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Abstract In this paper, we focus on tackling the problem
that one sparse base alone cannot represent the different
content of the image well in the image reconstruction for
compressed sensing, and the same sampling rate is difficult
to ensure the precise reconstruction for the different content
of the image. To address this challenge, this paper proposed
a novel approach that utilized two sparse bases for the rep-
resentation of image. Moreover, in order to achieve better
reconstruction result, the adaptive sampling has been used
in the sampling process. Firstly, DCT and a double-density
dual-tree complex wavelet transform were utilized as two
different sparse bases to represent the image alternatively
in a smoothed projected Landweber reconstruction algo-
rithm. Secondly, different sampling rates were adopted for
the reconstruction of different image blocks after segmenting
the entire image. Experimental results demonstrated that the
images reconstructed with the two bases were largely supe-
rior to that reconstructed with a single base, and the PSNR
could be improved further after using the adaptive sampling.
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1 Introduction

Traditional signal processing methods need to sample the
original signals according to the Nyquist Theorem for facil-
itating subsequent signal sample processing. When majority
of the information is unnecessary, such traditional sampling
methodwouldwastemuch time and storage space. Therefore,
it is particularly necessary to develop a new methodology
for signal acquisition as widely used in various image analy-
sis applications [1–5]. Recently, compressed sensing (CS)
[6,7] has received more and more attention for that CS
can achieve sampling and compression simultaneously while
greatly reducing the sampling rate and storage space of dig-
ital signal acquisitions.

In CS research field, the precise reconstruction plays a
critical role in the practical applications.Generally, the recon-
struction of CS can be formulated as a non-convex l0 norm
problem, which is an NP-hard problem. Thus, the most com-
mon solution is to convert it into a l1 norm problem [8] that
could be solved by using some convex optimization algo-
rithms. As for image reconstruction, prior knowledge of the
image is exploited as the constraints for solving the l1 norm
problem, which could be solved with some optimization
algorithms, such as the interior points method [9], alter-
nate projections onto convex sets (POCS) [10], the iterative
shrinkage thresholding algorithm [11], iteratively reweighted
algorithms [12]. Among the optimization methods, the con-
straint condition is a key factor that affects the reconstruction
precision. Thus far, the sparse representation of image has
been commonly used as constraint, because a suitable sparse
base could fully represent the image and ensure a high-quality
reconstruction.

Currently, although the orthogonalwavelet base is popular
for the image reconstruction of CS, it has obvious short-
comings. It lacks significant directional selectivity and the
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146 H. Li et al.

shift invariance which renders it unable to fully represent
the image textures, profiles, and some geometrical features.
Therefore, the orthogonal wavelet base is not the best choice.
Rauhut et al. [13] has proved that redundant dictionaries
could be utilized for image reconstruction. The main distinc-
tion is that Rauhut used an over-complete dictionary for the
selection of atoms which results in the chosen atoms match-
ing the image contents more accurately. Meanwhile, Mun
et al. [15] employed the framework of block compressed
sensing (BCS) [14] to reconstruct the images and also used
different directional wavelets to characterize the image. In
addition, the bivariate shrinkage algorithm [16,17] was uti-
lized in the multi-scale decomposition structure fashion to
provide the sparsity constraints. In the work of [18], the Ban-
dlet dictionary was treated as the sparse base.

Inspired by Mun’s work, the major contributions of our
paper can be summarized as follows: (1) Taking advantage of
two transforms, the 2-D discrete cosine transform (DCT) and
the 2-D double-density dual-tree complex discrete wavelet
transform (DDDTCWT) [19], to represent the image alter-
nately, which could better characterize the image compared
with only single sparse transformation. (2) In order to achieve
a high precision reconstruction, the adaptive sampling was
integrated into the measurement for acquiring the specific
information of different parts of image.

The remainder of this paper is organized as follows. In
Sect. 2, a brief description is presented for the selected
sparse bases. Then, the specific reconstruction is described
in Sect. 3. The experimental results are shown and discussed
in Sect. 4, and the conclusion is then presented in Sect. 5.

2 Sparse bases selection

As is known, different sparse bases could be used to repre-
sent different content of the image. In this paper, to better
characterize the image, two bases were adopted to represent
the texture and the edges in the image, respectively. Thus,
the sparse representation with two sparse bases could be the
constraint conditions in the image reconstruction.

