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Abstract This paper surveys zoom-lens calibration
approaches, such as pattern-based calibration, self-calibration,
and hybrid (or semiautomatic) calibration. We describe the
characteristics and applications of various calibration meth-
ods employed in zoom-lens calibration and offer a novel
classification model for zoom-lens calibration approaches in
both single and stereo cameras. We elaborate on these cal-
ibration techniques to discuss their common characteristics
and attributes. Finally, we present a comparative analysis of
zoom-lens calibration approaches, highlighting the advan-
tages and disadvantages of each approach. Furthermore, we
compare the linear and nonlinear camera models proposed
for zoom-lens calibration and enlist the different techniques
used to model the camera’s parameters for zoom (or focus)
settings.

Keywords Active vision · Camera calibration ·
Self-calibration · Zoom lens · Zoom-dependent calibration

1 Introduction

Camera calibration is a prerequisite for 3D computer vision
because cameras must be calibrated for 3D reconstruction.
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Calibration aims at determining the intrinsic and extrinsic
parameters of cameras or a subset of these parameters. It is
generally categorized into four types [1]:

• Standard calibration
• Self-calibration
• Photometric calibration
• Stereo-setup calibration

Standard calibration methods employ a special calibra-
tion object with known dimensions and positions in a certain
coordinate system. Self-calibration involves estimating the
camera’s parameters using image sequences from multiple
perspectives or views and does not require any special cali-
bration pattern. Both methods allow for scene reconstruction
up to a certain scaling factor [1].

Conventional calibration techniques are used to calibrate
a fixed-parameter lens for 3D reconstruction.Withmotorized
zoom lenses, a stereo camera can adjust itself to objects of
different sizes at different distances under various imaging
conditions. Moreover, stereo cameras can measure the prop-
erties of a scene using information from the dynamics of the
camera’s parameters with variable zoom [2]. A motorized
zoom lens is inherently more useful than a fixed-parameter
lens owing to its applications in active stereo vision [3], 3D
reconstruction [4], and visual tracking [5]. Modern zoom
lenses are more versatile than manual focus prime lenses and
have auto-focus and automatic aperture adjustment capabil-
ities [6]. These lenses use computer-controlled motors, such
as servos, to position the lenses to adjust the zoom, focus,
and aperture.

Zoom-dependent (or zoom-lens) calibration can be
regarded as a combination of static-camera calibrations for a
zoom range with a fixed focus [2]. Standard methods require
special calibration patterns that are difficult to build because
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Fig. 1 Some characteristics and applications of calibration methods

of various imaging conditions in zoom-lens calibration. As
a result, some researchers prefer a self-calibration method
to calibrate zoom-lens cameras. Given the several types of
camera motions involved in self-calibration, users cannot
estimate the camera’s parameters precisely, resulting in the
degeneracy of a Euclidean reconstruction (also known as a
critical motion sequence) [7,8]. Owing to the susceptibil-
ity of self-calibration methods to errors due to inaccurate
determination of the conic images [9,10], hybrid approaches
for zoom-lens calibration were proposed by Oh et al. [11]
and Sturm [12]. Zoom-lens calibration can be categorized
into three approaches: pattern-based calibration [13], self-
calibration [14], and hybrid (or semiautomatic) calibration
[11]. The challenges in zoom-lens calibration are mainly due
to variations in the camera’s zoom parameters and because a
simple pinhole cameramodel cannot represent the entire lens
settings [1]. In the present study, we focus on the description

and analysis of the three types of calibrationmethods, namely
standard calibration, self-calibration, and hybrid calibration.
Owing to the known relationship between single camera and
stereo camera calibration in literature, we did not explain the
stereo-setup calibration separately. However, the description
and analysis of the photometric calibration are outside the
scope of the present study. Fig. 1 shows some characteristics
and applications for each calibration method. The scope of
these characteristics is extended and explained as follows:

– Standard method These methods require specially pre-
pared calibration objects with known dimensions and
position in a certain coordinate system and prominent
features of the calibration object, which may be easily
and unambiguously localized and measured. Therefore,
this methodmay yield high accuracy [1]. The approaches
of zoom-lens calibration based on standard method
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comprise linear and nonlinear methods. For nonlinear
approaches, the initial solution is needed, which is pro-
vided by the closed form solution of a least square-based
linear approach [15].

– Hybrid method [11] This method does not require any
special 3D calibration object (with known dimension
and position). Accurate 3D reconstruction is the char-
acteristic of the hybrid method. Given the prominent
features of the calibration object, which may be eas-
ily and unambiguously localized and measured, this
method may yield high calibration accuracy and accu-
rate 3D reconstruction. The hybrid approach is declared
as a balanced approach because it consists of a calibra-
tion grid and utilizes self-calibration. Indeed, the hybrid
method is better than self-calibration in terms of calibra-
tion accuracy; thus, accurate 3D reconstruction may be
accomplished.

– Self-calibration Self-calibration involves estimating the
camera’s parameters using images from multiple views
and does not require any special calibration target [1].
The attribute of the calibration pattern does not neces-
sarily apply to self-calibration (see Sect. 2). For several
types of camera motion involved in self-calibration, the
user cannot estimate the camera parameters precisely,
resulting in the degeneracy of the Euclidean reconstruc-
tion (critical motion) [7,8]. The conic images are not
accurately determined and self-calibration becomes sus-
ceptible to errors [9,10].Given that the accuracyof the 3D
reconstruction is directly proportional to the calibration
accuracy, we can conclude that self-calibration methods
yield less accurate 3D reconstruction than that of stan-
dard and hybrid methods (see Fig. 1). Self-calibration
approaches may consist of linear or a combination of lin-
ear and nonlinearmethods [12,14,16–18]. In [14,17], the
solution from linear approach was utilized as the initial
solution for nonlinear optimization.

