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Abstract In this paper, the problem of automated scene
understanding by tracking and predicting paths for multiple
humans is tackled, with a new methodology using data from
a single, fixed camera monitoring the environment. Our main
idea is to build goal-oriented prior motion models that could
drive both the tracking and path prediction algorithms, based
on a coarse-to-fine modeling of the target goal. To imple-
ment this idea, we use a dataset of training video sequences
with associated ground-truth trajectories and from which we
extract hierarchically a set of key locations. These key loca-
tions may correspond to exit/entrance zones in the observed
scene, or to crossroads where trajectories have often abrupt
changes of direction. A simple heuristic allows us to make
piecewise associations of the ground-truth trajectories to the
key locations, and we use these data to learn one statisti-
cal motion model per key location, based on the variations
of the trajectories in the training data and on a regulariz-
ing prior over the models spatial variations. We illustrate
how to use these motion priors within an interacting multiple
model scheme for target tracking and path prediction, and
we finally evaluate this methodology with experiments on
common datasets for tracking algorithms comparison.

Keywords Multi-pedestrian tracking · Interacting multiple
model methods · Scene understanding · Particle filter
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1 Introduction

Automated scene understanding is a key element in making
possible that the thousands of video surveillance systems in
operation all around the world could be used to their full
potential, in particular to trigger early alarms, without the
need for a constant supervision of human operators. In this
work, we propose a methodology for modeling, tracking,
and predicting human motions within crowds. Our motion
models are fed by data received from a video surveillance
camera and are goal oriented. The main idea is to build goal-
oriented statisticalmotionmodels that could be used as priors
for both tracking and path prediction, based on a coarse-to-
finemodeling of the target goal. Thisway,we infer the goal of
each pedestrian present in the visible part of the environment,
and we can monitor closely targets that will likely reach one
specific zone of interest.

Our main underlying assumption is that pedestrians do,
most of the time, follow a path with a precise goal well in
mind. Also, given a specific goal, we assume that the typical
trajectories of pedestrians in a scene are more likely to be
modeled by simple statistical models. However, under the
observation of a limited field of view surveillance camera,
the notion of goal is not always easy to define. In this work,
goals will be either areas where targets leave or enter the field
of view of the camera, or crossroads within the targets paths,
i.e., areaswhere paths have often abrupt changes of direction.
Moreover, as the notion of goal may be relatively coarse
when one is located far from it, and as it could be refined
when getting closer to it, our idea is to extract a hierarchical
set of representative goals, with “coarse” goals (root) and
refined ones (sub) and learn a statistical model that represents
the typical dynamics of those pedestrians sharing the same
goal. Then, in a second time, the learned models are used as
statistical priors in visual tracking so as to cope betterwith the
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traditional problems of visual tracking, such as occlusions.
We also use these priors to performprediction onwhether one
target will reach one specific goal, so as to launch preventive
alarms. The main elements of our system are illustrated in
Fig. 1.

This paper extends a work previously published in [28]. In
particular, in this version,we extend the concepts presented in
the aforementioned work in two directions: (1) we propose
a new scheme for handling possible goals for pedestrians
moving in a scene, with a hierarchical structure that allows
to refine the predictive models when getting closer to them,
and (2) we propose and evaluate a framework for target path
prediction that integrates the uncertainties on the prediction
horizon.

This paper has the following structure: Related work is
presented in Sect. 2; then, an overview of our methodology
is given in Sect. 3; in Sect. 4, we describe the goal-wise sta-
tistical models for our motion priors; in Sect. 5, we give an
insight about how visual tracking uses these motion priors;
Sect. 6 describes a proposal that use our goal-wise motion
prior models to predict the pedestrian path and, last, Sect. 7
presents evaluations of our methodology, both on their track-
ing and prediction performance.

2 Related work

In the fields of mobile robotics and computer vision, there
have been many works focused on extracting statistical mod-
els for the motion of pedestrians and using them as motion
priors in tracking applications. Here we mention a few of
them.

In [7], a framework to perform the tracking of people
from a mobile robot is defined around the idea of motion
patterns. The training data are acquired with a laser scanner
as fixed-length trajectories of individuals wandering in the
environment. The trajectories are clustered with a variant of
expectation–maximization (EM) into representative trajec-
tories (coined as motion patterns). A hidden Markov model
is then learned to give a prediction of the people position.
Here, we do not focus on statistical models at the level of
trajectories but instead at the level of locations.