Firstly, for the representation of image containing abun-
dant texture information, the commonly used reversible
transforms have mainly included DCT and wavelet atoms
[20]. However, the spatial locality of wavelet atoms is very
limited and its basis function has obviouswake phenomenon,
which results in the artifact in reconstruction [21]. Conse-
quently, the 2-DDCTwas exploited to represent the texture of
image in this paper. On the other hand, the DDDTCWT was
adopted as the sparse base for the image edges representation.
In particular, the DDDTCWT is a kind of DWT that com-
bines the dual-tree DWT and the double-density DWT, and it
apparently holds the characteristics and advantages of these

Fig. 1 Decomposition of an image based on the 2-D double-density
dual-tree real DWT

two types of wavelets [22]. The principle of DDDTCWT is
described briefly below.

The DDDTCWT presented in this paper is based on two
scaling functions φh(t), φg(t), four distinct waveletsψh,i (t),
ψg,i (t)(i = 1, 2), and the wavelets satisfy the following
rules:

ψh,1(t) ≈ ψh,2(t − 0.5) (1)

ψg,1(t) ≈ ψg,2(t − 0.5) (2)

ψg,1(t) ≈ H
{
ψh,1(t)

}
(3)

ψg,2(t) ≈ H
{
ψh,2(t)

}
(4)

where H represents the Hilbert transform. It can be seen that
the two wavelets ψh,i (t) are offset from one to another by
half, and the wavelets ψg,i (t) and ψh,i (t) form an approx-
imate Hilbert transform pair. As the specific filter design
procedure for the DDDTCWT described in [19], the empha-
sis would be put on the description of the process using the
DDDTCWT for image decomposition and reconstruction.
Figure 1 shows the decomposition of an image based on the
2-D double-density dual-tree real DWT.

In Fig. 1, h0(g0), h1(g1) and h2(g2) indicate a low-pass
filter, a first-order high-pass filter and a second-order high-
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Clock                   Home               Bookcase              Temple               Zebra 

Cat                Pepper                    House             Deer                  Cup 

Furniture                Plant                Red House           Flower House             Rose 

Corner                Panda 

Lena                  Barbara              Goldhill               Curtain                Bird 

Fig. 2 Images used in the experiments

pass filter, respectively. The 2-D double-density dual-tree
real DWT of an image is implemented by using two over-
sampled 2-D double-density DWTs in parallel. Similarly, the
DDDTCWT of the input image is implemented by four 2-D
double-densityDWTs in parallel. Thus, it can produce 32 ori-
ented wavelets and lead to a more precise representation for

the image than traditional transforms. The primary proper-
ties of theDDDTCWT include: approximate shift invariance,
directional selectivity, a redundancy of 4:1 along with invari-
ance to different scales of the transform, and a similarity to a
continuouswavelet transform.Obviously, all these properties
are instrumental to the image reconstruction of CS.
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Fig. 3 Image Lenna, Barbara,
and Curtain reconstruction with
a fixed sampling rate. a DCT, b
DWT, c DDWT, d CT, e
DDDTCWT, f
DCT-DDDTCWT

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)
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Fig. 3 continued

(d) (e) (f)

