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Abstract The increasing presence of image/video capture
devices such as camera phones and surveillance cameras has
become a ubiquitous element of providing convenience and
improving security inmodern life. On the other hand, the per-
vasiveness of such image/video capture devices raises grow-
ing privacy concerns. In this paper, we concentrate on a new
visual privacy protection problem—covert photo classifica-
tion. Covert photography means that the subject being pho-
tographed is purposely made unaware that he or she is pho-
tographed. A covert photo often contains information that is
inherently sensitive and private to a person. If such photos are
released on the public without approval, it may lead to seri-
ous negative consequences. We explore deep convolutional
neural networks (DCNNs) to discover intricate structures of
covert photos and automatically learn the representations for
covert photo classification. Experimental results demonstrate
that DCNN-based architectures which are fully end-to-end
trained reach beyond previous experience-dependent hand-
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engineered feature methods in covert photo classification.
The fusion of three DCNN-based architectures (AlexNet,
VGGS, and GoogleNet) shows enhanced performance over
individual networks on the Covert-2500 dataset and achieves
an average classification rate (1-EER) of 0.925 which sig-
nificantly outperforms the result (1-EER) of 0.8940 of
hand-engineered feature methods.

Keywords Privacy protection · Covert photography · Image
classification · Visual attribute · Deep convolutional neural
networks

1 Introduction

Modern technology has brought a revolution in photograph
acquisition and publication. Image/video capture devices,
such as digital cameras and camera phones, have become
cheaper, ubiquitous, and easier for owners of these devices
to record images anywhere and keep a daily visual jour-
nal of their lives. Meanwhile, to prevent crime and insure
public security, surveillance cameras have proliferated and
can be found in both public and private spaces watching our
movements around the clock. If connected to Internet, it is
also effortless to share captured photographs within seconds
by posting them to social-networking sites (e.g., Facebook,
Twitter, LinkedIn), photo/video-sharing sites (e.g., Insta-
gram, Flikr, YouTube), and personal web sites and blogs.
According to theKPCB’s (Kleiner PerkinsCaufield&Byers)
2016 Internet Trends Report [1], about 2 billion photos are
shared on Facebook-owned websites every day. These mod-
ern techniques provide a great convenience and security to
users. Despite these many advantages, however, challenges
do exist. The pervasiveness of such images/video capture
devices creates a growing concern for invasions of privacy
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to unassuming entities. There is always a trade-off between
availability and privacy, and therefore, it is important to look
for ways that technology can be used to protect privacy.

In this paper, we concentrate on an emerging visual pri-
vacy protection problem—covert photo classification.Covert
photography (also called secret photography or unauthorized
photography) refers to the use of an image or video record-
ing device to photograph or film a person who is unaware
that they are being intentionally photographed or filmed [2].
Photos taken in this manner are called covert photographs.
These photos may be collected by normal cameras, while
the method of acquisition from the device or observer is
concealed. Usually covert photos contain information that
is inherently special or sensitive and is private to an unaware
person. If these photos are shared on the Internet, it may lead
to serious negative consequences [3–6].

Covert photo classification was first studied in [7]. In the
work, an algorithm is proposed to fuse heterogeneous image
features and visual attributes in a multiple kernel learning
framework, and it typically relies on manual feature design.
On the other hand, recent progress inmachine learning, espe-
cially deep learning technology, has achieved remarkable
successes in many tasks such as image recognition [8–10],
speech recognition [11–13], natural language understanding
and translation [14,15], achieving performance that equals or
even beats humans assessment [16]. These successes suggest
a promising trend of using deep neural networks trained end-
to-end (from the raw image pixels to class scores) to improve
performance of covert photo classification.

This paper explores the capability of applying deep neural
networks to covert photo classification. In particular, three
DCNN-based (AlexNet [17], GoogleNet [18], and VGGS
[19]) architectures are developed for covert photo classifica-
tion, with the following contributions:

– DCNN-based methods are first introduced to solve the
emerging covert photo classification problem. Experi-
mental results demonstrate that the performance of all the
explored DCNN-based architectures, after transferring
parameters from ImageNet pre-trained models, signifi-
cantly surpasses hand-engineered feature methods.