This study discusses the three approaches to zoom-camera
calibration with a focus on utilizing the relationship between
the camera’s parameters and zoom range for 3D reconstruc-
tion and augmented reality. Furthermore, the advantages and
disadvantages of various zoom-lens calibration approaches
are described, and the calibration methods are compared
under each approach. The paper is structured as follows:
Sect. 2 describes the classification of zoom-lens calibration
approaches. The zoom-lens calibration approaches based on
the standard method are described in Sect. 3, and those
based on self-calibration are described in Sect. 4. Section 5
describes the zoom-lens calibration approach that has the
characteristics of a hybrid method. Section 6 provides a dis-
cussion and comparative analysis of the above-mentioned
approaches, and Sect. 7 concludes the discussion and com-
parison of these approaches.

2 Classification

Zoom-lens calibration involves determining the camera’s
parameters for different lens settings. Moreover, calibra-
tion includes a model for the nonlinear relationship between
the camera’s parameters and its lens settings. Ample lit-
erature exists on fixed-parameter lens calibration [19–30],
and surveys are available in [31,32]. For zoom-lens cali-
bration, specific reviews can be found in [33,34]; however,
these reviews focus exclusively on a comparative analysis
of the self-calibration-based methods and techniques used
for zoom-lens calibration [35–39]. We have not found any
previous survey concurrently comparing all approaches to
zoom-lens calibration. Hence, a new classification of the
approaches to zoom-lens calibrationwas generated, as shown
in Table 1. The common characteristics in all three cate-
gories, including the calibration approach, hardware type,
variable parameters, parametric-formulation approach, dis-
tortion model for the lens settings, calibration pattern, and
system hardware are also shown in Table 1. Given the lack
of requirement for any special calibration objects in self-
calibration [40], the attribute for the calibration pattern does
not necessarily apply to this category. The focus of this study
is to investigate the modeling of the intrinsic and extrinsic
parameters of a camera and their variation with the zoom
or lens settings. The attributes mentioned in Table 1 are
described as follows:

• Approach for calibration: describes the calibrationmethod
used for finding the intrinsic and extrinsic parameters,
either for single or stereo camera.

• Hardware type: refers to the hardware of the optical sys-
tem, andwhether it is a single or stereo camera. InTable 1,
single cameras are denoted by “1” and stereo cameras (or
multiview stereo cameras) are denoted by “2.”

• Variable parameters: The parameters that display sig-
nificant variance with a change in the zoom or lens
settings.

• Approach for parametric formulation: depicts themethod
used for capturing the nonlinear relationship between the
camera’s parameters and the lens settings.

• Distortion model for lens settings: refers to a different
set of either radial or tangential-distortion parameters or
both of them that are assumed to vary with the lens or
zoom settings.

• Calibration pattern: describes the calibration target used
under different zoom-lens approaches.Thus, this attribute
does not apply to approaches based on self-calibration.

• Zooming hardware: refers to system hardware respon-
sible for the zoom lens-i.e., a consumer zoom cam-
era or a camera mounted with an external zoom lens
[2].
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Fig. 2 Perspective projection of a camera with different coordinate systems

3 Standard calibration method

To describe and discuss each calibration approach (men-
tioned in Table 1) in Sect. 6, we present the basic camera
model for pattern-based calibration in this section and the
self-calibration in Sect. 4, with some common notations and
equations.

The transformation that deals with the projection of a 3D
point on an image plane is called a perspective transformation
[41]. Different coordinate systems are depicted in Fig. 2. The
relationship between the camera coordinates (Xc,Yc, Zc)

and the coordinates of the image (ui , vi ) is expressed mathe-
matically in matrix “A,” where “s” denotes the scaling factor.

⎡
⎣
sui
svi
s

⎤
⎦ = [A]

⎡
⎢⎢⎣

Xc

Yc
Zc

1

⎤
⎥⎥⎦ (1)

Thematrices “Me” and “Mi” represent the transformation
between the camera coordinates and the world coordinates
(Xw,Yw, Zw), and the image coordinates and pixel coordi-
nates (u p, vp), respectively. The equations governing these
transformations are as follows:
⎡
⎢⎢⎣

λXc

λYc
λZc

λ

⎤
⎥⎥⎦ = [Me]

⎡
⎢⎢⎣
Xw

Yw

Zw

1

⎤
⎥⎥⎦

⎡
⎣
su p

svp

s

⎤
⎦ = [Mi ]

⎡
⎣
ui
vi
1

⎤
⎦ (2)

According to [42], the intrinsicmatrix of camera “Mi” can
also be defined by Eq. (4). For the 3 × 4 camera-projection
matrix “H,” the transformation between the world’s coordi-
nates and the pixel coordinates is given as follows:

H = [Mi ][A][Me] (3)

When skew = 0, we assume that the x and y axes are perpen-
dicular to each other and this is the general case of having
no skew in the pixel elements of the CCD [19], which is
represented by Eq. (4).

Mi =
⎡
⎣

fx 0 cx
0 fy cy
0 0 1

⎤
⎦ A =

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦ ,

Me =

⎡
⎢⎢⎣

r11 r12 r13 Tx
r21 r22 r23 Ty
r31 r32 r33 Tz

0 0 0 1

⎤
⎥⎥⎦ (4)

fx = the image-scaling factor along the x-axis,
fy = the image-scaling factor along the y-axis,
(Cx , Cy) = the coordinates for the principle point,
f = focal length,
(Tx , Ty, Tz) = translation along x, y, and z axes,
ri j = elements of the 3D rotation matrix with i = 1 to 3
(row index), j = 1 to 3 (column index).