In [25], the context is very similar to [7], as the application
is the tracking of people in indoor spaces with laser scan-
ners, and an approach based on Kalman filters is proposed. It
includes social forces as described in the simulation commu-
nity, with driving forces derived from the intended velocity
and direction, reactive forces derived from other pedestrians
and obstacles, and contact forces derived from the environ-
ment. The driving force is defined based on the notion of
a virtual goal, namely a short-term goal to reach. This is
an important difference with our work, since we reason on
long-term goals instead. Also, the reactive and contact forces

Fig. 1 Our systemperforms simultaneous tracking and goal estimation
through model selection, with an interacting multiple model scheme
integrated within a Bayesian tracking framework. The multiple models
in competition use goal-wise motion priors learned from training data.
In that figure, we display target visual tracks at some point of a test
sequence, and the color indicates themost probable goal at each instant.
a View 1, b View 2

depend on the knowledge of amap of the environment, which
we do not use here.

In [26], in the same context, the authors propose a place-
dependent so-called spatial affordancemap, that stores a grid
of Poisson models for the appearance/disappearance rate of
pedestrians at a specific place. The parameters in each cell are
built with data acquired during a learning phase. Moreover,
they include a place-dependent predictive model to be used
during occlusion events, based on a prior on thewalkable area
builtwith the same track confirmation events used in the train-
ing phase. In our work, we also rely on the place-dependent
nature of the prior motion models to be used, and we use a
similar strategy for the case of visual tracking. However, we
do not use an explicit probabilistic model for the map, nor
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rely on large databases of samples to build the models and
we introduce the concept of hierarchical goals to produce
several layers of prior maps that are used in an interacting
multiple model.

In [5], in the context of providing algorithms for a safe
cooperation between walking humans and industrial robots
within an assembly line, the authors use the aforementioned
work [7] to classify trajectories of humans walking within
the working area. Then, with the help of a hidden Markov
model, the learned patterns are used to predict which one of
the preselected regions of the environment will be attained by
thewalkinghuman, and atwhich time.Thiswork shares some
elements with ours, but lacks of generality, as, in particular,
the interest zones are entirely predefined.

In [10], the idea of conditioning the motion models to
the goal of pedestrians, that lies at the core of our approach,
is developed; the set of goals is learned from a database of
trajectories, and amotion planner generates trajectories to the
goal that give the main trend of the motion direction in the
tracking phase; however, for the planning purposes, it needs
a full map of the environment, which we do not assume to
have in our case. Instead, we rely on statistical models built
with the training data to learn the most probable trajectories
directions, without the need of a motion planner.

In [1], based on the analysis of very large train stations
datasets, the authors use the linear programming method-
ology of [23] to perform detection-based tracking among
crowds. A social affinity model learned from the collected
data enforces social behaviors, which are incorporated as
transition costs between tracklets. Also, priors between typ-
ical entrance/exit pairs are used. In [22], a similar tracking
technique is integrated through random forests with interac-
tion models learned automatically from low-level features.

The work in [8] also shares a number of characteristics
with ours. The targets motion is modeled through so-called
behavioral maps, learned from video data. What is differ-
ent from our work is that the statistical model built this
way contains only position-related information and also that
the distributions learned at each point are conditioned to
behavioral maps and positions. In our case (see Sect. 4), the
conditioning is relative to the targets position and velocity.
Hence, when “complex” behaviors are represented with dif-
ferent map transitions in [8], they can be modeled within a
single goal-specific map in our model. This allows us for
example to simply encode a piece of information like: “at
that particular place, people often make u-turns”. Another
difference is that, instead of using interpolation of map tran-
sitions and local motions, based on their evaluations at a
limited number of control points, we use more training data
than only tracklets and rely on regularization to cope with
missing information.

In [18], the authors predict the long-term behavior of
pedestrians in a public space, where these pedestriansmay be

the object of interactions with service robots. By analyzing
hours of video footages from the corresponding scene, the
authors first determine goals in the scene, which are points
at which trajectories cross relatively often. As in our work,
a statistical model for typical motion directions is learned
on a cell basis with an n-gram representation of the motion
direction, which allows to determine the location of the goals
with an EM-like scheme. Then, the prediction of the next
goal to reach is done within a Bayesian framework. In com-
parison, our statistical model is also aimed at predicting the
goal of amoving target, but it includes additional information
about velocitymagnitudes, conditionally to themotion direc-
tion, which may give better estimates, e.g., of time-to-goals.
Moreover, we use a regularization framework that avoids the
use of huge amounts of training data that are needed in their
approach.

In [13], the authors develop the notion of semantic regions,
which are clusters of frequent trajectories among sets of
trajectories sharing the same entrance/exit. These semantic
regions are then used for path prediction. For this application
to crowd analysis, they do not rely on pedestrian detection
or tracking, but on a grid-like decomposition of the scene,
similar to ours, and histogram-based motion models defined
over the grid, and built with optical flow data. Entrances,
exits, and semantic regions are discovered automatically by
simulating particles over the learned distributions.