– Activation maps demonstrate what intrinsic character-
istics DCNN has learned to discriminate covert photos
from non-covert ones. Though different DCNN architec-
tures show different discriminative regions, most of the
dark occlusion parts due to a hidden camera are high-
lighted which is consistent with our human instincts.

– With the aid of auxiliary attributes, a two-stage parameter
transferring method is exploited to enhance the perfor-
mance of the algorithm.

– The final fusion of three DCNN-based architectures
further boosts the classification performance and signif-
icantly outperforms hand-crafted feature methods.

In the rest of the paper, Sect. 2 summarizes related
work. The proposed covert photo classification with DCNN
algorithm is described in Sect. 3, with detailed experimen-
tation and analysis. Section 4 explores leveraging auxiliary
attributes to improve the final covert photo classification per-
formance. Finally, the paper is concluded in Sect. 5.

2 Related work

2.1 Privacy protection in visual data

Covert photo classification is highly related to studies of pri-
vacy protection, which is an increasing concern in modern
society. Almost all countries have laws to protect privacy,
although the boundaries and content of what is consid-
ered private differ among cultures and individuals. Many
researchers and groups have proposed various algorithms and
systems to protect privacy in visualmedia such as images and
videos [20–32].

Previous studies on visual privacy protectionmainly focus
on privacy information detection and privacy information
hiding. Martin et al. [33] developed an algorithm that imple-
ments a specific identification filter on video sequences of
a driver from naturalistic driving data to protect the iden-
tity and preserve the behavior of the driver. Nakashima et al.
[34] proposed a method for intended human object detection
and developed a system for obscuring human object regions
in videos taken for mobile video surveillance that contain
privacy sensitive information. Elhadad et al. [35] developed
a high capacity hiding technique which embeds the video
captured by the surveillance camera into another processed
video where the private information was removed. Ross and
Othman [36] explored using visual cryptography to preserve
the privacy of biometric data (such as face images, fingerprint
images, and iris codes) by decomposing the original image
into two images that were stored in two separate database
servers. The original private image can be revealed onlywhen
both imageswere simultaneously available and the individual
component images did not reveal any identity of the original
private image.

Our work is most related to that in [7], which addresses
the problem of classifying covert photos and establishes a
covert image dataset with 2500 covert photos and 10,000
non-covert photos. The photos were collected from varying
sources, e.g., web, surveillance system, voyeurism publish-
ing, and real covert photography on street. Each sample
image in the dataset was verified rigorously and carefully, by
checking its source fromwhich the final dataset was adjusted
to reduce the potential bias toward specific topics or content.
Eight hand-crafted low-level image features and 13mid-level
image attributes were fused for image representation using a
multiple kernel learning framework for covert photo classi-
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fication. The experimental results showed that the approach
achieved an average classification rate (1-EER) of 0.8940,
which significantly outperforms other contemporary algo-
rithms as well as human performance.

In contrast to the prior efforts that use hand-designedmod-
els based on user-defined features, we propose using a deep
learning architecture to discover the intricate structure in the
training set and automatically learn the representations for
covert photo classification.

2.2 Deep convolutional neural networks for image
classification

Conventional computer vision strategies were constrained in
their capacity to process pixel values of an image. Build-
ing an artificial intelligence or machine learning framework
required domain experts’ careful design to extract feature
vectors from the raw image data and followed a classifier
that maps input vectors to different categories [37]. By con-
trast, deep convolutional neural networks [17–19] allow a
machine to be fed with raw image pixels and learns repre-
sentations automatically. Therefore, DCNN depends less on
prior knowledge and human effort in features design.

DCNN is comprised of multiple convolutional and sub-
sampling layers optionally followed by fully connected
layers and is therefore said to be deep (in contrast, classical
representation will be referred to as shallow) [38]. A DCNN
architecture can take full advantage of the 2D structure of
an input image, its local connectivity, and shared weight-
ing properties to help dramatically reduce the number of free
parameters to estimate and at the same time improve general-
ization. DCNN can also be easily trained with standard back

propagation algorithm. DCNN has achieved leading perfor-
mances on a variety of vision recognition task [8–10,39]. In
recent ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [40] competitions, almost all the highly ranked
teams used DCNN as their basic framework.