Table 1 PSNR performance of gray images based on different sparse
bases

Sampling rate 0.1 0.2 0.3 0.4 0.5

Lena

DCT 27.70 30.43 32.46 34.16 35.74

DWT 27.58 30.79 32.88 34.64 36.22

DDWT 28.06 31.15 33.25 35.10 36.64

CT 28.09 30.93 32.90 34.62 36.21

DDDTCWT 28.21 31.43 33.49 35.22 36.84

DCT-DDDTCWT 28.81 31.66 33.68 35.45 37.04

Barbara

DCT 22.74 24.38 25.92 27.40 29.02

DWT 22.37 23.17 25.08 27.33 28.13

DDWT 22.59 24.25 25.69 27.07 28.72

CT 22.70 24.29 25.84 27.52 29.30

DDDTCWT 22.72 24.30 25.74 27.29 28.81

DCT-DDDTCWT 23.08 24.86 26.31 27.92 29.84

Goldhill

DCT 26.16 28.32 29.46 31.24 32.56

DWT 26.74 28.47 30.21 31.00 32.94

DDWT 26.91 28.82 30.34 31.64 33.05

CT 26.79 28.87 30.47 31.89 33.25

DDDTCWT 26.93 28.91 30.45 31.76 33.11

DCT-DDDTCWT 27.02 29.01 30.57 31.95 33.47

Bird

DCT 24.94 27.45 29.16 30.64 32.17

DWT 25.12 27.59 29.73 31.67 33.52

DDWT 25.31 27.80 29.66 31.31 32.94

CT 25.61 27.97 29.77 31.37 32.95

DDDTCWT 25.26 27.72 29.6 31.28 32.95

DCT-DDDTCWT 25.7 28.01 29.9 31.59 33.17

Clock

DCT 24.71 28.03 30.36 32.56 34.55

DWT 24.50 27.71 30.98 34.11 37.12

DDWT 24.77 28.67 31.57 33.93 36.16

CT 25.32 28.57 30.95 33.10 35.09

DDDTCWT 24.90 28.77 31.58 33.94 36.14

DCT-DDDTCWT 25.94 29.43 32.10 34.36 36.49

Table 1 continued

Sampling rate 0.1 0.2 0.3 0.4 0.5

Curtain

DCT 26.42 29.65 32.06 34.07 35.92

DWT 26.83 30.14 32.9 35.44 37.92

DDWT 26.62 30.44 32.88 34.92 36.84

CT 26.91 30.23 32.52 34.45 36.31

DDDTCWT 27.09 30.7 33.08 35.14 37.09

DCT-DDDTCWT 27.81 31.3 33.71 35.76 37.69

3 Image reconstruction

In the CS reconstruction, the model under the constraint con-
dition of a signal’s sparsity can be described as follows:

min ||�Hx ||l1 s.t �x = y (5)

where x ∈ RN×1 represents a discrete-time signal, � ∈
RN×N indicates the selected sparse base, y denotes the mea-
sured signal with a dimension of M × 1, � ∈ RM×N is
the measurement matrix which satisfies the RIP and can be
obtained by random generation method [23]. In addition, the
value of M/N is the sampling rate of CS. Herein, two sparse
bases have been exploited to represent the image alternately,
and the model can be described as:

min ||�H
i x ||l1 s.t �x = y (6)

where i = 1, 2, �1 and �2 indicate DCT and DDDTCWT,
respectively. In order to use the framework of BCS and the
smoothed projected Landweber reconstruction (SPL) algo-
rithm for solving this question, � is constructed by �B , and
�B is the measurement matrix for each image block after
the segmentation. Concretely, the core of this paper’s recon-
struction method will be presented in the next two parts: the
reconstruction algorithm based on DCT and DDDTCWT,
the entire reconstruction process integrated with the adap-
tive sampling.
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Fig. 4 Image Rose, Plant
reconstruction with a fixed
sampling rate. a DCT, b DWT, c
DDWT, d CT, e DDDTCWT, f
DCT-DDDTCWT

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(f)(e)(d)

3.1 The reconstruction algorithm based on DCT and
DDDTCWT

To solve Eq. (5), Gan [14] and Mun [15] proposed the SPL
algorithm which has been used widely. The algorithm starts
from an approximative image, which is obtained from the
measured vectors and corrupted by noises initially; then, the
corrupted image is optimized by the iterative projecting and
the thresholding to get the optimal image. In particular, the

optimization process can be summarized: Initially project
the vectors gained from the last iteration onto a convex set to
obtain the new vectors; then, arrange the new vectors to form
a new image; finally, apply the thresholding based on a sparse
base to get the optimal results. Obviously, it can be seen that
the projection and the thresholding are very important for
the reconstruction. However, the thresholding has a close
relationship with the used sparse base. Thus, the used sparse
base is a key factor for the reconstruction of CS. The work of
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Table 2 PSNR performance of color images based on different sparse
bases

