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Abstract
We describe a method for player detection in field sports with a fixed camera setup based on a new player feature extraction
strategy. The proposed method detects players in static images with a sliding window technique. First, we compute a binary
edge image and then the detector window is shifted over the edge regions. Given a set of binary edges in a sliding window,
we introduce and solve a particular diffusion equation to generate a shape information image. The proposed diffusion to
generate a shape information image is the key stage and the main theoretical contribution in our new algorithm. It removes
the appearance variations of an object while preserving the shape information. It also enables the use of polar and Fourier
transforms in the next stage to achieve scale- and rotation-invariant feature extraction. A support vector machine classifier is
used to assign either player or non-player class inside a detector window. We evaluate our approach on three different field
hockey datasets. In general, results show that the proposed feature extraction is effective and performs competitive results
compared to the state-of-the-art methods.

Keywords Feature extraction · Heat diffusion · Player detection · Field sports

1 Introduction

Sport video analysis is an important and active topic in com-
puter vision. In particular, many works focus on field sports
such as soccer, American football and field hockey, which
are very popular outdoor sports around the world. There are
many possible applications of analyzing field sport videos
such as event detection and player/team activity analysis.
These high-level applications require low-level structural
procedures, specifically player detection, classification and
tracking. Player detection is usually the fundamental step
in sport video analysis. There are two possible sources of
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sport videos: TV broadcasts and fixed cameras around the
playground. In this paper, we focus on player detection in
field sports using a fixed camera infrastructure. However, for
completeness, in the following we review player detection
techniques based on the both sources.

1.1 Using the TV broadcast

Field sports are played outdoors on a large playground which
is an almost homogeneous region. Most player detection
techniques assume the existence of a dominant color (e.g., a
tone of green) on a field of play and use this characteristic to
assist player detection algorithms. The dominant color fea-
ture has beenused inTVbroadcast videos for player detection
[1–4]. Liu et al. [1] learn the dominant color by accumulat-
ing HSV color histograms in a broadcast video. Then, the
dominant color is used to segment the playfield. Accord-
ing to the area of the segmented region, they classify view
types, and player detection is performed in global (i.e., dis-
tance) view type, which is achieved by running a boosted
cascade of Haar features [5] on non-playfield regions. Kha-
toonabadi and Rahmati [2] use RGB color histograms to
determine the dominant color and detect the playground in
broadcast videos. The field line markings are detected in a
second step using theHough transform. Finally, some restric-
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tions such as area and ratio of major length to minor length
are applied to the remaining regions to detect players. Beetz
et al. [3] model color classes on the playground (i.e., the
field is green and the lines are white) using a mixture of
Gaussians in RGB space and use this model to segment the
playfield regions. Next, they use special templates to detect
players based on color distributions, compactness and ver-
tical spacing of the remaining regions. A comprehensive
survey on player detection using the TV broadcast is given
in [4].

Using broadcast cameras, however, cannot allow us to
address some specific tasks such as team activity and strat-
egy analysis, evaluation of player performances, 2D/3D
reconstructions and visualizations of player actions. This is
because the broadcast camera usually only captures a spe-
cific region (such as ball locations) and many players may
not be in that region. Using broadcast cameras also suffers
from inaccurate player detection because of camera motions,
occlusions, etc.

1.2 Using fixed cameras

Fixed multi-camera systems usually cover all locations on
the field of play and therefore capture all players simulta-
neously. Background subtraction is a common method for
player detectionwith a fixed camera infrastructure [6–10]. To
consider problems in outdoor scenes such as changes of illu-
mination, shadows, background objects, these methods need
to frequently update the background representation model.
Some statistical adaptive methods [11–14] have been pro-
posed, but these methods only work well for simple scenes
with slowchanges of illumination. These approaches can also
easily incorporate objects that stop moving for a certain time
into the background model. In field sport, it is common to
have players (e.g., goalkeeper) that stand still for many video
frames. Figueroa et al. [7] pointed out that applying amedian
filter along the pixels of some consecutive frames for back-
ground modeling can increase the tolerance to illumination
changes and facilitate still player detection in comparison
with statistical adaptive methods. Carr et al. [10] created
shape-specific occupancymaps on the ground plane using the
foreground regions after background subtraction for player
detection. This approach increases the tolerance to shadows,
but can only identify isolated individuals. Xu et al. [6] inte-
grated the dominant color and geometry information of the
field to assist background subtraction for player detection.
Vandenbroucke et al. [15] proposed a player detection tech-
nique based on color image segmentation instead of using the
temporal information. However, all of the methods based on
background subtraction and image segmentation fail when a
single segmented region contains multiple players or when a
single player is segmented into multiple regions.

2 Ourmotivation and contribution

Player detection algorithms have to face challenging situa-
tions in field sports such as variability of lighting andweather
conditions, geometric variations of the players in images such
as scale and rotation depending on the camera view point.
Players may appear at different scales, resolution and ori-
entation depending on the distance to camera and direction
of their movement. Player appearance is also strongly influ-
enced by the team uniform and illumination, since there is
a wide range of player uniform colors and textures. We pro-
pose to address these problems and introduce an approach for
player detection within a fixed camera infrastructure in field
sports. We evaluate our approach on field hockey, where the
top view playground and the camera configuration is shown
in Fig. 1a. A sample frame from one of the camera views
is also shown in Fig. 1b. We constrain the pose to standing,
walking, running and bending. A player corresponds to any
human on the playground including both team players and
referee.

The proposed approach is based on a sliding window
technique on an individual image. Given a video frame,
we compute a binary edge image. There may be edges
detected outside the playground because of audience and
advertisements. These edges are removed by a geometry-
based playground mask to restrict further processing and
accelerate detection speed. Since the playground is almost
homogeneous in field sports, the remaining edges belong to
the field markings, players and noise on the playground. The
detector window is then scanned across the edge regions. The
window dimensions are determined based on known camera
geometry and prior information of the target object class.

Given a set of binary edges in a sliding window, we intro-
duce and solve a particular diffusion equation to generate a
shape information image. The proposed diffusion to generate
a shape information image, inside the detector window, is the
main theoretical contribution and the key stage in our new
algorithm. Despite the missing edges of an object because
of low resolution or noise, the proposed diffusion can fill
inside the object’s shape while preserving the shape infor-
mation. It removes the appearance variations (i.e., color and
texture) of an object. It also enables to use polar and Fourier
transforms in the next stage to achieve scale- and rotation-
invariant feature extraction. The heat diffusion analogy has
been deployed before in various ways in image processing
and computer vision. It has been used for: image smooth-
ing and enhancement [16], region-based image segmentation
[17], skeletonization [18], multi-scale shape description [19]
and motion analysis [20,21]. However, this is the first time a
particular heat diffusion equation is used for estimating shape
over the binary edge maps.

