., Kaufman, A.: Depth reconstruction and computer-
aided polyp detection in optical colonoscopy video frames. arXiv
preprint arXiv:1609.01329 (2016)

Abu-Kheil Y, Ciuti G, Mura M, Dias J, Dario P, Seneviratne L:
Vision and inertial-based image mapping for capsule endoscopy. In:
2015 International Conference on Information and Communication
Technology Research (ICTRC) (2015)

Telea, Alexandru: An image inpainting technique based on the fast
marching method. J. Graph GPU Game Tools 9, 23-34 (2004)
Conrady, A.: Decentering lens systems. Mon. Not. R. Astron. Soc.
79, 384-390 (1919)

Zheng, Y., Yu, J., Kang, S.B., Lin, S., Kambhamettu, C.: Single-
image vignetting correction using radial gradient symmetry. In:
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 562-576 (2008)

Burt, P.J., Adelson, E.H.: A multi-resolution spline with application
to image mosaics. ACM Trans. Graph. (TOG). https://dl.acm.org
(1983)

Wu, C., Agarwal, S., Curless, B., Seitz, S.M. Multicore bundle
adjustment. In: CVPR (2011)

Brown, M., Loewe, D.: Automatic panoramic image stitching using
invariant features. Int. J. Comput. Vision 74(1), 59-73 (2007)
Ping-Sing, T., Shah, M.: Shape from shading using linear approx-
imation. Image Vis. Comput. 12(8), 487—498 (1994)

Elhabian, S.Y.: Hands on shape from shading. SCI Home Technical
Report, Spring (2008)

Yim, S., Sitti, M.: Design and rolling locomotion of a magnetically
actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183—-194
(2012)

Yim, S., Goyal, K., Sitti, M.: Magnetically actuated soft cap-
sule with multi-modal drug release function. IEEE/ASME Trans.
Mechatron. 18, 1413-1418 (2013)

Mehmet  Turan  received his
Diploma Degree from the Infor-
mation technology and Electronics
engineering department of RWTH
Aachen, Germany in 2012. He was
a research scientist at UCLA (Uni-
versity of California Los Ange-
les) between 2013 and 2014 and
a research scientist at the Max
Planck Institute for Intelligent Sys-
tems between 2014-present. He is
currently enrolled as a Ph.D. Stu-
dent at the ETH Zurich, Switzer-
land. He is also affiliated with Max
Planck-ETH Center for Learning

Systems, the first joint research center of ETH Zurich and the Max
Planck Society. His research interests include SLAM (simultaneous
localization and mapping) techniques for milli-scale medical robots
and deep learning techniques for medical robot localization and map-
ping. He received DAAD fellowship between years 2005-2011 and

@ Springer

Max Planck Fellowship between 2014-present. He has also received
MPI-ETH Center fellowship between 2016-present.

-

Yusuf Yigit Pilavci received his
Bachelor Degree from Electrical
and Electronics Engineering of
Middle East Technical University,
Ankara in 2017. He worked as
an undergraduate researcher focus-
ing on image processing, computer
vision, machine learning and artifi-
cial intelligence. Currently, he pur-
sues his master degree in Com-
puter Science and Engineering of
Politecnico di Milano, Italy. Addi-
tionally, he is working on graph
signal processing and domain adap-
tation problems.

Ipek Ganiyusufoglu pursues B.Sc.
degree in Department of Computer
Science,  Sabanci  University,
Turkey. Besides smaller projects,
her current interests include com-
puter graphics, interaction and
vision, which she plans to focus on
further when doing masters.

Helder Araujo is a Professor at
the Department of Electrical and
Computer Engineering of the Uni-
versity of Coimbra. His research
interests include Computer Vision
applied to Robotics, robot naviga-
tion and visual servoing. In the
last few years he has been work-
ing on non-central camera models,
including aspects related to pose
estimation, and their applications.
He has also developed work in
Active Vision, and on control of
Active Vision systems. Recently he
has started work on the develop-

ment of vision systems applied to medical endoscopy.


http://arxiv.org/abs/1609.01329
https://dl.acm.org

Sparse-then-dense alignment-based 3D...

359

Ender Konukoglu Ph.D., finished
his Ph.D. at INRIA Sophia Antipo-
lis in 2009. From 2009 till 2012
he was a post-doctoral researcher
at Microsoft Research Cambridge.
From 2012 till 2016 he was a junior
faculty at the Athinoula A. Mar-
tinos Center  affiliated  to
Massachusetts General Hospital
and Harvard Medical School. Since
2016 he is an Assistant Profes-
sor of Biomedical Image Comput-
ing at ETH Zurich. His is inter-
ested in developing computational
tools and mathematical methods
for analysing medical images with the aim to build decision support
systems. He develops algorithms that can automatically extract quanti-
tative image-based measurements, statistical methods that can perform
population comparisons and biophysical models that can describe
physiology and pathology.

Dr. Metin Sitti received the B.Sc.
and M.Sc. degrees in electrical and
electronics  engineering  from
Bogazici  University, Istanbul,
Turkey, in 1992 and 1994, respec-
tively, and the Ph.D. degree in elec-
trical engineering from the Uni-
versity of Tokyo, Tokyo, Japan, in
1999. He was a research scientist
at UC Berkeley during 1999-2002.
He has been a professor in the
Department of Mechanical Engi-
neering and Robotics Institute at
Carnegie Mellon University, Pitts-
burgh, USA since 2002. He is cur-
rently a director at the Max Planck Institute for Intelligent Systems
in Stuttgart. His research interests include small-scale physical intel-
ligence, mobile microrobotics, bio-inspired materials and miniature
robots, soft robotics, and micro-/nanomanipulation. He is an IEEE Fel-
low. He received the SPIE Nanoengineering Pioneer Award in 2011
and NSF CAREER Award in 2005. He received many best paper,
video and poster awards in major robotics and adhesion conferences.
He is the editor-in-chief of the Journal of Micro-Bio Robotics.

@ Springer



	Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots
	Abstract
	1 Introduction
	2 Literature survey
	3 Method
	3.1 Preprocessing
	3.2 Keyframe selection
	3.3 Keyframe stitching
	3.4 Deep learning and frame stitching
	3.5 Endo-VMFusenet and frame stitching
	3.6 Depth image creation

	4 Evaluation
	4.1 Dataset
	4.2 Trajectory estimation
	4.3 Surface reconstruction
	4.4 Computational performance
	4.5 Conclusion

	Acknowledgements
	References