Sampling rate 0.1 0.2 0.3 0.4 0.5

Rose

DCT 29.00 32.17 34.38 36.23 37.89

DWT 26.54 32.05 34.74 36.81 38.62

DDWT 29.32 33.15 35.55 37.54 39.33

CT 29.48 32.73 34.99 36.89 38.59

DDDTCWT 29.32 33.06 35.44 37.42 39.22

DCT-DDDTCWT 30.03 33.42 35.73 37.65 39.39

Plant

DCT 22.46 24.24 25.60 26.94 28.41

DWT 19.13 22.67 25.00 26.31 27.94

DDWT 21.49 24.13 25.95 27.56 29.23

CT 22.25 24.42 25.94 27.30 28.80

DDDTCWT 21.50 24.22 26.05 27.60 29.26

DCT-DDDTCWT 22.99 24.86 26.44 27.96 29.60

Panda

DCT 23.51 26.17 28.10 30.01 31.90

DWT 20.06 24.37 28.17 30.35 32.14

DDWT 23.23 29.97 29.08 30.99 32.76

CT 23.61 26.63 28.58 30.42 32.17

DDDTCWT 23.47 26.74 28.70 30.48 32.18

DCT-DDDTCWT 24.34 27.01 28.89 30.64 32.31

[15] has proved that the SPL algorithm can solve Eq. (5) with
single sparse base. Considering the complexity of images,
an effort was made to embed DCT and DDDTCWT into
the SPL algorithm synchronously for solving Eq. (6). Thus,
the thresholding will be performed in both DCT domain and
DDDTCWT domain alternately to get the optimal results.

In addition, it is needed to segment the entire image into
many image blocks before the sampling for fast processing
and memory saving. Thus, the dimension of measurement
matrix�B which satisfies the RIP similarly shouldmatch the
dimension of each image block. The algorithm is described
below.
Input The M×B2 measurement matrix for each image block
whose dimension is B × B is designated as �B , it satisfies
�T

B · �B = I and can be obtained by the random genera-
tion method as described in [15]. The vector obtained from
a image measurement by arranging all of its elements into a
column is designated as yi , i = 1, 2, . . . , L2/(B×B), L×L
is the original image’s dimension. The convergence thresh-
old to stop the iterations is designated as ε. The number of
maximum iterations allowed is designated as jmax.
Initialization Compute x̃i = �+

B · yi for each image block,
then, convert and combine each vector x̃i to construct an
initial image x0. Additionally, set the iteration time j = 0;
Repetitions Iterate on the j th time.

(1) Divide the image x1 obtained from the latest iteration
into a set of non-overlapping image blocks xi . Convert
each xi into a 1-dimensional vector x ′

i , and calculate the
optimized vector x ′′

i as x
′′
i = x ′

i +�T
B(yi −�Bx ′

i ). Then,
generate the image x2 by combining all the optimized
vectors.

(2) Use DCT to transform image x2, yielding f and pro-
cessing it with a hard threshold. After that, the inverse
DCT is applied to generate image x3 for the next step.

(3) Optimize the image x3 to obtain a new image x4. Note
that the detailed optimization procedure is same as Step
(1).

(4) Use DDDTCWT to decompose image x4 and yield
coefficient f1. Then, implement the thresholding, and
obtain image x5 through the inverse DDDTCWT. This
process seems very similar to Step (2) at first glance,
nevertheless, there existing differences in terms of the
thresholding. The bivariate shrinkage is adopted in
the thresholding for f1 as it can exploit the statis-
tical dependency between the transform coefficients
and their corresponding parents’ coefficients (the upper
level coefficients) and is more appropriate for the
directional transforms. Specifically, the bivariate shrink-
age is performed in the DDDTCWT domain, which
is almost identical to the application in the dual-tree
DWT (DDWT) domain, except that more sub-bands are
needed to be handled.

(5) Remove the blocking artifacts of image x5 by using the
Wiener filter. The image x6 is the result after filtering.

(6) Calculate E j = 1√
N

‖x6 − x1‖2 and determine whether
∣∣E j − E j−1

∣∣ < ε or j > jmax is satisfied. Here, E j−1

represents the MSE between x6 and x1, which is calcu-
lated in the ( j−1)th iteration. If the condition is met, the
optimization will stop, otherwise, designate j = j + 1
and enter the next iteration.

Output The reconstructed image xrec = x6.
Obviously, the improvement in the SPL algorithm of this

paper just change the sparse bases and does not change the
essence of the algorithm (the projection method); thus, the
algorithm of this paper can realize the image reconstruction
at the preliminary analysis. The specific experimental vali-
dation is displayed in the next section.