After the proposed features are extracted, a support vector
machine classifier is used to label either player or non-player

123



Player detection in field sports 189

Fig. 1 a Top view of the playground with camera locations. b A sample frame of dimensions 959× 539 from a camera view. c Binary edge image
from the red box in sample image. d The geometric mask of the playground. e Binary edge image from the red box after masking operation (color
figure online)

class at each window location. We evaluate our approach
on a field hockey dataset on different camera views. The
results show that our approach is effective, and in general it
performs better than the state-of-the-art techniques for player
detection.

3 Region of interest selection

The search region is estimated based on edge features derived
from the image data and known playfield geometry. The
first step in our approach is binary edge detection using the
Canny method [22]. Canny edge detection is perhaps the
most popular edge detection technique at present. The first
requirement is to reduce the response to noise with Gaus-
sian filtering. Then, a finite difference edge finder is applied
to compute the gradient magnitude. Then, non-maxima sup-
pression (peak detection) is applied to the gradientmagnitude
image that retains only those points at the top of the ridge,
while suppressing others. Finally, hysteresis thresholding is
used, which involves two thresholds, to obtain binary edges.
In our experiments, the standard deviation of the Gaussian
filter is 0.4. The finite difference edge finder is the Sobel oper-
ator. The thresholds to obtain the binary image are determined
automatically. In this process, the non-maxima suppressed
image is thresholded by the scaled median value of the gra-
dient magnitude image. The upper and the lower thresholds
are determined as TH = c × median(G) and TL = TH/2,
where median(G) is the median value in the gradient mag-
nitude image G and c is a scale factor for threshold selection
which is a positive constant. Higher values of c cause higher
values for the thresholds. However, the threshold valuesmust
be smaller than the maximum intensity values of the image
which we are thresholding. In this evaluation, the optimum
value for c is 9 determined experimentally. The ratio between
high, TH , and low, TL , thresholds is 2.

Since the playground is homogeneous in field sports, the
edges mostly belong to the field markings, players and noise
on the playground as shown in Fig. 1c. There are also edges
detected outside the playground because of audience and
advertisements. These edges are removed by a geometry-
based playground mask. The geometry-based mask has been
similarly used by [6] to assist player segmentation. The
geometry-based mask is obtained by using homography
transformations from the image plane to the top view ground
plane (i.e., 2D to 2D plane transform). Suppose that H is
the transformation matrix from the image plane to ground
plane and C is the coordinate range of the ground plane. If
an image point, x = (x, y), is in the ground plane coordi-
nate after the transformation, it is one, otherwise it is zero.
The geometry-based mask can be represented as follows
M = {(x, y)|H(x, y) ∈ C}. The binary geometry-based
mask image and the binary edge image after the masking
operation are shown in Fig. 1d, e. To further accelerate the
detection, we process only thewindow regionswhich include
a significant number of edge points. If the total number of
edge points, inside a window, is higher than a pre-defined
threshold (i.e., T = 10 in our experiments), we employ fea-
ture extraction and classification.

4 Window aspect ratio and dimensions

The window aspect ratio and dimensions are determined
based on prior information of the target object class and
known camera geometry, respectively. The window aspect
ratio (height divided by width) is 1.6 which is estimated
experimentally based on annotated player regions to cover
poses such as standing, walking, running and bending. The
window dimensions are determined during the scanning pro-
cess using the camera geometry. Each scanning point is
assumed to be the bottom middle point of the window, and
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this point is projected from the image coordinates to world
coordinates onto the ground plane. This is a 2D to 3D inverse
perspective transformation with height equal to zero meters.
Then, we make the height 1.8m in the world coordinate sys-
tem, assuming that players are 1.8m tall, and project back
to the image coordinates (i.e., 3D to 2D direct perspective
projection). The projected point is the top point of the win-
dow. We can compute the window height in pixels using the
top and bottom points of the window. The width can be cal-
culated using the aspect ratio (i.e., 1.6). However, instead of
computing the width at each scanning, we select one of the
pre-defined window dimensions depending on the height of
the window. These pre-defined window dimensions are esti-
mated using the annotated player regions. If the height is less
than 40 pixels, the window dimensions are 40 × 25. If the
height is between 40 and 48 pixels, the window dimensions
are 48 × 30. If the height is between 48 and 56 pixels, the
window dimensions are 56 × 35, and finally if the height is
between56and64pixels, thewindowdimensions are 64×40.

5 Shape information image generation using
a heat equation

Here, we introduce the key stage and the main theoretical
contribution in our algorithm. In each detector window, there
can be missing or disconnected edges of an object due to
low resolution, noise, etc. If there is a player in the window,
it means there are also edges because of the team uniform
texture and style. Edge detection is a low-level feature extrac-
tion, and it does not give any object shape information. We
address these problems by solving a particular heat diffu-
sion equation in the window region. The proposed diffusion
generates a shape information image of an object. The heat
diffusion analogy has been used before in image process-
ing and computer vision such as for image smoothing and
enhancement [16], region-based image segmentation [17],
multi-scale scape description [19], skeletonization [18] and
motion analysis [20,21]. However, this is the first time a
particular heat diffusion equation is used for shape esti-
mation over the binary edge maps. First, we explain the
basic concept of heat diffusion and then describe the pro-
posed diffusion problem to generate a shape information
image.

5.1 Basic concepts of heat diffusion

Conduction or diffusion is the flow of heat energy from high-
to low-temperature regions due to the presence of a thermal
gradient in a body [23]. The change of temperature over time
at each point of a two-dimensionalmaterial is described using
the general heat diffusion equation,

∂T (x, t)
∂t

= α∇2T (x, t) = α

(
∂2T (x, t)

∂2x
+ ∂2T (x, t)

∂2y

)
,

(1)

where ∂T (x, t)/∂t is the rate of change of temperature and
(x, t) = (x, y, t) is space and time vector, ∇2 is the spatial
Laplacian operator for the temperature, α is called thermal
diffusion coefficient of the material and a larger value of
α indicates faster heat diffusion through the material. The
solution of this equation provides the temperature distribu-
tion over the material body, and it depends on time, distance,
properties of material, as well as specified initial and bound-
ary conditions.