3 Covert photo classification with DCNN

3.1 Problem formulation

We develop three DCNN-based (AlexNet, GoogleNet, and
VGGS) architectures for covert photo classification. All the
three networks are first trained on the source dataset—
ImageNet, which contains 1.2 million images with 1000
categories, and then all the pre-trained DCNN parameters
of the internal layers of the network are then transferred to
the target task—covert photo classification. The framework
is illustrated in Fig. 1.

A DCNN architecture usually contains millions of param-
eters and directly learning so many parameters from only a
few thousand training images is problematic [41–43]. How-
ever, in our task only a small amount of training data is
available. As illustrated in [7], the process of covert dataset
collection needs a rigorous verification and bias reduction
for which the final dataset contains 2500 covert photos.

A common technique to resolve the limited dataset prob-
lem is transfer learning, which aims to transfer knowledge
from related source to target domains [44]. In this paper,
we directly use the pre-trained models which are shared on
Caffe Model Zoo [45] to get the source parameters. These
models usually need 2–3weeks to train on ImageNet.We ini-
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Fig. 1 Framework of covert photo classification by DCNN. Three
DCNN-based (AlexNet, GoogleNet, and VGGS) architectures are first
trained on the source dataset—ImageNet and then all the pre-trained
DCNN parameters of the internal layers of the network are then trans-

ferred to the target task—covert photo classification. Data augmentation
by extracting 10 different subcrops is employed to make up the defi-
ciency of training set and help to reduce overfitting

123



626 H. Zuo et al.

tialize networks parameters by transferring from pre-trained
models on ImageNet and keep the earlier layer parameters
fixed (these parameters are not specific to a particular object
category or dataset and usually appear like Gabor filters or
color blobs) and then fine-tune higher layer parameters (these
parameters are more specific to the classes contained in the
training dataset) on our Covert-2500 dataset. This is based on
the work of Yosinski et al. [41] which demonstrates transfer-
ring features even from distant tasks can be better than using
random features. Recently, similar strategy is also adopted
by Banerjee et al. [46] which transfer ImageNet pre-trained
AlexNet parameters to classify medical images and Ghazi
et al. [47] which transfer ImageNet pre-trained GoogleNet,
AlexNet and VGGNet parameters to identify plant species.

For comparison, experiments of training the models from
scratch, i.e., initializing parameters with random numbers
instead of transferring them from pre-trainedmodels are con-
ducted.

Our problem is to distinguish covert and non-covert pho-
tos, and this is a typical two-class classification problem.
Here the covert photos are denoted by the positive class, and
the non-covert photos by negative class, respectively.

3.2 Experimental protocol

The classification performance is evaluated using two mea-
sures: area under an receiver operating characteristic (ROC)
curve (AUC) and equal error rate (EER). The two measures
are consistent with those used in [7] and derived from the
ROC curve which plots the true positive rate against the false
positive rate as the decision threshold varies along the score
range [48,49]. The larger the AUC, the better the ROC. The
EER identifies where the false positive rate and the false neg-
ative rate are equal, where the smaller the EER, the better of
the system. The EER point marked with a ‘*’ in the ROC
figures locates at the intersection of ROC curve and straight
line through (1, 0) and (0, 1).

All models are trained and tested with Caffe [50] on a
NVIDIA GeForce GT640 2GB GPU.

3.3 Dataset

The Covert-2500 [7] dataset includes 2500 covert photos and
10,000 non-covert photos. The training and testing sets are
the same with [7]. The training set contains 2000 covert pho-
tos and 8000 non-covert photos, and the testing set contains
500 covert photos and 2000 non-covert photos.

Each input image is preprocessed by resizing to 256×256
and subtracting the per-pixel mean across all training images.
The system employs data augmentation which consists of
generating image translations and horizontal reflections. The
method extracts 10 different subcrops (4 corners, center and
their horizontal flips) from the resized 256 × 256 images.