3.2 The entire reconstruction process integrated with
the adaptive sampling

It is known that the smoother the imageblock is, the greater its
sparsity is. Generally, only a small amount of measurement
information is required to achieve a precise reconstruction.
On the contrary, a larger amount ofmeasurement information
would be needed for the reconstruction of an image block
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Fig. 5 Image Lena, Zebra,
Temple, and Bookcase
reconstruction utilizing different
methods. a DCT-DDDTCWT, b
adaptive-TV, c this paper’s
methodology

(a)         (b)               (c) 

(a)         (b)               (c) 

(a)         (b)               (c) 

(a)         (b)               (c) 

with rich detail information. Thus, it can give a revelation
whether the image can be reconstructed in the different sam-
pling rates. For the smooth part of the image, a low dimension
matrix can be used to measure it, while a high dimension
matrix can be used to measure the non-smooth part of the
image. If there is just one measurement matrix is used in the
reconstruction, the sampling rate is difficult to set. The low
sampling rate will lower the overall reconstruction precision,

while the higher sampling rate will be not very necessary for
the reconstruction of the smooth part in image. Thus, in this
way, it is easy to balance the reconstruction precision and
can make both the smooth part and the non-smooth part of
the image achieve a higher reconstruction precision theoret-
ically.

However, there exists one question: how to distinguish
the image’s smooth and non-smooth part? It is known the
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Table 3 PSNR performance of gray image utilizing different methods

Method Image 0.1 0.2 0.3 0.4 Image 0.1 0.2 0.3 0.4

DCT-DDDTCWT Lena 28.81 31.66 33.68 35.45 Barbara 23.08 24.69 26.16 27.75

Adaptive-TV 28.57 31.50 33.75 35.68 22.62 23.99 25.32 26.70

Our method 29.64 32.87 35.04 36.80 23.44 25.59 27.52 29.21

DCT-DDDTCWT Pepper 29.19 32.03 33.74 35.10 Zebra 20.50 23.85 26.6 29.03

Adaptive-TV 28.77 32.04 33.93 35.38 20.49 24.28 27.05 29.55

Our method 29.95 32.60 34.20 35.50 21.6 25.48 28.46 31.01

DCT-DDDTCWT Home 26.84 29.81 31.92 33.70 Temple 24.98 27.78 29.85 31.78

Adaptive-TV 27.08 30.15 32.25 34.02 26.02 29.32 32.08 34.64

Our method 27.92 30.84 32.89 34.63 26.19 29.43 32.07 34.65

DCT-DDDTCWT Cat 27.36 30.31 32.48 34.51 Bookcase 24.79 27.87 30.13 32.12

Adaptive-TV 27.18 30.70 32.81 35.35 25.29 28.64 31.37 33.91

Our method 28.49 31.90 34.56 37.18 25.93 29.30 31.79 34.08

image is needed to be segmented in the reconstruction as
mentioned before, thus considering these factors comprehen-
sively the block-based sampling approach can be adopted.
That means, the image can be divided into many blocks
firstly; then, classify all the blocks into two types according
to their smoothness; lastly, use different matrixes to measure
and reconstruct the blocks.

In particular, the classification principle is based on the
variance of image blocks [24]. The threshold T is designated
as T = p · (σ 2

max − σ 2
min) + σ 2

min, where σmax and σmin

indicate the maximum and minimum value of all blocks’
variance, respectively, and p is an adjustable parameter. The
two measurement matrices designed for the smooth blocks
and the non-smooth blocks are �Bl and �Bh , respectively.
The method of generating �Bl and �Bh is same as that of
generating �B , and the process to make sure the dimension
of �Bl and �Bh is described below.

Firstly, the sampling rate for smooth blocks is defined as
s1, and the other sampling rate for non-smooth blocks is s2.
If s is the average sampling rate for the entire image, it will
satisfy n0s = n1s1+n2s2, n0 is the total number of all blocks,
n1 is the number of smooth blocks, n2 is the number of non-
smooth blocks. Then, make sure n1 and n2 by adjusting the
parameter p. Obviously, if s, n0, n1, n2 are known, it is easy
to find the range of s1 and s2. (In this paper, make s2 = 2s1
and n1 = n2 for determining s1 and s2 easily.) If s1 and s2 are
known, the dimension of �Bl and �Bh will be made sure.