Initial conditions specify the temperature distribution in a
body, as a function of space coordinates, at the origin of the
time coordinate (t = 0). Initial conditions are represented as
follows,

T (x, t = 0) = F(x), (2)

where F(x) is the function that specifies the initial tem-
perature inside the body. Boundary conditions specify the
temperature or the heat flow at the boundaries of the body.
There are three general types of boundary conditions: Dirich-
let, Neuman and Robin. Here, we explain the Dirichlet
conditions, which is used in our algorithm. In the Dirich-
let condition, temperature is specified along the boundary
layer. It can be a function of space and time, or constant. The
Dirichlet condition is represented as follows,

T (x, t) = Φ(x), (3)

where Φ(x) is the function that specifies the temperature at
the boundary layer. A tutorial on heat diffusion theory is also
given in [24,25].

5.2 Proposed heat diffusion problem and solution

Given a set of binary edges in a sliding window, we propose
and solve a heat diffusion equation. The solution of the pro-
posed equation fills inside the object shape while preserving
the shape information. Therefore, it removes the appearance
variations (i.e., color and texture) of an object. The proposed
equation is given below,

∂ I (x,t)
∂t = E(x)∇2 I (x, t)

with

∣∣∣∣ I (x, t = 0) = 1 − E(x), initial condition
I (x, t) = 0, boundary condition

(4)

where E is a binary edge image of a space vector x = (x, y)
and in diffusion theory it is known as the diffusion coefficient.
In this equation, the diffusion coefficient E(x) is space vari-
ant (i.e., non-uniform) where the edge positions are zero and
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the rest of the positions are one. I is a solution that is a real-
valued function of a space and time vector (x, t) = (x, y, t).
The solution, I , depends on the diffusion coefficient, as well
as the initial and boundary conditions over a bounded region
of interest. The initial condition is a binary image where
the edge positions are one and the rest of the positions are
zero (1− E(x)). The boundary condition is Dirichlet which
has a specific solution, I (x, t) = 0, at the boundaries of
the window. The proposed diffusion problem has a steady-
state solution since it is a linear and homogeneous diffusion
equation [23] with a space-variant diffusion coefficient. In
this work, the numerical solution is obtained using a multi-
grid solver [26] since it is computationally more efficient
than iterative methods. Figure 2a–d shows shape information
images generated for the given samples, where the top five
samples represent players and the bottom five samples repre-
sent background (non-players). The solution of the proposed
diffusion enables the use of polar and Fourier transforms in
the next stage to achieve scale- and rotation-invariant feature
extraction.

In Fig. 3, we compare the proposed diffusionwith themor-
phological operation for the object shape estimation using
the binary edges. In morphological operation, first the clos-
ing operation (i.e., dilation and then erosion) is applied to
the binary edge map using a pre-defined structuring element,
and then we fill the small regions inside the object. To visual
inspection, it is seen that the proposed diffusion can estimate
the player shapes better than the morphological operation.
The morphological operation is more sensitive to missing
edges in comparison with the proposed diffusion. In mor-
phological operation, if the size of the structuring element is
small, it cannot handle missing edges (i.e., the missing parts
of the boundary) well and fails to estimate object shape. On
the other hand, if the size of the structuring element is large,
it can disturb and remove the important curvatures of the
shape, and again it may fail to estimate the object shape.

Figure 4 also shows the behavior of the proposed diffu-
sion in case of presence of the field lines edge pixels in the
background (i.e., background clutter). In this case, we may
observe failures in player shape estimation.

6 Scale- and rotation-invariant feature
extraction

Aswe described in Sect. 4, the detectorwindow’s dimensions
change depending on the player location on the playground.
The orientation of a player may vary depending on the direc-
tion of movement, as well as the camera view point. For
example, in Fig. 2a, b, although they are upright their ori-
entation is different. Players’ scales may also differ at each
detector window even if the window’s dimensions are the
same. To overcome these problems, the coordinates of each

window image are polar mapped [27,28] onto an image of
fixed dimensions, i.e., 32 × 32. In the polar-mapped image,
rotations appear as translations and image dimensions are the
same for all samples. Consider the polar coordinate system
(r , θ), where r ∈ � denotes radial distance from the cen-
ter of the window image (xc, yc) and 0 ≤ θ ≤ 2π denotes
angle. Any point (x, y) ∈ �2 can be represented in polar
coordinates as follows,

r = √
(x − xc)2 − (y − yc)2

θ = tan−1
(
y−yc
x−xc

)
.

(5)

There are two principal methods for mapping a rectangu-
lar image to a circle in the polar transform. The image can
either be fitted within the circle or the circle can be fitted
within the boundaries of the image. The main problem with
fitting the circle within the boundaries of the image is los-
ing the information in the corners. Since we want to use all
information in the window image, we use the method that
fits the image within a circle. In this method, all pixels will
be taken into account, but some invalid pixels will also be
included, which fall inside the circle but outside the image.
In our algorithm, these invalid pixel values are set to zero.
Figure 2e shows the polar transform of the shape informa-
tion image for each sample. For better visualization, Fig. 2f
shows the color-mapped polar transforms.

Then 2D Fourier transform is applied to the polar-mapped
image, as given below, to compute the Fourier magnitude,
which removes these translations.

F(k, l) = 1

MN

M−1∑
r=0

N−1∑
θ=0

P(r , θ)e[− j2π(kr/M+lθ/N )], (6)

where F(k, l) is the Fourier transform of the polar-mapped
image P(r , θ) of size M×N. The resultant Fourier magni-
tude image, |F(k, l)|, is translation invariant which means
that it is player rotation invariant. Applying the Fourier trans-
form over polar-mapped image to achieve rotation invariance
is not a novel approach. First, it has been introduced as a
part of the Fourier–Mellin transform algorithm [29] that per-
forms rotation-, size- and translation-invariant image feature
extraction in 2D space. Later, it has been utilized by the well-
known region-based shape description techniques [27,28].
These techniques apply polar and Fourier transforms to the
binary images of the objects to achieve the rotation invari-
ance; on the other hand, we apply these transforms to the
solution of the proposed heat diffusion equation. Figure 2g
shows the Fourier transformmagnitude images for each polar
transform sample.