To model the distortion, supposing the corrected and
the distorted pixel coordinates are denoted by (xp, yp) and
(xd , yd), respectively, the first three coefficients of the radial
distortion are expressed by k1 to k3, while p1 and p2 cor-
respond to the tangential-distortion coefficients. The pixel
coordinates can be undistorted using the following distortion
model [42]:

[
xp
yp

]
=

(
1 + k1r

2 + k2r
4
) [

xd
yd

]

+
[
2p1xd yd + p2

(
r2 + 2x2d

)
p1

(
r2 + 2y2d

) + 2p2xd yd

]
(5)

Several approaches of pattern-based calibration have been
proposed to calibrate zoom-lens cameras. Wilson and Shafer
[43,44] put forward an iterative trial-and-error procedure and
modeled the variation of four camera parameters with vari-
able zoom—viz., the focal length f, the coordinates of the
principle point (Cx , Cy), and a translation along the z-axis
Tz . Their approach was based on the camera model proposed
by Tsai [45], which they applied for calibrating a single cam-
era mounted with a zoom lens. They used polynomials of up
to five degrees for modeling the parameters with variable
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zoom and applied a modified Levenberg–Marquardt (LM)
algorithm to further refine them. However, they pointed out
problemswithmechanical hysteresis and difficulty in captur-
ing images under various imaging conditions. Theyovercame
these problemswith precise automation, control of the zoom-
ing hardware, and the design of the calibration target, which
is based on a white plane with circular black dots as control
points. They modeled the distortion for the zoom settings
with the first coefficient of the radial distortion k1. This
approach is based on the translation of a planar pattern along
the axis perpendicular to the plane.

Li and Lavest [46] applied a least-squares technique for
calibrating a pair of zoom-lens cameras and described some
practical and experimental aspects to camera calibration,
especially regarding motor-controlled zoom-lens systems.
They considered the variation in the image-scaling factors
along the x and y axes ( fx , fy) with variable zoom and
focus. The system hardware consisted of a pair of zoom-
lens cameras mounted on a head–eye system. The calibration
pattern consisted of 3D cube objects employed under various
zoom settings. These objects consisted of three perpendicular
surfaceswith black background andwhite horizontal and ver-
tical lines whose intersections yielded control points. They
modeled the distortion with a set of the first three radial- and
tangential-distortion coefficients.

Zheng et al. [47] presented a perspective-projection-based
approach similar to Tsai’s method [45] with a second-order
radial lens-distortion model used for the zoom-lens cali-
bration of a single camera. They determined the pan, tilt,
and zoom parameters and used these parameters to infer
the motion of the image. They considered variations to f,
Cx , Cy , and the first two radial-distortion coefficients (k1,
k2), and modeled their relationship with variable zoom and
focus using a look-up table. The calibration target consisted
of circular disks on a white plane under various imaging con-
ditions.

Chen et al. [48] designed a calibration target based on cir-
cles of two different sizes to solve the problem of varying
field of views. They determined the intrinsic and extrinsic
parameters for a single camera using Weng’s method [49].
They modeled f, Cx , Cy , Tz , and k1 with variable zoom and
focus using a look-up table and used bilinear interpolation to
acquire the camera’s parameters for lens settings where cali-
brationwas not performed. A calibration-on-demandmethod
was applied to the lens settings when the interpolated param-
eters were found to be inaccurate.

Atienza and Zelinsky [50] proposed a zoom-calibration
technique for stereo cameras based on Zhang’s method [51]
that employ a chessboard as the calibration object. They
considered variations to fx , fy , Cx , Cy , Tz , and the first
four radial-distortion coefficients (k1, k2, k3, k4) with vari-
able zoom and focus, and modeled these parameters using
a polynomial fitting. They determined the focus setting as

a function of the zoom and object distance from the stereo
camera, reducing the dimensionality of the data needed to
calibrate the zoom lens. Their approach was based on the
keypoints that pinhole, and thin lens camera models can be
used for each lens setting. The effect of change in camera
parameters is negligible with the variation in aperture set-
tings and the intrinsic parameters and translation along the
z-axis. Tz is the only parameter that shows significant change
in zoom settings [43,46].

Ahmed and Farag [15] proposed an approach similar to
Wilson’s work [43,44] using an artificial neural network
(ANN) for calibrating a trinocular head with an active light-
ening device for 3D reconstruction under different zoom
and focus settings. They assumed variations to fx , fy , Cx ,
Cy , and Tz with lens settings and modeled these parameters
using a multilayered feed-forward neural network (MLFN).
They further suggested a pre-calibration process for certain
zoom settings, but they did not provide any mathematical
details for the distortion model. They also criticized the
parameter-modeling approaches—viz., interpolation, poly-
nomial fitting, and look-up tables.

Xian et al. [52] proposed a perspective-projection-based
calibration approach [41] for calibrating the zoom of stereo
cameras utilizing a 3D chessboard as a calibration target.
They modeled all of the camera’s parameters with variable
zoom using polynomial fitting, but they did not consider
the radial- and tangential-distortion coefficients. Their study
focusses on the 3D modeling and reconstruction with vari-
able zoom. They reported problems related to the nonlinear
relationship of the camera’s parameters with variable zoom,
the nonlinearity of the lens design, and the residual error
from positioning the zoom lens with a driving motor. They
criticized the zoom-calibration approach in [50] and pointed
out that due to the change in the optical configuration of
the vision system, the change in zoom settings results in the
variation of the orientation of camera coordinate system.