After obtaining �Bl and �Bh , the specific information
of the original image can be acquired. Then, the algorithm
described in Sect. 3 is employed to reconstruct the image.
However, it should be noted that the optimization process is
not identical to that mentioned above. The difference is pri-
marily in the initialization, in both Steps (1) and (3), where
�B is replaced by �Bl and �Bh in each iteration. The same

implementation occurs in the other steps, so it will not take
too much description here. The specific experimental evalu-
ation is provided in the next section.

4 Experiments

Several experimentswere performed to evaluate the proposed
method. These experiments could be divided into two classes
based on whether the adaptive sampling was integrated into
the reconstruction or not. In addition, all the random mea-
surement matrices selected were orthonormal in this paper,
the stopping parameter was set as ε = 0.001, and the dimen-
sion of all the experiment images was 512 × 512. Figure 2
shows all the images used in the experiments.

4.1 The first experiment

In order to evaluate the impact of different sparse bases
for reconstruction, DCT, DWT, DDWT, CT, DDDTCWT
were deployed, along with the combination of DCT and
DDDTCWT (DCT-DDDTCWT) in the reconstruction. Fur-
ther, this experiment was divided into two groups according
to the type of images. In the first group, some gray images
were reconstructed, and the color images were reconstructed
in the second group. Specifically, for the reconstruction of
color image, the image was decomposed into three channels
(R, G, B) firstly, secondly the image was reconstructed in
different channels, and lastly the reconstructed results were
combined into one image.

Figure 3 illustrates the visual reconstruction results for the
gray images: Lena, Barbara, and Curtain, and the sampling
rates of different images are 0.1, 0.2, 0.2, respectively. As
can be seen, the blocking artifacts are apparent in the images
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Fig. 6 Images Deer, Furniture,
Plant, and House reconstruction
utilizing different methods. a
DCT-DDDTCWT, b
adaptive-TV, c this paper’s
methodology

obtained by the BCS and the iterative projection algorithms
along with DCT, DWT, and CT, even though the Wiener fil-
tering has been applied in the process. On the other hand, the
results obtained by integrating DDWT or DDDTCWT could
eliminate theblocking artifacts efficiently andprovide a supe-
rior visual effect. However, the reconstruction images based
on DDDTCWT become too smooth, and the texture part of
these images becomes blurry. The algorithm described in
Sect. 3 achieves a better performance compared to the former.

Thus, the results demonstrate that the proposed algorithm can
reconstruct the texture and edges of image synthetically. In
addition, Table 1 shows the PSNR of different reconstruction
images at different sampling rates ranging from 0.1 to 0.5.
In this table, the maximum value for each set of comparison
results is bolded. It is evident that the algorithm combined
with DCT and DDDTCWT simultaneously is competitive in
the image reconstruction.
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Table 4 PSNR performance of color image utilizing different methods

Method Image 0.1 0.2 0.3 0.4 Image 0.1 0.2 0.3 0.4

DCT-DDDTCWT Red House 20.70 23.31 25.09 26.67 FlowerHouse 21.80 24.05 25.71 27.26