To achieve scale invariance of the object, all of the Fourier
magnitude values are divided by |F(0, 0)|, the DC value of
the image that corresponds to the average brightness. In our
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Fig. 2 a Top five samples are for players and the bottom five samples are for non-players. b Binary edges. c Shape information image. d The
color-mapped shape information image. d The polar transform image. e The color-mapped polar transform image. f The Fourier magnitude image
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Fig. 3 Comparison of morphological operation and the proposed dif-
fusion for shape estimation. a Samples, b binary edges, c binary object
image after morphological operations, d shape information image after
the proposed diffusion

Fig. 4 Behavior of the proposed diffusion in the presence of field lines
in the background. a Samples, b binary edges, c shape information
image after the proposed diffusion

implementations, the Fourier magnitude image is shifted in
a way that the DC value is displayed in the center of the
image. Distance from this center point represents increasing
frequency. The lower frequency components of the Fourier
descriptor capture the general shape properties of the object,
and the higher frequency components capture the finer detail.
For efficient shape description, only a small number of the
descriptors should be selected for shape representation. In
our work, a shape information image and its polar transform
are a smooth distribution, and most of the shape information
is contained in the low-frequency components. To select the
lower frequency components as descriptors, we draw a circle
around the center point (i.e., DC value point) with a pre-
defined radius and choose all of the descriptors within the
circle, except the descriptor in the center point, to represent
shape.We form a one-dimensional vectorwith these features;
in our experiments, the radius of the circle is 5 which results
in 100 features for shape representation. It is important to
note that we choose Fourier-based shape description because
it is proven that Fourier descriptors are easy to compute and
robust in 2D shape classification [27,28].

7 Classification using the shape features

Asupport vectormachine (SVM)with aGaussian radial basis
function kernel is used to label either a player or non-player
in each detector window. Our experiments show that the pro-
posed features achieve better results with theGaussian kernel
in comparison with other possible kernel functions in SVM.
The scaling factor of the Gaussian kernel is 2.1. The upper
bound on the Lagrange parameters is 5. These parameter
values are selected using the cross-validation on the training
set. In addition, we use the sequential minimal optimiza-
tion method to find the separating hyperplane since we have
a large training set and this method is computationally effi-
cient.Our detection system takes an image and returns a set of
bounding boxes (BB) and a confidence value for each detec-
tion. Then, non-maximal suppression is applied for merging
nearby detections, using the confidence values, to determine
the final detections. In our method, the confidence value is
the SVM decision value. The non-maxima suppression is a
pairwise max (PM) suppression [30] which greedily selects
high-scoring detections and discards detections that signif-
icantly overlap with a previously selected detection. The
overlap is measured as follows:

Γi j = area(BBi ∩ BB j )

area(BBi ∪ BB j )
, (7)

where Γi j is the overlap measure between two different
bounding boxes BBi and BB j . In our experiments, non-
maximal suppression is applied if Γi j > 0.2 (more than
20% overlap). Figure 5a, b shows detections before and after
the non-maxima suppression, respectively, with the proposed
method.

8 Evaluation and results

The proposed approach is validated on a field hockey dataset.
There are eight fixed cameras around the field in order to
cover the entire playground, and each camera is mounted
on a pole 20m high. In this paper, we present results for
three different camera views, two of them (Camera 1 and
2) are corner view cameras and one of them (Camera 3)
is a side view camera. Figures 5, 6 and 7 show example
frames, respectively, for Camera 1, 2 and 3. The dimensions
of the frames are 959 × 539. For training, we collect 1375
player samples from different camera views with variation
of appearance, scale, rotation and pose. The non-player sam-
ples are different for each camera view since each camera
view has a different background image (i.e., the image with
no players in the scene). The edge regions are scanned after
geometry-based masking to extract and collect non-player
features. As a result, Camera 1, 2 and 3 have, respectively,
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Fig. 5 Detections a before and
b after non-maximal
suppression

13,420, 12,514 and 3111 non-player samples for training. For
testing, we prepare a dataset for each camera view by man-
ually labeling the ground truth BBs. There are 4526, 4780
and 2407 players labeled in Camera 1, Camera 2 and Cam-
era 3 datasets, respectively, in 301 consecutive frames for
each view. In total, 11,713 player BB locations are manually
labeled from three different camera views for evaluation.

We evaluate our approach while comparing with nine
different methods: A background subtraction (BS) method
[7], the histogram of oriented gradients (HOG) features [31]
describing the human body shape, the deformable part-based
model (DPM) [30] that also use the HOG features to describe
human body shape with a part-based approach, using a pre-
trained convolutional neural network (CNN) (AlexNet) as
a feature extractor [32], with the selective search method
that is used for detecting objects using hierarchical group-
ing and SVM [33], the PSHOG model which combines the
proposed shape proposal with the HOG features. In addi-
tion to these methods, we also perform comparison with the
different shape representations. For example, in our algo-
rithm, instead of using the proposed shape proposal we use
binary foregroundmask of an object appear after morpholog-
ical operations to the binary edge image (abbreviated with
MORPH on the graphs and tables). This representation is
shown in Fig. 3c. We also compare with the smoothed ver-
sion of the binary foreground mask. A Gaussian filter is used

for smoothing, and this method is abbreviated with Gauss in
the evaluations. In addition, we compare with the shape that
appears after passing the binary foreground mask through
sigmoid function to get values between 0 and 1. This method
is abbreviated with SIGD in evaluations.

The BSmethod [7] is a commonly used method for player
detection with a fixed camera. This method, in our evalua-
tion, extracts the background image by applying a median
filter along the pixels of 70 consecutive frames. Then, the
difference between the current and the background image is
computed, and a threshold is applied to the difference image
for binarization. The threshold value to binarize the differ-
ence image is 13. The next step is morphological filtering
(i.e., opening and closing) to eliminate noise and connected
pixels labeling to define players regions. The parameter val-
ues in theBSmethod [7] are determined experimentally using
an additional validation set.

The HOG+ SVM [31] is combined with the sliding win-
dow technique in an individual image for player detection.
The region of interest, the window aspect ratio and dimen-
sions are determined as described in Sects. 3 and 4. The
estimated window dimensions are normalized to 56 × 35.
Then, we compute the HOG features in this region. In our
experiments, the number of orientation bins is 7, the cell size
is 10 × 10 pixels, the block size is 2 × 2 cells, the stride of
the blocks is 10 pixels, and the L2 norm is used to normalize

123



Player detection in field sports 195

Fig. 6 Precision–recall curves comparison with other techniques (left—without hard negative mining, right—with hard negative mining): aCamera
#1 dataset, b Camera #2 dataset and c Camera #3 dataset

contrast for each block. The feature vectors for all blocks are
concatenated to yield a final feature vector, and the dimen-
sion of the final feature vector is 420. In SVM, linear kernel
function (i.e., dot product) is used to map training data into
kernel space. Our experiments show that, in our datasets, the
HOG features achieve the best results with the linear ker-
nel in comparison with other possible kernel functions. The
upper bound on the Lagrange parameters, in linear SVM,
is 0.15. The SVM parameter value is determined using the
cross-validation on the training set.