The subcrops are of size 227× 227 (AlexNet) or 224× 224
(GoogleNet and VGGS), and the networks are then trained
on these extracted subcrops. This increases the size of our
training set by a factor of 10.

3.4 Covert photo classification

3.4.1 AlexNet-based covert photo classification architecture

AlexNet was the first popularized DCNN architecture in
Computer Vision, proposed by Krizhevsky et al. [17]. It
was the winner of ImageNet ILSVRC 2012, and its perfor-
mance significantly outperformed the second runner-up. In
this paper, we use a Caffe [50] version of AlexNet, which is
slightly different from original one, where pooling is done
before normalization. Figure 2a describes the architecture
of AlexNet-based covert photo classification. A 227 × 227
crop of an image (with 3 RGB color channels) is taken as
the input. In the first layer, it is convolved with 96 different
filters, each is of size 11×11, using a larger stride of 4 pixels,
which enable fast processing. The resulting 96 feature maps
of size 55×55 are firstly passed through a rectified linear unit
(ReLU [51]) and then are subsampled to 27× 27 with 3× 3
max-pooling (using stride 2) operation and finally normal-
ized by local input regions. Similar operations are repeated
in layers 2, 3, 4, and 5. The last three layers (fc6, fc7, and
fc8) are fully connected, taking all neurons in the previous
layer as inputs and connecting them to every single neuron
available. The fully connected fc6 and fc7 layers have 4096
neurons each, and a drop-out [52] probability of 0.5 is fol-
lowed to avoid overfitting. The number of neurons of the last
fully connected layer (fc8) is equal to the number of classes,
i.e., 1000 for ImageNet and two for covert photo classifica-
tion. The last fully connected layer is followed by a softmax
with loss layer which represents the class scores.

We train the AlexNet-based model with stochastic gra-
dient descent with momentum. The batch size is set to 50,
and the momentum is fixed to 0.9, and the multiplicative
weight decay is set to 5 × 10−4 per iteration. The learning
rate starts at 0.001 and anneals over the course of training
by dropping by a factor of 10 when the validation error rate
stops decreasing with the current learning rate. In our experi-
ments, best performance of AUC:97.29% and EER:8.65% is
reached after 40 epochs when transferring parameters from
the ImageNet pre-trained model. By contrast, best perfor-
mance of AUC:93.09% and EER:14.04% is observed after
68 epochs when training without transfer parameters.

3.4.2 GoogleNet-based covert photo classification
architecture

GoogleNet [18] was the winner of the ILSVRC 2014.
The network is 22 layers deep when counting only lay-
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Fig. 2 An illustration of the three DCNN-based covert photo classifi-
cation architectures. The source images are first resized to a fix size of
256×256 and then are subcropped to different input size (227×227 for
AlexNet and 224× 224 for GoogleNet and VGGS networks) and after
passing through a number of convolutional, subsampling, and optional

fully connected layers, the networks finally output the class scores of
covert and non-covert. The DCNN-based networks are trained end-to-
end (from the raw image pixels on one end to class scores at the other)

ers with parameters. Figure 2b describes the architecture of
GoogleNet, and we omit the details of the network, which is
available from [18]. The input image size is of 224×224, and
after passed through two convolutional layers, the resulting
feature maps are then fed to a series of inception modules.
At the top of the network, average pooling instead of fully
connected layers is performed. The inception module is a
combination of multiple convolution layers and a parallel
pooling with their output filter banks concatenated into a
single output vector forming the input of the next stage. In
these layers, the filter size is restricted to 1 × 1, 3 × 3 and

5×5. This architecture leads to a dramatically reduced num-
ber of parameters in the network, which is 12 times fewer
parameters than AlexNet.