Figl et al. [53] utilized Wilson’s approach [44] for the
zoom-lens calibration of a single camera located behind
the eyepiece on a head-mounted display (HMD) in a head-
mounted operating microscope and determined the trans-
formation from the world-coordinate system to the camera
coordinate system TWC. They modeled f, Cx , Cy , and Tz
with variable zoom and focus using polynomial fitting with-
out considering any distortion model for their system, and
employed a calibration pattern consisting of black squares
on a white plane.

Garcia et al. [54] proposed a novel calibration method
known as LED-based calibration. This method is used to cal-
ibrate a surgical microscope (i.e., a camera) in terms of focus
and zoomsettings. They employed anLED-based active opti-
cal marker as the calibration object and an LED as the control
point. A pinhole camera model was used to determine the
camera’s parameters without any distortion parameters. The
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focal length f, rotation along the x-axis Rx , and translation
along the x and z axes (Tx , Tz) were considered as variable
parameters andweremodeled using a spline-basedmodel for
various zoom and focus settings.

Liu et al. [13] reported Heikkila’s method [55,56] as a cal-
ibration approach for the zoom-lens calibration of a stereo
camera and determined the camera’s parameters for the 3D
reconstruction under variable zoom. They modeled fx and
fy with zoom settings using a polynomial fitting. To coun-
teract distortion, they suggested the distortion model from
the first two radial- and tangential-distortion coefficients and
employed a chessboard as a calibration pattern.

Sarkis et al. [10] applied Tsai’s method [45] for calibrat-
ing a single camera under different zoom and focus settings.
Their main contribution was the improved modeling of the
camera’s parameters using clustered-moving least squares
(CMLS). They modeled f, Cx , Cy , Tz , and k1 with variable
zoomand focus settings, and they used six scales of the chess-
board pattern to overcome the problem of a varying field of
view. They modeled the distortion with the first coefficient
of radial distortion with various lens settings.

Kim et al. [2] designed a 3D sensing system based on
active stereo vision and a zoom-lens control system. This
system consisted of a pair of cameras mounted with external
zoom lenses and a non-calibrated projector [57,58]. They
determined the intrinsic and extrinsic parameters for each
camera using perspective vision [41]. To overcome the prob-
lem of a varying field of view, the calibration target consisted
of two different-sized circles on awhite plane. They designed
a zoom-lens control system for the stereo camera based on
precise automation using a microcontroller and an image-
processing technique. They modeled fx , fy , Cx , Cy , and
Tz for zoom settings using a polynomial fitting, and mod-
eled the distortion throughout the zoom settings with the
first two coefficients of radial and tangential distortion. They
also assumed that the intrinsic parameters and translation
along the z-axis are the only parameters that show signifi-
cant change in zoom settings [43,46].

4 Self-calibration

The concept of self-calibration was pioneered by Faugeras
et al. [59] for cameras with fixed-parameter lenses. Polle-
feys et al. in [60] extended self-calibration to cameras with
variable parameters such as the focal length. Self-calibration
computes the metric properties of the scene and/or camera
using uncalibrated images [19].

Let {Pi , X j}, H and {Pi H , H−1X j} be the pro-
jective reconstruction, rectifying homography, and met-
ric reconstruction, respectively. We can determine ‘H’ by
imposing constraints on the internal parameters of cam-
eras such that metric reconstruction is obtained [19]. Let

m, xi , XM , andPi
M be the number of cameras, image point,

3D point, and the projection matrix for ith views, respec-
tively, where M shows that the world frame is Euclidean
and the cameras are calibrated. The relationship between the
image point and the 3D point is given as follows:

Pi
M = Ki

[
Ri

∣∣∣ t i
]

Pi
M = Pi H (6)

where

I = 1,…, m, m=no. of cameras or views,
H = unknown 4 × 4 homography of 3-space,
Pi = projection matrix obtained by projective recon-
struction,
Ki 612 = calibration matrix for ith view,
(Ri , ti ) = rotation and translation matrix for ith view.

The expressions R1 = I and t1 = 0 for the first camera
coincided with the world frame. The Euclidean transforma-
tion between the ith camera and the first camera is specified
by Ri and t i and P1

M = K 1 [ I | 0]. The homography matrix
can be obtained as follows:

H =
[
A t
vt k

]

From Eq. 6, we have P1
M = P1H for first camera, and A =

K 1 and t = 0. Since H is a non-singular matrix, we selected
k = 1 to fix the scale of reconstruction. The expression for
H is given below.

H =
[
K 1 0
vt 1

]

Vector v and K 1 were used to specify the plane in the projec-
tive reconstruction. The coordinates of the plane at infinity,
π∞, are as follows:

π∞ = H−T

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ =

(
− (

K1)−T
v

1

)

Let π∞ = (
pT , 1

)T
, K = K 1, and p = − (

K 1
)−T

v, then
the homography can be defined as follows:

H =
[
K 0
−pt K 1

]
(7)

The above equation shows the need for the parameters of p
and five parameters of K 1 to transform projective reconstruc-
tion into metric reconstruction. Let the projective cameras be
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denoted as Pi = [
Ai

∣∣ ai ]. Multiplying Eq. 6 by Eq. 7 leads
to the following equation.