The DPM+LSVM [30] is also combined with the sliding
window technique in an individual image for player detec-
tion. In DPM, the person model is defined by filters such as
the root filter (i.e., whole body filter) and part filters (i.e., head
filter, right shoulder filter). These filters score sub-windows
of a feature pyramid for person detection, where the feature

pyramid is computed by computing the image pyramid. The
number of levels in the pyramid is 5. The pyramid approach
also makes this model scale invariant. Responses from root
filter and part filters are computed at different levels in the
pyramid to increase the performance as discussed in [30].
They use HOG features, but the lower dimensional ones that
are obtained after principal component analysis (PCA). The
dimension of theHOG features representing thismodel is 36,
with 9 orientations and 4 normalizations. We trained DPM
filterswith the same samples thatweused in our approach and
HOG. The Latent SVM is used for training and classification
of the person. These parameter values are determined exper-
imentally on a different validation set. We use the original
MATLAB codes implemented by authors [34] for compari-
son.
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Fig. 7 Precision–recall curves comparison with the other shape proposals (left—without hard negative mining, right—with hard negative mining):
a Camera #1 dataset, b Camera #2 dataset and c Camera #3 dataset

Convolutional neural network (CNN) is a type of feed-
forward artificial neural network. Nowadays, CNN is the
state-of-the-art tool for image classification. Therefore, we
compare the proposed method with the CNNmethod. CNNs
are trained using large image collections of diverse images,
and they learn rich image features from these collections.
One of the major drawbacks of the CNN method is the long
time needed to train deep networks. However, without invest-
ing time and effort into training, a pre-trained CNN can be
utilized as a feature extractor, whichwe perform as a compar-
isonwith the proposedmethod. Instead of using the proposed
method for feature extraction, we apply CNN as a feature
extractor [35] using the Matlab instructions given in [32].
In particular, we keep the proposed system architecture the
same, but use CNN features instead of diffusion features. We

use AlexNet [36] pre-trained network as a feature extractor.
The training data consist of 1375 player images from three
different camera views with varying appearance, scale, rota-
tion and pose. Non-player samples consist of 13420, 12514
and 3111 images for Camera 1, 2 and 3, respectively. For
CNN training, first these images are re-sized to AlexNet
image requirements (i.e., 227 × 227), since we fine-tune
AlexNet [36] pre-trained network as a feature extractor. We
extract features from the last layer of the CNN (i.e., fc7 layer
of the AlexNet which is the last layer before classification).
We use stochastic gradient descent (SGD) method for CNN
training. We also use the suggested training parameters of
AlexNet [36]. TheCNN training parameters such as themax-
imum number of iterations, learning rate, step size, weight
decay, momentum and gamma are set to 40,000, 0.001, 1000,
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0.0005, 0.9 and 0.8, respectively. Finally, we train a linear
SVM classifier using CNN features (i.e., the output of the
last layer of CNN) instead of diffusion features for classifi-
cation. For testing 11,713 players, BB locations aremanually
labeled from three camera views, as we explained in Sect. 8.
Testing images are also re-sized to 227 × 227 according to
AlexNet image requirements for classification.

In the selective searchmethod [33], images are segmented
to produce image regions. Then, a hierarchical grouping algo-
rithm is recursively used to group smaller regions into larger
regions until the whole image becomes a single region. Dur-
ing hierarchical grouping, they combine multiple grouping
criteria such as similarities in color, texture, brightness, size
and shape compatibility, thus able to deal with many image
conditions as possible. After determining the image regions,
they classify the object present in that region. For the classifi-
cation, SVMwith HOG is used by utilizing the bag-of-words
for object recognition. We use the original MATLAB codes
implemented by authors for comparison. We use the original
MATLAB codes implemented by authors [37] for compari-
son.

On the other hand, some of the methods (such as the
DPM + LSVM [30]) perform better when the hard nega-
tive mining (HNM) technique is applied. In HNM, negative
examples (false positives) are feed into the classifier so that
the classifier learns from the negative examples. Generally,
few rounds of negative examples are applied. After few
rounds, adding more negative examples does not improve
the classification accuracy significantly and that there may
be an inbalance between number of positive and negative
samples (HNM may produce more negative examples). Our
aim is to evaluate the effect of HNM on average precision
values. Therefore, in the evaluations we included HNM in
the training of the proposed method and in the training of all
compared methods. For each method, we retrain the SVM
with negative examples that are incorrectly classified. We
repeat the process 2 rounds (2 cycles of hard negative min-
ing) for each method.

8.1 Quantitative evaluation

Performance evaluation is based on comparing the detected
BB locationswith themanually labeled ground truthBB loca-
tions for test sequences. A detected BB and a ground truth
BB form a potential match if they overlap sufficiently. Each
detected BB and ground truth BB may be matched at most
once. If a detectedBBmatchesmultiple ground truthBBs, the
match with highest overlap is used. The overlap is measured
with Eq. 7, and a correct detection is achieved if Γi j > 0.25.
Note that Enzweiler et al. [38] also used Γi j > 0.25 to
evaluate the pedestrian detection algorithms using Eq. 4. We
measure the performance based on two different acceptable
measurementmethods. For the firstmeasurement, we present

the precision–recall curves and evaluate the average preci-
sion value for each method as in PASCAL VOC challenges
[39]. For the secondmeasurement, we evaluate the precision,
recall and F-Score values at a single threshold.

8.1.1 Precision–recall curves and average precision value

We provide precision–recall curves and also report aver-
age precision over the fixed recall levels [0, 0.1, 0.2, . . . , 1].
Here, the precision is defined as P = Pc/Pt , where Pc is
the number of BB locations correctly predicted and Pt is
the total number of BB locations predicted as belonging to
player class. The recall (i.e., detection rate) is defined as
R = Rc/Rt , where Rc is the number of BB locations cor-
rectly predicted and Rt is the total number of BB locations
that actually belong to the player class. The precision at each
recall level is interpolated; this also reduces the impact of
wiggles in the precision–recall curves. The average preci-
sion (AP) summarizes the shape of the curve. This notation
has been used in PASCALVOC challenges [39]. Figure 6a–c
shows the precision–recall curves of the methods for Camera
#1 , Camera #2 and Camera #3 datasets, respectively. Since
we apply HNM, we also illustrate average precision values
with and without the HNM technique for all of the compared
methods. Table 1 shows the average precision of the methods
for each camera view with and without the HNM.