We train GoogleNet-based models using stochastic gradi-
ent descent with a batch size of 8 (due to memory limitation,
this is the largest value we can set in our 2GB GPU) exam-
ples, momentum of 0.9, and weight decay of 2 × 10−4. The
base learning rate starts at 0.001 and is decreased by a fac-
tor of 10, until the test set accuracy stops improving. Best
performance of AUC:97.71% and EER:7.85% is reached
after 13.6 epochs when transferring parameters from Ima-
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geNet pre-trained model. By contrast, the best performance
of AUC:90.82% and EER:17.40% is observed after 15.5
epochs when training from scratch.

3.4.3 VGGS-based covert photo classification architecture

TheVGGnetwork [38] was proposed by Chatfield et al. from
theVisualGeometryGroup at theUniversity ofOxford, and it
includes three versions (the fast version VGG-F, the medium
versionVGG-M, and the slow versionVGG-S)with different
accuracy/speed comparisons. Here we use the slow but more
accurate version VGG-S (denoted VGGS for simplicity) net-
work. Similar to AlexNet [17], VGGS network contains five
convolutional layers and three fully connected layers, and its
architecture is described in Fig. 2c. The input is a 224× 224
RGB image, and in conv1 layer it uses 7 × 7 filters with
smaller stride 2. In conv3, conv4, and conv5 layers, more
filters (512 instead of 384 and 256) are used than AlexNet.
The configuration of fully connected layers (fc6, fc7, and
fc8) is the same with AlexNet: the first two have 4096 neu-
rons each, the third performs two-way covert classification
and has only two outputs (covert and non-covert). All hidden
layers are equipped with ReLU activation unit, and the final
layer is the softmax layer.

The VGGS training procedure follows that of [38], learn-
ing on the Covert-2500 dataset using stochastic gradient
descent with momentum. A mini-batch size of 10 is used to
update the parameters, starting with a learning rate of 10−4,
in conjunction with a momentum term of 0.9. The training
is regularized by weight decay, and the L2 penalty multi-
plier is set to 5 × 10−4. Best performance of AUC:97.76%
and EER:8.05% is reached after 7.6 epochs when trans-
ferring parameters from ImageNet pre-trained model. By
contrast, best performance ofAUC:79.32%andEER:29.20%
is observed after 20 epochs when training from scratch.

The ROC curves of the three DCNN-based architectures
with parameters transferred from ImageNet and trained from
scratch are illustrated in Fig. 3. The figure shows that the
results of all DCNN architectures with training from scratch
(with random initialization) on the Covert-2500 dataset show
drastically decreased performance. This is understandable
since the training set is insufficient in size. However, when
transferring parameters from ImageNet pre-trained models,
VGGS-based architecture reaches best performance. It is
interesting to see that all the three DCNN-based architec-
tures, which are fully trained, outperform the hand-crafted
feature methods.

3.5 Detailed analysis of what DCNN learned

AlthoughDCNNhas demonstrated excellent performance on
a variety of challenging machine learning tasks, it has long
been thought of a series of black boxes because it is difficult
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Fig. 3 ROC curves of three DCNN-based covert photo classification
algorithms trained from scratch and transferring parameters from pre-
trained ImageNet models, respectively. The ROC curve of hand-crafted
method in [7] is also listed for comparison

to exactly understand their inner workings. In recent years,
researchers have developed a series of algorithms [53–57] to
expose the settings inside these black boxes and visualize the
internal structure in an attempt to better understand exactly
what DCNN has learned.

Figure 4 visualizes the learned filters of the first convo-
lutional layer. All the networks parameters are initialized by
transferring from pre-trained models on ImageNet and then
fine-tuned on the Covert-2500 dataset. The first-layer filters
exhibit human interpretable values, similar to Gabor filters or
edge detectors and color blobs used inComputer Vision. This
phenomenon appears in many datasets and tasks [17,41].