Ki Ri =
(
Ai − ai pT

)
K 1

Ri = (Ki )−1
(
Ai − ai pT

)
K 1 (8)

We can eliminate the rotation Ri using RRT = I , with the
resulting equation given below:

Ki K iT =
(
Ai − ai pT

)
K 1K 1T

(
Ai − ai pT

)T

We know that the dual image of the absolute conic (DIAC),
ω∗i = Ki K iT , is obtained as follows:

ω∗i =
(
Ai − ai pT

)
ω∗1 (

Ai − ai pT
)T

ωi =
(
Ai − ai pT

)−T
ω1

(
Ai − ai pT

)−1
(9)

whereωi = image of the absolute conic (IAC) for the ith view.
The degenerate dual quadric denoted by 4 × 4 homoge-

nous matrix of rank 3 is known as the absolute dual quadric,
Q∗∞ [19]. The importance of this quadric lies in its ability to
encode the π∞ and the absolute conic �∞. The relationship
between the DIAC and the absolute dual quadric is given as
follows:

ω∗ = PQ∗∞PT (10)

The principle of self-calibration is to use an absolute conic
as a calibration object [34,61]. The plane projective trans-
formation between two images induced by π∞ is termed as
infinite homography H∞, whose formula is given below:

Hi∞ = Ai − ai pT (11)

The above equations show that if π∞ and the projective cam-
eras are known, the homography from a camera [ I | 0] to
camera

[
Ai

∣∣ ai ], such as Hi∞, can be determined. Substi-
tuting the value of Hi∞ from Eq. 11 in Eq. 9 leads to the
following equation:

ω∗i = Hi∞ω∗1Hi∞
T

ω∗ j = Hi∞ω∗i H i∞
T

(12)

where

ω∗1 = DIAC for reference view,
ω∗i = DIAC for ith view,
ω∗ j = DIAC for jth view.

Fig. 3 Depiction of the conic epipolar matching constraints

The geometric interpretation of the infinite-homography con-
straint is depicted in Fig. 3 in terms of the DIAC, which can
be transferred from one image to another through the homog-
raphy of the plane at infinity as depicted in Eq. 12. Let ω∗i
and ω∗ j be the DIAC’s of the absolute conic �∞ on the
plane at infinity π∞ in the two views, respectively, while
ea and eb are the respective epipoles in the two views. The
epipolar lines for first view are denoted by la and lb, while l ′a
and l ′b correspond to the second view. The Kruppa equations
show the algebraic representation of the correspondence of
the epipolar lines tangent to the conic. The Kruppa equa-
tion can be obtained with F being the fundamental matrix as
follows [19]:

[eb]× ω∗ j [eb]× = Fω∗i FT (13)

Agapitos et al. [14] reported both linear and the nonlinear
calibration methods (based on the LM algorithm) for self-
calibrating rotating and zooming cameras. Their approach
was based on the infinite-homography constraint and con-
sidered f, Cx , Cy , and k1 as variable parameters. To increase
the accuracy of the camera’s parameters, they utilized a
maximum likelihood estimation (MLE) and a maximum
a posteriori estimation (MAP). They reported results that
are more accurate by keeping the principle point constant.
They also analyzed the effects of radial distortion on self-
calibration and modeled a variation of the first coefficient of
radial distortion using polynomial fitting. A precisely man-
ufactured calibration grid was used to get the ground truth
data for evaluation purposes.

Hayman and Murray [18] analyzed the effects of transla-
tional misalignment for pure-rotation-based self-calibration
approaches [62,63] when the optic center of a zoom camera
does not coincide with the rotation center. They employed
a homography-based approach for calibration and utilized
homography to relate the intrinsic parameters between the
two views. They considered f and k1 as variable parameters
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and modeled them using polynomial fitting. They performed
experiments using simulated data to verify their analysis and
concluded that the assumption of pure rotation is valid in
caseswhennoise and radial-distortion effects aremore severe
and the camera translations are small compared to the dis-
tance of the scene.

Sudipta and Pollefeys [16] proposed an automatic method
for the calibration of an active pan–tilt–zoom (PTZ) cam-
era without employing any calibration object for generating
high-resolution mosaics. They have applied a homography-
based calibration approach for the full range of pan, tilt,
and zoom. They modeled distortion by considering the first
two coefficients of radial distortion. Variations to f, Cx , Cy ,
k1, and k2 were modeled with zoom settings using polyno-
mial fitting. They first calculated the intrinsic and distortion
parameters for discrete zoom steps between the minimum
and maximum zoom, and then used pairwise linear interpo-
lation to estimate these parameters at any zoom step. Their
zoom-calibration approach was similar to that of Collins et
al. [64] and simpler than the approach of Wilson [44].

Wu and Radke [17] proposed a pure-rotation-based self-
calibration technique based on perspective projection [41]
for calibrating the PTZ cameras. They used a linear least-
squares method to acquire the initial intrinsic parameters
that are further refined using the LM algorithm. They con-
sidered image-scaling factors ( fx , fy) and the first two
radial-distortion coefficients (k1, k2) as variable parameters
and modeled them using polynomial fitting. They also com-
pared theirmethodwithZhang’s [51] to evaluate the accuracy
of their proposal. They used a library of natural features
detected during the initial calibration and did not employ
a special calibration object. They compared their proposed
algorithm with that of Sudipta and Pollefeys [16] in terms of
accuracy and required image data for zoom calibration.

5 Hybrid approach

Sturm [12] proposed a self-calibration method for a moving
camera based on perspective projection [41] and Kruppa’s
equations. First, he proposed an offline pre-calibration of
the camera to determine the aspect ratio, skew angle, and
principle point coordinates as a function of the image-scaling
factor along the y-axis, fy . Then, he expressed the remaining
intrinsic parameters for zooming cameras as a function of
fy following the functional relationship determined in the
pre-calibration stage. A calibration grid was employed to
capture images of different views for self-calibration. No
distortion model was considered in this research. Given that
this approach is based on the self-calibration method and
employs a calibration grid, it can be classified as both self-
calibration and hybrid methods.