According to the average precision values in Camera
#1 dataset, when the HNM is not applied, CNN [32], the
proposed method, HOG + SVM [31] and PSHOG outper-
form the DPM + LSVM [30], BS [7], selective search [33],
SIGD, Gauss and Morph methods. Without the HNM, CNN
achieves the best accuracy and PSHOG is slightly behind the
CNN. The proposed method performs slightly better than the
HOG + SVM [31]. Although DPM + LSVM [30] achieves
good results in pedestrian/person detection, this method is
not good at player detection in field sports. Because the play-
ers appear at small scale, low resolution as well as different
orientation because of the distance to camera and direction
of their movement. It is difficult to distinguish and describe
the human body parts under these conditions, and therefore
the DPM + LSVM [30] method fails to detect players. In
HOG+SVM[31], theHOG features describe thewhole body
shape and do not include the body part features separately
in the description. This is the reason it performs better than
the DPM + LSVM [30]. Describing the whole body shape
alone is more effective when the object appears at small scale
and low resolution. The selective search and DPM+ LSVM
methods achieve similar performances comparing to other
methods. Although the selective search is good at detecting
various objects, it is not good for detecting players at small
scale, which is also shown by their results on VOC 2010
dataset [33]. The BS method [7] also fails to detect players
because of variability of lighting and weather conditions as
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well as low resolution. Overall, the results show that when
the HNM is not applied, CNN, PSHOG and the proposed
method achieve good performances. Using CNN as a feature
extractor is the state-of-the-art deep learning method that we
applied for player detection. Even thoughwe have used a pre-
computed AlexNet network, feature extraction using CNN is
computationally expensive. In addition, with high-resolution
images, generally CNN as a feature extractor achieves results
close to 100%. However, as a requirement of the AlexNet,
we re-size low-resolution images of very small-sized play-
ers that are captured from a distance to 227 × 227 image
dimension requirements. As a result, this affected the perfor-
mance of the CNN. On the other hand, without the HNM,
the proposed method generally achieves good results since,
in general, it can handle the distance (i.e., players’ scales),
low resolution, as well as the occlusion problems well.

When the HNM is applied, in Camera #1 dataset, the pro-
posed method improves the performance considerably with
0.9364 average precision and it is slightly behind the per-
formance of CNN (0.9432). Although the PSHOG and the
HOG + SVM improve their performances with the HNM
technique, they stay behind the performances of CNN and
the proposed method. In addition, when the HNM is applied,
we observed that the DPM + LSVM considerably improve
the average precision values compared to other methods.
This is because the DPM + LSVM method produces many
bounding boxes and designed to learn from negative exam-
ples using HNM. Overall, the results show that when the
HNM is applied, the CNN and the proposed method achieve
the best results.

The resolution of the images captured by Camera #2 is
a bit lower than the resolution of images captured by Cam-
era #1. This difference appears because of some technical
problems in Camera #2. From the average precision val-
ues in Camera #2 dataset, it can be observed that all of
the methods are affected by the lower resolution problem
except the proposed method (including with and without the
HNM). Without the HNM, the average precision value of
the proposed method is 0.9049, which is better than the other
methods. The average precision values of HOG+SVM [31],
BS method [7], DPM+LSVM [30], PSHOG, CNN [32], the
selective search are 0.8514, 0.4771, 0.7980, 0.8957, 0.9028
and 0.8462, respectively (without theHNM).Weobserve that
CNN is affected by low-resolution images. In this dataset,
proposed method, CNN and HOG + SVM are the best per-
forming techniques. The closest performance to these three
methods is achieved by PSHOG. In particular, CNN and
PSHOG handled the low-resolution images slightly better
than the rest of the methods. When we look at the perfor-
mance of the selective search method on different datasets,
it is also shown that this method can handle low-resolution
images better (i.e., performance on Camera #2) since it com-
bines various similarity metrics during hierarchical grouping
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Table 2 Comparison of the precision (P%), recall (R%) and F-score (F%) of the methods when the overlap measure is greater than 0.25

Cam. # of players BS [7] DPM + LSVM [30] HOG + SVM [31] Proposed Feat. + SVM

P% R% F% P% R% F% P% R% F% P% R% F%

1. 4526 84.25 68.45 75.53 91.48 80.21 85.48 98.51 89.24 93.65 99.21 89.11 93.89

2. 4780 78.47 64.96 71.08 90.45 74.53 81.72 98.91 83.54 90.58 97.90 87.57 92.45

3. 2407 79.78 81.64 80.70 84.92 86.83 85.86 93.13 95.18 94.14 94.93 97.30 96.10

Tot. 11,713 80.90 69.73 74.90 87.14 79.98 83.41 97.41 88.13 92.53 97.71 90.16 93.78

Fig. 8 Graphical illustration of the P%, R% and F% of the methods for the overlap measure is greater than 0.25. a Camera 1 dataset. b Camera 2
dataset. c Camera 3 dataset. d Overall performances

of image regions. When the HNM is applied, in Camera
#2 dataset, the proposed method achieves the best results
with 0.9449 average precision. This result shows that the
proposed method both handles low-resolution images bet-
ter and improves more with the HNM comparing to other
methods.We also observed that again DPM+LSVM signifi-
cantly improves the average precisionwith theHNMand also
improvement in the PSHOGwith theHNMstay limited com-
paring to other techniques (the PSHOG improve slightly).

The Camera #3 is a side view camera, and the dataset
includes frames captured during the fast movement of play-
ers, when they were running. This causes higher variation of

the human body shape with respect to time. According to the
average precision results, the DPM + LSVM [30] method
cannot handle the large variations of the body parts and
perform worse comparing to other methods. In this dataset,
with and without the HNM, the proposed method, CNN and
HOG + SVM [31], outperforms other methods, and their
average precision values are very close. In this dataset, per-
formances of the rest of themethods are correlatingwith their
performances on Camera #1 and Camera #2 datasets.