Figure 5 demonstrates the activationmapswhich followed
the procedure of [55]. In Fig. 5, all the nine input photos are
covert, and the discriminative image regions used by DCNN
to identify covert photos from non-covert ones are high-
lighted. As we can see from the activation maps, different
networks use different discriminative regions which means
they have learned different internal representations. Most of
the dark occlusion regions in the photos caused by the hidden
camera are highlighted, and this infers that DCNN actually
learns the intrinsic characteristics similar to human instincts.
When the predicted score is mapped back to the convolu-
tional layer, fully connected layers will lose the ability to
localize objects. When we compute these activation maps,
we remove the fully connected layers before the final out-
put and replace them with a global average pooling layer for
AlexNet and VGGS, while GoogleNet remains unchanged.
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Covert photo classification by deep convolutional neural networks 629

Fig. 4 Visualization of learned filters of the first convolution layers.
All the three networks are pre-trained on ImageNet and then fine-tuned
on the Covert-2500 dataset. Each single patch corresponds to one filter,

and all the filters resemble either Gabor filters or color blobs. aAlexNet
(96 learned filters, size 11 × 11). b GoogleNet (64 learned filters, size
7 × 7). c VGGS (96 learned filters, size 7 × 7)

Fig. 5 Activation maps. The discriminative regions which DCNN used for covert photo classification are highlighted. The first row is the source
covert example images; the second row is the activation maps of AlexNet; the third row is the activation maps of GoogleNet; the last row is the
activation maps of VGGS

4 Covert-related attributes classification

Inspired bywork of Zhang et al. [58] which exploits auxiliary
attribute to improve the landmark detection or face align-
ment task, we also investigated the possibility of leveraging
covert-related attributes to improve the final covert photo
classification performance.

Apart from its final category, an image also hasmany other
attributes. An attribute within the context of computer vision
is defined as some semantic or abstract quality which differ-
ent categories share [59]. Automatic learning and recognition
of attributes can complement category-level classification
and therefore improve the degree to which machines per-
ceive visual content [60–65].
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Fig. 6 Framework of covert-related attributes classification and a
two-stage parameter transferring method leveraging these auxiliary
attributes to improve the final covert photo classification performance.
First, the pre-trained DCNN parameters on the ImageNet are trans-
ferred to the intermediate task of covert-related attributes classification

and fine-tuned, and then the fine-tuned parameters on the intermedi-
ate task are transferred to the final covert photo classification task. In
the multi-label attributes classification task, sigmoid cross entropy loss
layer is used

Table 1 Covert-related attributes

Attributes Positive (1) Negative (0)

A1-Color richness Rich Otherwise

A2-Image brightness Bright Otherwise

A3-Color saturation High Otherwise

A4-Image contrast High Otherwise

A5-Body wholeness Whole body Otherwise

A6-Dressing Naked Otherwise

A7-Pornographic Porn Otherwise

A8-Depth of focus Short Otherwise

A9-View angle Good Otherwise

A10-Image composition Good Otherwise

A11-Capturing distance Small Otherwise

A12-Blur High Otherwise

A13-Noise High Otherwise

In this section, a two-stage parameter transfer method is
exploited. In the first stage, the pre-trainedDCNNparameters
on ImageNet are transferred to an intermediate task of covert-
related attributes classification and fine-tuned, see Fig. 6
transfer parameters 1©. Then in the second stage, the fine-
tuned parameters on the intermediate task are transferred to
the final covert photo classification task, see Fig. 6 transfer
parameters 2©.

As stated in [7], somevisual attributes play important roles
for human decisionmaking of photo covertness, and 13 hand-

engineered attributes are used for covert photo classification.
These 13 covert-related attributes, denoted as A1, A2, …,
A13, are listed in Table 1. In this paper, we first explore
DCNNarchitectures for these covert-related attributes classi-
fication.We use the threeDCNNarchitectures in the previous
section, i.e., AlexNet, GoogleNet, and VGGS. The attributes
classification is a multi-label task, where each input image
has multiple binary labels. The DCNN networks are trained
using a sigmoid cross entropy loss layer to replace the soft-
max with a loss layer. The multi-label vector of each input
image is feed to Caffe in HDF5 format. The label is a 13-
dimension binary vector, and the 13 attributes are listed in
Table 1. If an attribute is positive, it is labeled as 1; otherwise,
it is labeled as 0. Figure 7 demonstrates the ROC curves of
13 covert-related attributes. Figure 8 shows the accuracies
(1-EER) of attributes classification by three DCNN architec-
tures and the hand-crafted method used in [7] which exploits
eight features together to estimate each visual attribute. Only
11 attributes are estimated in [7], as the last two attributesA12
(“blur”) and A13 (“noise”) are directly defined on the input
image by the blind image quality index (BIQI) detector [66].
The DCNN-based architectures demonstrate approximately
equivalent results compared with hand-crafted method for
covert-related attributes classification.