Oh and Sohn [11] reported a calibration approach for
charge-coupled device (CCD) cameras mounted with exter-
nal zoom lenses. Their approach has the characteristics of
both the planar-pattern-based method and the pure-rotation-
based self-calibration method. They applied the LM algo-
rithm for calibrating the zoom of a single camera considering
f,Cx ,Cy , k1, and k2, and the translation of the projection cen-
ter ‘t’ as a variable parameter with zoom settings. They used
the focal lengths printed on the lens’ zoom ring to initial-
ize the LM algorithm and used the calibration parameters
from previous zoom settings as the initial estimates for the
calibration of the next zoom setting.

Moreover, they utilized a rotation sensor to overcome
the so-called ill-posed problems caused by many parame-
ter dimensions. They employed a chessboard to calibrate the
zoom lens and modeled the camera’s parameters using the
scattered data interpolation. They determined the first two
coefficients of radial distortion to model the distortion for
various zoom and focus settings. Their method for calibrat-
ing the focus is similar to the zoom-calibration procedure
found in [16]. This focus calibration procedure reduces the
number of required manual calibrations from P2 to P, sav-
ing the user considerable time and effort (P refers to the
number of manual calibrations to the zoom and focus). They
pointed out the disadvantages to the standard method and
self-calibration and justified their novel hybrid approach.

6 Discussion

Table 1 shows two types of zooming hardware for zoom-lens
calibration: consumer zoom cameras and cameras mounted
with an external zoom lens. Xian et al. [52] pointed out a
problem regarding the inaccurate and nonlinear mechanical
control in consumer cameras. Therefore, some researchers
employed the second category of the zooming hardware—
viz., CCD cameras mounted with an external zoom lens.
Nonetheless, a possibility of error exists owing to the internal
mechanical and optical properties of external zoom lens that
can be overcome with precise automation and control of the
zooming hardware [43].

Different calibration patternswere used for zoom-lens cal-
ibration, as depicted in Table 1. These include a chessboard,
an active optical marker, and a target with circles [65,66]
or dots and squares [45,49]. Several chessboards of vari-
ous sizes are needed for zoom-lens calibration to cover the
whole range of zoom settings [43]. Given the varying field
of view and the defocusing problems, the features (centroids,
corners, and dots) can be blurred and are thus difficult tomea-
sure. To calibrate a zoom lens, a sufficient number of control
points should appear in the calibration target, consisting of
the features for various zoom settings. However, users will
find it difficult to understand the 3D coordinates assumed for
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the calibration [2]. Thus, Chen et al. [48] and Kim et al. [2]
employed a calibration pattern consisting of two different-
sized circles.

Researchers [10,43,44,47,53] have employed Tsai’s
method [45] for zoom-lens calibration of a single camera.
This method requires different calibration patterns to cali-
brate a zoom camera at different zoom and focus settings.
Modern zoom lenses do not function in the same way as
expected in this method [6]. Pattern-based approaches to
the zoom-lens calibration of stereo cameras [13,50] use
homography-based calibration methods [51,55,56], while
calibrating the zoom of a single camera is carried out using
homography-based self-calibration in [14,16,18]. Oh and
Sohn [11] pointed out that homography-based calibration is
limited insofar as it can only determine the intrinsic param-
eters when employed for zoom-lens calibration using planar
patterns, and the calibration parameters cannot be accurately
estimated for long focal lengths. Ahmed and Farag [15] pro-
posed a calibration approach based on an MLFN, but this
method is too complex and requires additional image data,
which is not always available [67]. Calibration approaches
[2,52] based on perspective projection [41] were used for
zoom-lens calibration, but we cannot assume the perspective
projection for all of the zoom settings because on high-zoom
settings, the camera more closely resembles an affine than a
perspective camera [11].

Different researchers have considered different sets of
intrinsic or extrinsic parameters—or a combination of the
two—as variable model terms demonstrated in Table 1. They
assumed variable camera parameters based on their exper-
imental setup and results. Xian et al. [52] considered all
camera parameters as variable model terms and pointed out
that the change in the optical configuration of a vision system
results in a variation of the extrinsic and intrinsic parame-
ters. Table 1 shows the different distortion models that were
presented consisting of radial-distortion coefficients or a
combination of radial- and tangential-distortion parameters.
In [15,54], researchers ignored the distortion model for vari-
able zoom. However, they suggested pre-calibration because
the distortion can be significant for specific zoom and focus
settings, especially at small focal lengths [15]. Alternatively,
the distortion can be considered constant [46]. The camera
models presented in [52,53] completely ignored the distor-
tion model, whereas the majority of zoom-lens calibration
approaches demonstrate the distortion effect as an inevitabil-
ity given certain zoom settings (see Table 1).

To find the relationship between the camera’s parame-
ters and its zoom settings, Ahmed and Farag [15] criticized
the different techniques mentioned in Table 1-specifically,
polynomial fitting, interpolation, and look-up tables. They
pointed to both the fitting and interpolation techniques and
held them responsible for reducing the overall calibration
accuracy. They emphasized the errors resulting from par-

ticular parameters when the interactions between all of the
camera’s parameters are not considered. They modeled cam-
era parameters using anMLFN for various zoom settings, but
their approach requires a considerable amount of data for the
artificial neural network to converge [50]. Sarkis et al. [10]
applied CMLS to improve the results of Wilson and Shafer
[43,44].

Sturm [12] proposed Kruppa’s equations-based approach
for the self-calibration of a moving camera and expressed the
intrinsic camera parameters as a function of single parameter.
The major drawback to this approach is the time-consuming
pre-calibration stage. Moreover, there is an uncertainty to
the application of this approach for more complex interde-
pendence models of the intrinsic parameters. A distortion
model was not presented in his research; however, the dis-
tortion effect cannot be neglected in the self-calibration of a
zoom camera because this effect is inversely proportional to
the focal length [14,16].