The novelty of the proposed method is mainly the use of
the heat diffusion equation for shape representation. There-
fore, we also perform comparison with the different shape
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Table 3 Comparison of the precision (P%), recall (R%) and F-score (F%) of the methods when the overlap measure is greater than 0.5

Cam. # of players BS [7] DPM + LSVM [30] HOG + SVM [31] Proposed Feat.+SVM

P% R% F% P% R% F% P% R% F% P% R% F%

1. 4526 51.18 41.58 45.89 66.81 55.33 60.53 76.56 69.35 72.78 79.75 71.63 75.47

2. 4780 39.12 32.38 35.44 52.42 41.18 46.13 76.20 64.35 69.77 74.86 66.97 70.69

3. 2407 55.83 57.13 56.47 44.27 43.91 44.10 63.05 64.44 63.74 66.92 68.59 67.75

Tot. 11,713 47.58 41.02 44.05 53.83 46.03 49.63 73.28 66.30 69.61 74.89 69.10 71.87

Fig. 9 Graphical illustration of the P%, R% and F% of the methods for the overlap measure is greater than 0.5. a Camera 1 dataset. b Camera 2
dataset. c Camera 3 dataset. d Overall performances

representations. In our algorithm, instead of using the pro-
posed shape proposal we use other shape proposals for
comparison. For example, we use binary foreground mask of
an object appear after morphological operations to the binary
edge image (abbreviated with MORPH). We also compare
with theGaussian-smoothed version of the binary foreground
mask (abbreviatedwithGauss). In addition,we comparewith
the shape that appears after passing the binary foreground
mask through sigmoid function to get values between 0 and
1. This method is abbreviated with SIGD in evaluations.
These evaluations are shown in Fig. 7 for all of the datasets.
Again, we report the results with and without the HNM tech-
nique. Evaluations show that the proposed shape proposal

performs consistently better thanMORPH,Gauss and SIGD.
In particular, in Camera #1 and Camera #2 datasets, the pro-
posed method outperforms the other methods. On Camera
#3 dataset, we observe very close performances, but the pro-
posedmethod still achieves slightly better accuracy.With the
HNM, performances of MORPH, Gauss and SIGD improve
consistently, but they stay behind the performance of the pro-
posed method with the HNM on all datasets.

In Table 1, average precision values of all methods are
presented. The proposed method achieves the best accuracy
on Camera #2 dataset and performs well in Camera #1 and
#3 datasets (slightly behind the CNN), while HOG + SVM,
PSHOG and CNN methods provide competitive accuracies
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Table 4 Number of correct detections and detection rates (R%) of the methods in occlusion cases when the overlap measure is greater than 0.25

Occlusion cases # of players BS [7] DPM + LSVM [30] HOG + SVM [31] Proposed Feat. + SVM

# of Det. R% # of Det. R% # of Det. R% # of Det. R%

No Occ. 10,705 7858 73.40 8323 77.75 9601 89.68 9849 92.00

Partial Occ. 246 63 25.60 142 57.72 191 77.64 180 73.17

Heavy Occ. 762 247 32.41 305 40.03 531 69.68 532 69.98

Total 11,713 8168 69.73 8770 74.87 10323 88.13 10,561 90.16

Fig. 10 Illustration of the detection rates in occlusion cases for the overlap measure is a greater than 0.25, and b greater than 0.5

comparing to the proposed method. Among the rest of the
methods, BS performs the worst performance.

8.1.2 Precision, recall and F-score values at a single
threshold

Since we compare performances of nine different methods, it
is not feasible to assess performances of all these methods on
various thresholds. Among these methods, we selected three
of them for further analysis and comparison with the pro-
posed model. In particular, HOG+SVM, PSHOG, CNN and
the proposedmethod achieve good results and results are sim-
ilar to each other. We selected HOG+SVM for comparison.
The other method is DPM+ LSVM, which provides similar
results comparing to the selective search method. Finally, the
worst performing method, BS is selected for further analy-
sis. We present the precision, recall and F-score results at a
single threshold for the overlap area is greater than 25 and
50% separately (i.e., for overlap measure is greater than 0.25
and 0.5). The threshold value for each method is determined
experimentally on a different validation set. In this exper-
iment, results are computed without the HNM. Here, the
precision is defined as P% = (Pc/Pt ) × 100, where Pc
is the number of BB locations correctly predicted and Pt
is the total number of BB locations predicted as belonging
to player class. The recall (i.e., detection rate) is defined as
R% = (Rc/Rt ) × 100, where Rc is the number of BB loca-
tions correctly predicted and Rt is the total number of BB

locations that actually belong to the player class. The F-score
is a measure of accuracy that combines precision and recall
results as follows: F% = 2·((P%·R%)/(P%+R%)). In this
evaluation, all of the measures must be high for a method to
show that it can provide sufficient discrimination and detec-
tion. Table 2 and Fig. 8 show the precision, recall and F-score
results, obtained using each method for each camera view,
when the overlap measure is greater than 0.25. It is observed
that the proposed features with SVM performs better than
the other methods in each camera dataset. In total, 11,713
players are annotated for testing using these three camera
views. In overall, the proposed method has the highest preci-
sion, recall (i.e., detection rate) and F-score (i.e., accuracy)
as shown at the bottom of Table 2 and in Fig. 8d. The overall
accuracy of the proposed method, HOG+SVM [31], the BS
[7], and the DPM + LSVM [30] is 93.78, 92.53, 74.90 and
83.41%, respectively. The proposed method achieves better
than other methods because, in general, it can handle the
distance (i.e., players’ scales), low resolution, as well as the
occlusion problems better than the other methods.

Table 3 and Fig. 9 show the precision, recall and F-score
results, obtained using each method for each camera view,
when the overlap measure is greater than 0.5. It is again
observed that the proposed features+SVM performs better
than the other methods in each camera dataset. In total, the
proposed method has the highest precision, recall and F-
score (i.e., accuracy) as shown at the bottom of Table 3 and
in Fig. 9d. The overall accuracy of the proposed method,
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Table 5 Number of correct detections and detection rates (R%) of the methods in occlusion cases when the overlap measure is greater than 0.5

Occlusion cases # of players BS [7] DPM + LSVM [30] HOG + SVM [31] Proposed Feat. + SVM

# of Det. R% # of Det. R% # of Det. R% # of Det. R%

No Occ. 10,705 4606 43.03 6401 59.79 7292 68.12 7670 71.65

Partial Occ. 246 35 14.22 73 29.67 151 61.38 140 56.91

Heavy Occ. 762 164 21.52 218 28.61 323 42.38 284 37.27

Total 11,713 48.05 41.02 6692 57.13 7766 66.30 8094 69.10

Table 6 Average time required
for player detection per frame

Camera BS (s) [7] DPM + LSVM (s) [30] HOG + SVM (s) [31] Proposed Feat. + SVM (s)

1. 16.78 34.80 30.91 44.79

2. 18.50 35.71 31.79 42.89

3. 17.09 32.67 27.29 33.55

Fig. 11 Detection results in a frame from Camera 1 dataset (without Hard Negative Mining). a Sample Frame, b BS [7], c DPM + LSVM [30], d
HOG + SVM [31], e Proposed Features + SVM

HOG + SVM [31], the BS [7] and the DPM + LSVM [30]
is 71.87, 69.61, 44.05 and 49.63%, respectively. Therefore,
the accuracy of the methods decreases if we restrict the over-
lap area, between the detection bounding box and the ground
truth bounding box, to be greater than 50%. The reason is
that the players’ scales appear to be small in the datasets and
this makes the detection bounding boxes rather imprecise.