At the second stage, the fine-tuned parameters of covert-
related attributes classification are transferred to the covert
photo classification. Figure 9 demonstrates the ROC curves,
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Fig. 7 ROC curves of covert attributes classification by DCNN-based architectures. a AlexNet. b GoogleNet. c VGGS
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and the curves show that all the DCNN-based architectures
with transferred parameters are within close proximity and
surpassing hand-crafted method in covert photo classifica-
tion. In order to further enhance the classification effect, we
fuse the bestmodels ofAlexNet, GoogleNet, andVGGS (i.e.,
AlexNet-ImageNet-transfer, GoogleNet-ImageNet-transfer,
and VGGS-attribute-transfer). Fusion is performed at the
final softmax layers, and the softmax scores of individual
network are combined by a weighted sum rule to produce
the final score fusion result. For AlexNet, GoogleNet, and
VGGS, the weights are set to be 0.2, 0.3, and 0.5, respec-
tively. The final fusion of three DCNN-based architectures
takes 41 ms to deal with an image (about 24 fps) with GPU
acceleration.

At last, all the experimental results are summarized in
Table 2. It shows that among all the explored individual
DCNN-based architectures, the VGGS-based architecture
which transferred from auxiliary attributes model reaches
the best result. The fusion of three DCNN-based archi-
tectures further boosts the classification performance and
achieves an average classification rate (1-EER) of 0.925
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Fig. 9 ROC curves of covert photo classification transferred from Ima-
geNet and attributes models. The ROC curve of hand-crafted method
in [7] is also listed for comparison
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Table 2 Summarization of
experimental results of different
DCNN-based architectures

Network AUC (%) EER (%) 1-EER (%) Epochs

AlexNet-scratch 93.09 14.40 85.96 68

AlexNet-ImageNet-transfer 97.29 8.65 91.35 40

AlexNet-attribute-transfer 97.12 9.40 90.60 34

GoogleNet-scratch 90.82 17.40 82.60 15.5

GoogleNet-ImageNet-transfer 97.71 7.85 92.15 13.6

GoogleNet-attribute-transfer 97.69 8.40 91.60 12.8

VGGS-scratch 79.32 29.20 70.80 20

VGGS-ImageNet-transfer 97.76 8.05 91.95 7.6

VGGS-attribute-transfer 97.84 7.80 92.20 7.6

Fusion of AlexNet, GoogleNet, and VGGS 98.14 7.50 92.50 –

Hand-crafted 95.29 10.60 89.40 –

AUC area under a receiver operating characteristic curve, EER equal error rate
Bold values indicate the best result

which significantly outperforms the result (1-EER) of 0.8940
of hand-crafted feature methods.

5 Conclusion

Instead of exploiting experience-dependent hand-crafted
manual features, we have introduced DCNN-based architec-
tures to automatically discover intricate structure and learn
the representations for covert photo classification. We have
demonstrated that the performance ofDCNN-based architec-
tures (AlexNet, GoogleNet, and VGGS) when transferring
parameters from ImageNet pre-trained models significantly
surpass those training from scratch.We also investigate lever-
aging auxiliary attributes to improve the final covert photo
classification performance. A two-stage parameter transfer-
ring method is exploited. Firstly, the pre-trained DCNN
parameters on the ImageNet are transferred to an interme-
diate attributes classification task, and then the fine-tuned
parameters on the intermediate task are transferred to the
final covert photo classification task. Experimental results
demonstrate that all the fully trained DCNN-based architec-
tures are within close proximity and surpassing hand-crafted
method in covert photo classification. The fusion of three
DCNN-based architectures shows enhanced performance
over individual networks.
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