Several calibration approaches [12,14,16–18] include lin-
ear and nonlinear algorithms for self-calibration. Sturm [12]
applied a linear method based on Kruppa’s equations. Oh
and Sohn [11] utilized a nonlinear approach to zoom-camera
calibration based on the LM algorithm, and the researchers
in [14,17] reported approaches based on both linear and
nonlinear algorithms. The LM algorithm requires intrinsic
parameters initially and often fails when this requirement
is unfulfilled [12,15]. Hence, the linear method is a high-
speed method that is suitable for real-time applications. It
does not require initial estimates and has no convergence
problem [14]. However, the linear method does not include
the necessary constraints on the camera’s parameters, such as
the skew, aspect ratio, and principal point [14]. Oh and Sohn
[11] used the focal lengths printed on the lens’ zoom ring
to initialize the LM algorithm, and the calibration param-
eters from previous zoom settings were used as the initial
estimates for the calibration of the next zoom setting. The
self-calibration approaches in [14,17] utilized the intrinsic
parameters estimated from the linear algorithm as the initial
postulate for nonlinear optimization.

Sudipta and Pollefeys [16] proposed a pure-rotation-based
self-calibration approach using homography to estimate the
calibration parameters of a PTZ camera for zoom steps. This
approach calibrated only the focal length of the PTZ cam-
era and often involves a number of small but time-consuming
steps to reduce noise [17]. A different approach [17] requires
relatively fewer images at different zoom settings for cali-
brating the PTZ camera than the linear-interpolation model
reported in [16]. Given the assumption of pure rotation of
a PTZ camera in these calibration approaches [16,17], the
effects of translation cannot be neglected except in some
practical situations, as mentioned in [18].

Different self-calibration approaches allow different cam-
era parameters to vary with zoom steps. These approaches
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Table 2 Advantages and disadvantages of zoom-calibration approaches

Categories Researchers Advantages Disadvantages

Standard
method

1. Wilson and Shafer
[43,44]

Efficient memory consumption [48] Modern zoom lenses cannot be modeled
using this approach [6]

2. Li and Larvest [46] Highly precise and accurate calibration target
[46]

Constant principal point [46]

3. Zheng et al. [47] Accurate estimation of the camera’s
parameters [47]

Modern zoom lenses cannot be modeled
using this approach [6]

4. Chen et al. [48] Calibration target design consisting of two
different-sized circles and reduction in
monofocal calibrations [48]

Absence of optimization techniques to refine
the camera’s parameters [15]

5. Atienza and Zelinsky
[50]

Reduction in image data required for zoom
and focus calibration [50]

Determines intrinsic parameters only [11]

6. Ahmed and Farag [15] No need to initialize the camera’s parameters
in an ANN-based approach [15]

No distortion model

7. Xian et al. [52] All intrinsic and extrinsic parameters are
allowed to vary [52]

No distortion model

8. Figl et al. [53] Efficient memory consumption [48] Modern zoom lenses cannot be modeled using
this approach [6] and no distortion model

9. Garcia et al. [54] Extrinsic and intrinsic parameter estimation
using full-perspective projection-based
approach [54]

No distortion model

10. Liu et al. [13] Stereoscopic 3D reconstruction system based
on an embedded DSP [13]

Determines intrinsic parameters only [11]

11. Sarkis et al. [10] Clustered-moving least-squares to model the
camera’s parameters [10]

Modern zoom lenses cannot be modeled
using this approach [6]

12. Kim et al. [2] A balanced approach consisting of linear and
nonlinear calibration methods [2]

Synchronization problem in adjusting the
focal length for a stereo camera [2]

Self-
calibration

1. Sturm [12] Linear approach for calibration that is fast
and suitable for real-time application [14]

No distortion model and a time-consuming
pre-calibration stage [12]

2. Agapito et al. [14] A balanced approach consisting of linear and
nonlinear methods [14]

Determines intrinsic parameters only
(homography-based method) [11]

3. Hayman and Murray [18] No calibration target [18] Determines intrinsic parameters only
(homography-based method) [11] and
constant principal point [18]

4. Sudipta and Pollefeys
[16]

No calibration target [16] Determines intrinsic parameters only
(homography-based method) [11] and
pure-rotation-based approach [18]

5. Wu and Radke [17] A balanced approach consisting of linear and
nonlinear methods [17]

Pure-rotation-based approach [18]

Hybrid
methods

1. Oh and Sohn [11] Calibration method having characteristics of
pattern-based and pure-rotation-based
methods [11]

LM algorithm requires initial camera
parameters [15] and may have convergence
problems [14]

[11,12,16–18] considered the focal length as a variable
parameter and tackled the principle point in a different way.
Some calibration techniques [17,18] assumed that the princi-
ple point is constant at different zoom settings, while others
[11,12,14,16] allowed this parameter to vary throughout the
zoom steps. The researchers in [43,68] reported that the
behavior of the principle point while zooming nearly has
a translational trajectory. Given the optical and mechanical
misalignments in the lens system of the camera, the trajec-
tory of the principle point can be nonlinear, depending on the

zoom lens or the consumer camera employed in the experi-
ments [12]. Oh and Sohn [11] observed that the fluctuations
in the principle point differ depending on the lens, and that the
correlation of the camera’s parameters should be studied to
accurately estimate the principle point. The advantages and
disadvantages and the optimal number of images and uncer-
tainty found in each approach mentioned in Table 1 were
presented in Tables 2 and 3, respectively. The comparison
between standard calibration method and self-calibration in
term of the number of images suggested shows that the num-
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Table 3 Number of images and uncertainty of zoom-calibration approaches

Categories Researchers Suggested/minimum/maximum no.
of images

Uncertainty

Standard method 1. Wilson and Shafer [43,44] Three (or two) images at three (or two)
different distances between the target
and the camera at each setting/(≥2)