8.2 Occlusion statistics and evaluation

We also annotated the occluded players in our datasets with
two bounding boxes, where one of the BB denotes the vis-
ible and the other BB denotes the full player region. For
each occluded player, we compute the fraction of the occlu-
sion (i.e., one minus the visible player area divided by total
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Fig. 12 Detection results in a frame from Camera 2 dataset (without Hard Negative Mining). a Sample Frame, b BS [7], c DPM + LSVM [30], d
HOG + SVM [31], e Proposed Features + SVM

player area). Our dataset is divided into three occlusion
cases: no occlusion (0% area occluded), partial occlusion
(0–50% area occluded) and heavy occlusion (over 50% area
occluded). Overall, there are 11,713 players in our dataset,
where 10,705 players are not occluded, 246 players are par-
tially occluded and 762 players are heavily occluded. We
measure the performances of each method in different occlu-
sion cases for the overlap area is greater than 25 and 50%
separately (i.e., for overlap measure is greater than 0.25 and
0.5).

Table 4 shows the number of correct detections and the
detection rates (i.e., recall) for eachmethod in different occlu-
sion cases and in total, when the overlap area is greater than
25%. Figure 10a also shows the detection rate (i.e., recall)
for each method in different cases. It is observed that the
proposed method and the HOG+SVM [31] perform signifi-
cantly better than the BS method [7] and the DPM+ LSVM
[30] in all cases. In no occlusion case, the proposed method
detects 9849 players out of 10,705, while the HOG + SVM
[31] detects 9601 players. This means that our method can
detect 248 (2.32%) more players than the HOG+SVM [31].
In partial occlusion case, the HOG + SVM [31] detects 191
players out of 246 and the proposed method detects 180
players. In partial occlusion case, the difference between the
proposed method and the HOG + SVM [31] is 11 players

(i.e., 4.47%). In heavy occlusion case, our method and the
HOG + SVM [31] performs similarly, where our method
detects 532 players out of 762 and the HOG + SVM [31]
detects 531. In total, the proposed method can find 10561
players out of 11,713, while the HOG + SVM [31] can find
10323 players. Therefore, ourmethod detects 238more play-
ers (2.03%) than theHOG+SVM[31]. Overall, the proposed
method performs better than the other methods.

Table 5 shows the number of correct detections and
the detection rates for each method in different occlusion
cases, when the overlap area is greater than 50%. Fig-
ure 10b also shows the detection rate (i.e., recall) for each
method in different cases. It is observed that the proposed
method and the HOG + SVM [31] perform significantly
better than the other methods in all cases. In no occlu-
sion case, the proposed method detects 7670 players out
of 10,705, while the HOG + SVM [31] detects 7292 play-
ers. This means that our method can detect 378 (3.53%)
more players than the HOG + SVM [31]. In partial occlu-
sion case, the HOG + SVM [31] detects 151 players out
of 246 and the proposed method detects 140 players. In
heavy occlusion case, the HOG + SVM [31] detects 323
players out of 762 and the proposed method detects 284
players. In total, the proposed method can find 8094 play-
ers out of 11,713, while the HOG + SVM [31] can find
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Fig. 13 Detection results in a frame from Camera 3 dataset (without Hard Negative Mining). a Sample Frame, b BS [7], c DPM + LSVM [30], d
HOG + SVM [31], e Proposed Features + SVM

7766 players. Therefore, our method detects 328 more play-
ers (2.8%) than the HOG+SVM [31]. In total, the proposed
method performs better than the other methods, when the
overlap measure is greater than 0.5. The accuracy of the
methods decreases if we restrict the overlap area, between
the detection bounding box and the ground truth bound-
ing box, to be greater than 50%. As we explained before,
the reason is that players’ scales appear to be small in the
datasets and this makes the detection bounding boxes rather
imprecise.

8.3 Computational efficiency

Table 6 shows the average time required for player detection
per frame for each camera dataset. Results are obtained using
MATLAB 7 on a Windows 7 Operating System with Intel
Core i7-2670, 2.2GHz and 8GB RAM. It is observed that
the BS [7] is more efficient than the proposed method, the
HOG+SVM [31] and the DPM+LSVM [30]. Although the
proposed approach is computationally less efficient, it has
better accuracy than the other methods.

8.4 Discussions

The proposed method achieves better player detection
because, in general, it can handle the distance (i.e., players’
scales), low resolution, aswell as the occlusion problems bet-
ter than the other methods. For example, in low-resolution
cases there are missing edges of an object in the image.
Despite themissing edges, the solution of the proposed diffu-
sion equation in the detector window can fill inside the object
and preserve the shape information. Therefore, the extracted
shape features become effective. On the other hand, the HOG
features [31] are sensitive to low resolution and cannot detect
players well in this case. The DPM + LSVM [30] method
fails to detect players because it is difficult to distinguish
and describe the player body parts when the player has small
scale, lower resolution as well as large variations of body
parts. Describing the whole body shape alone is more effec-
tivewhen the object appears at small scale and low resolution.
TheBSmethod [7] also fails to detect players because of vari-
ability of lighting, weather conditions, low resolution as well
as when the players are very close or occluding each other.
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We also present a visual comparison of the proposedmethod,
the BS [7], the DPM+LSVM [30] and the HOG+SVM [31]
on frames. The comparison is done for each camera view in
Figs. 11, 12 and 13. In general, it can be seen that the pro-
posedmethod performs better than the othermethods in these
frames.

9 Conclusions

We have presented an approach for player detection with a
fixed camera based on a new feature extraction technique.
We compute a binary edge image of a given frame, and then
the detector window scans the edge regions. In each window,
we solve a particular diffusion equation to generate a shape
information image. This is the key stage and the main con-
tribution in this new algorithm. Then, the shape information
image is processed to extract scale- and rotation-invariant
features. A SVM classifier is used to label the player regions.
Our approach is evaluated on three different field hockey
datasets. Results show that the proposed feature extraction is
effective and performs competitive results compared to the
state-of-the-art methods.
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