Adaptive-TV 20.89 23.78 25.92 27.73 21.94 24.56 26.67 28.49

Our method 21.69 24.42 26.23 27.73 22.43 24.74 26.50 28.02

DCT-DDDTCWT House 23.88 26.47 28.38 30.09 Cup 27.01 30.29 32.87 35.31

Adaptive-TV 23.99 26.89 29.11 31.12 28.22 31.87 34.92 37.57

Our method 24.71 27.37 29.34 31.10 28.42 32.20 35.37 38.21

DCT-DDDTCWT Corner 26.94 30.04 32.45 34.57 Furniture 24.94 26.87 28.38 29.86

Adaptive-TV 27.64 31.01 33.65 35.87 24.91 27.31 29.50 31.42

Our method 27.92 31.14 33.65 35.89 25.84 28.20 29.94 31.40

DCT-DDDTCWT Panda 24.34 27.01 28.89 30.64 Rose 30.03 33.42 35.73 37.65

Adaptive-TV 24.53 27.55 30.10 32.43 30.51 34.00 36.44 38.54

Our method 25.29 28.15 29.33 32.36 30.82 34.74 37.14 39.15

DCT-DDDTCWT Plant 22.99 24.86 26.44 27.96 Deer 24.19 26.53 25.29 29.82

Adaptive-TV 23.33 25.57 27.55 29.70 23.93 26.44 28.41 30.35

Our method 23.67 25.97 28.09 30.49 24.82 27.31 29.37 31.33

Figure 4 illustrates the visual reconstruction results for
the color images: Rose, Plant. The sampling rates of differ-
ent images are 0.1, 0.2, respectively. Obviously, the images
reconstructed by the first five kinds of sparse bases contain
more noise. Especially when the sparse base is DWT, the
reconstruction results are very poor. Table 2 shows the PSNR
of different reconstruction images at different sampling rates
ranging from 0.1 to 0.5. In this table, the maximum value for
each set of comparison results is also bolded as inTable 1. The
results are similar to that of the gray images, the algorithm
integrated with DCT and DDDTCWT can raise the PSNR
further, especially when the sampling rate is relatively low.

Therefore, all the results of the first experiment have
proved that the algorithm of this paper is very competitive in
the reconstruction of both the gray images and color images,
especially for the content-rich image reconstruction.

4.2 The second experiment

In this experiment, this paper’s method based on the adap-
tive sampling and the joint sparse bases was compared with
the method mentioned in the first experiment. Meanwhile,
another approach known as “adaptive-TV” was also added
to the comparison, which means the iterative projection
algorithm was replaced by the minimum TV optimization
algorithm in Candes’s work [25]. In addition, this experiment
was also divided into two groups: the gray image reconstruc-
tion and the color image reconstruction.

When the sampling rate is 0.2, the experimental results
are displayed in Fig. 5. It is noted that the blocking artifacts
are extremely severe in Fig. 5b, because the optimization is
performed on each image block separately and the smooth-

ing is not added to the reconstruction process, even though
the adaptive sampling has been utilized. Further, compar-
ing the results obtained from the other two methods, it can
be seen that the reconstruction precision is improved after
using the adaptive sampling, and the most distinct improve-
ment is that the texture part of each image is clearer. Table
3 provides the objective evaluation of reconstruction for the
three methods. Likewise, the maximum value in each set of
comparison results is also bolded. Obviously, the results are
consistent with the visual results. The PSNR of image recon-
structed by this paper’s method could be increased by 2.3dB,
compared with the PSNR of image reconstructed based on
“adaptive-TV”. Furthermore, comparing the results of this
paper’s method with that of the method integrated with a
fixed sampling, the adaptive sampling can improve the PSNR
of image about 1dB effectively. Thus, it illustrates that the
adaptive sampling is conducive to the reconstruction of a
higher-quality gray image.

Figure 6 illustrates the visual reconstruction results for
the color images: Deer, Furniture, Plant, and House. The
sampling rates for different images are 0.1, 0.2, 0.2, 0.2.
Obviously, Fig. 6c is clearer than Fig. 6a, b in each image
group, the blocking artifacts are extremely severe in Fig. 6b,
and the reconstruction results are similar to that of the gray
images. In addition, Table 4 displays the objective evaluation
and the significance of the bold font in this table is same as the
previous tables. Clearly, this paper’s method can increase the
PSNR of color image by about 1dB on average, compared
with the PSNR of image reconstructed by “adaptive-TV”.
Therefore, the paper’s method is effective for the reconstruc-
tion of gray images and color images, and it is the most
competitive in the three methods.
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5 Conclusion

Considering the influences of different sparse bases and the
adaptive sampling for image reconstruction in CS, this paper
has proposed a new reconstruction method employing the
adaptive sampling and an SPL algorithm integrated with
DCT and DDDTCWT simultaneously. Experimental results
show that, inmost cases, the optimization algorithm based on
DCT andDDDTCWT performs better than that based on one
sparse base alone. Moreover, the reconstruction integrated
with the adaptive sampling mentioned above can lead to the
higher-quality image reconstruction. However, there remain
many issues regarding this paper’smethod to be studied in the
future. One example would be how to optimize the adaptive
sampling further to improve the reconstruction precision.
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