Modern zoom lenses cannot be modeled
using this approach [6]

2. Li and Larvest [46] Seven (or eleven) images at each zoom
settings/(≥7)

Look-up table-based approach [15]

3. Zheng et al. [47] Two images for each setting/(≥2) Modern zoom lenses cannot be modeled
using this approach [6] & Look-up
table-based approach [15]

4. Chen et al. [48] One image for each setting/(≥1) Absence of optimization techniques to
refine the camera’s parameters [15]

5. Atienza and Zelinsky [50] Three (or twelve) images at each setting/
(≥3)

Polynomial fitting-based approach [15]

6. Ahmed and Farag [15] One image for each setting/(≥1) No distortion model

7. Xian et al. [52] One image for each setting/(≥1) No distortion model & Polynomial
fitting-based approach [15]

8. Figl et al. [53] Twenty-seven images for each
setting/(≥2)

Modern zoom lenses cannot be modeled
using this approach [6] and no distortion
model

9. Garcia et al. [54] No. of total images ≥6 for each setting No distortion model & Look-up
table-based approach [15]

10. Liu et al. [13] Two (or ten) images for each zoom
setting/(≥2)

Polynomial fitting-based approach [15]

11. Sarkis et al. [10] Forty images for each setting/(≥2) Modern zoom lenses cannot be modeled
using this approach [6]

12. Kim et al. [2] Eleven images for each setting/(≥11) Polynomial fitting-based approach [15]

Self-calibration 1. Sturm [12] Four images for each setting/(≥3) No distortion model & uncertainty to the
application of this approach for more
complex interdependence models of the
intrinsic parameters

2. Agapito et al. [14] Two sequences of 30 images, one with
variable pan, tilt, and other with variable
pan, tilt, and zoom/ (≥30)

The effect of radial distortion on the
self-calibration process [14]

3. Hayman and Murray [18] A sequence of 30 images with variable
focal length, panning and tilting/ (≥30)

For applications where high calibration
accuracy is required, the errors
introduced by the translational offset
cannot be ignored [37]

4. Sudipta and Pollefeys [16] The no. of images ≥84 (with different
pan, tilt for each zoom setting)

Pure-rotation-based approach [18]

5. Wu and Radke [17] No. of images in each of pan, tilt, and
zoom sets is 5 (≥3)

Pure-rotation-based approach [18]

Hybrid methods 1. Oh and Sohn [11] No. of images ≥2 for each setting Uncertainty in the measurement of focal
length at highest zoom and focus
settings [11]

ber of images suggested for self-calibration is relatively less
than the images for standard method for the suggested lens
settings as shown in Table 3.

7 Conclusion

This study investigated three categories of zoom-camera
calibration: pattern-based calibration, self-calibration, and

hybrid calibration. The relationship between the camera’s
parameters and its zoom range is important for applica-
tions in the 3D reconstruction and augmented reality [69].
Furthermore, we depicted the characteristics and applica-
tions of these calibration methods. We introduced a new
classification model based on the approaches applied to the
zoom-lens calibration of single and stereo cameras and dis-
cussed these approaches under some common attributes.
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This research described the two categories of zooming hard-
ware and pointed out their inaccuracies and nonlinearities.
This study briefly described the different calibration targets
used in zoom-lens calibration to overcome various imag-
ing conditions with the zoom and focus. We performed a
comparative analysis of zoom-calibration approaches in the
above-mentioned categories, pointing out the advantages and
disadvantages to each approach. We further compared the
linear and nonlinear camera models proposed for zoom cal-
ibration with a different set of variable camera parameters
based on their experimental results.We explored the different
techniques used to model the camera’s parameters with vari-
able zoomand criticized polynomial fitting and interpolation.
Finally, this research described the self-calibration methods
available for calibrating zoom cameras without using a cali-
bration object.

The approaches [10,43,44,47,53] employed Tsai’s
method [45] for the zoom-lens calibration of a single cam-
era, but modern zoom lenses cannot be modeled using this
method [6]. The approach [15] criticized the polynomial
fitting, interpolation, and look-up table-based modeling of
variable parameters [2,13,46–48,50,52,54], and emphasized
the errors resulting from particular parameters when the
interactions between all of the camera’s parameters were
not considered. The approaches [12,15,52–54] ignored the
distortion model, whereas the majority of zoom-lens cal-
ibration approaches demonstrated the distortion effect as
an inevitability given certain zoom settings. The calibration
approaches [16,17] assumed the pure rotation of a PTZ cam-
era and the effects of translation cannot be neglected except in
some practical situations, as mentioned in [18]. Similarly, for
applications where high calibration accuracy is required, the
errors introduced by the translational offset cannot be ignored
[37]. Peter Sturm reported the uncertainty to the application
of this approach for more complex interdependence models
of the intrinsic parameters [12], while the hybrid approach
[11] posed the uncertainty in themeasurement of focal length
at the highest zoom and focus settings. The research [14]
addressed the negative effects of radial distortion on the self-
calibration of a rotating and zooming camera.

Oh and Sohn [11] criticized the homography-based cal-
ibration using planar patterns as they may determine the
intrinsic parameters only and may lead to inaccurate mea-
surement of parameters for long focal lengths. We also
pointed out advantages and disadvantages of linear and non-
linear methods of self-calibration approaches. The optical
and mechanical misalignments in the lens system resulted
in a nonlinear trajectory of the principle point depending
on the zoom lens [12], and the correlation of the camera
parameters should be studied to estimate the principle point
accurately [11]. Directions for future work include the study
of the behavior of modern zoom lenses with the variation
of camera parameters and the study of the correlation of the

camera parameters for the accurate estimation of the princi-
ple point.
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