In the work of [33], a hidden Markov model models the
probabilistic structure of possible states (positions) in rela-
tion to the goals pursued by the moving targets. Goals are
determined (in a similar fashion than ours) by clustering
termination points of trajectories. The growing neural gas
algorithm is used toupdate thismodel structure and its param-
eters incrementally,making this approach a learn-and-predict
framework, instead of a learn-then-predict one. The adaptive
nature of this approach is a feature we want to integrate in
the long run on our own system; however, in this paper, we
have focused mainly on (1) the probabilistic model by itself,
(2) the hierarchical structure of goals that allows us to con-
trol the computational times in tracking and prediction, and
(3) the use of techniques (regularization) that allows not to
depend on too many training data.

In [2], tracking on very dense crowds is handled by
simulating collections of interacting particles, driven by col-
lective behavioral patterns encoded by potential functions
called floor fields. These fields capture both “normal” crowds
behaviors, local behaviors of the crowd around the tracked
target, and the repulsion induced by the boundaries around
the walking areas. In our approach, first, we keep a proba-
bilistic representation for the prior, conditioned to positions
and velocities, which allows to model different local motion
tendencies; also, we do not handle very dense crowds. The
approach shares features with ours, as for example, the grid-
based representation of the motion priors.

123



344 F. Madrigal, J.-B. Hayet

In an another related field, at the intersection of mobile
robotics and study on human locomotion, researchers have
shown that, for a pair of configurations (position and orien-
tation) in the plane and without obstacle, pedestrians tend to
choose a common walking pattern among an infinite number
of solutions [4,17]. In particular, the aforementioned works
confirmed the intuition that human walking can be reason-
ably approximated by a differential system with the classical
non-holonomic constraint.

3 Approach overview

Here follows a general overview of our three-step method-
ology. The basic input we need is a set of training video
sequences from the observed scene, with ground-truth (GT)
extracted trajectories. Then:

– We process the training video sequences to produce a
hierarchy of goals with the GT pedestrians trajectories.
This is done automatically (see Sect. 4.1). A typical out-
put of this step appears in Fig. 5.

– We learn one motion statistical model, coined as “motion
prior field” (MPF), per goal in the learned hierarchy. Each
MPF is learned by collecting motion information from
GT data (i.e., labeled trajectories) and optical flow data
and by regularizing the obtained model (see Sect. 4.5).
Examples of learned models are given in Fig. 9a, b.

– We run our tracking systemwhile taking advantage of this
learned multiple-goal motion prior field (MG-MPF) (see
Sect. 5) to perform target tracking while simultaneously
inferring the goal a target is aiming at. Note that we will
illustrate the goal inferencewith a visual tracking system,
but any form of tracking (i.e., from amobile robot) could
be used.

4 Multiple-goal motion prior field

In this proposal, the inputs are a set of ground-truth target
trajectories taken from the same camera with which the auto-
matic visual tracking will be done. These GT trajectories
are automatically segmented in terms of goals and sub-goals
(Sects. 4.1, 4.2, and 4.4). Then, they are used to learn the
set of goal-based motion prior fields (MPF, Sect. 4.5). Fig-
ure 2 depicts an example ofmanually labeledGT trajectories,
taken from the PETS2009 database, that we will describe
in Sect. 7. The only requirement is that as many individual
trajectories as possible should be available for the learning
stage. However, we use much less than the hours of data
required in many approaches mentioned in Sect. 2, such as
[18]. As explained below, we first automatically extract a
hierarchical set of goals within the scene and we generate

Fig. 2 Ground-truth (GT) example: GT trajectories for all visible
pedestrians in a frame of the Town Centre video sequence. Those tra-
jectories are used in the learning step and are extracted from [30]

from each GT trajectory a set of sub-trajectories which are
associated to one of the goals. Figure 5 illustrates such a set
of sub-sequences, where the color indicates the goal id (one
color per goal).

4.1 Determination of goals

The goals are generated automatically by clustering a set of
key points extracted from the GT trajectories. Let us state
that, given a GT trajectory, we first select as key points the
entrance and exit points in the field of view of the camera,
as several other approaches do. In addition, we select any
point where there exists a strong change of orientation. These
points may represent sudden goal changes, or points where
physical constraints impose strong curvatures to the trajec-
tories. This could be for example because of the curvature
of a road. To detect these changes of orientation, we detect
localmaxima of orientation variations along the ground-truth
paths. A set of key points extracted in this manner is depicted
as the set of crosses in Fig. 4.

The next step is the automatic determination of clusters
among these key points. A critical element—and a quite
classical problem— is to select the number of clusters k to
search for in the clusteringmethod. This number is estimated
through the “jump method” [32]. Given an upper bound n to
the number of clusters, it makes use of a standard clustering
algorithm such as K-means [19] for k = {1 . . . n} to com-
pute the distortion of the resulting clusters. It approximates
the features distribution through a mixture of k Gaussians
of fixed variance. The distortion is evaluated as the minimal
average Mahalanobis distance among clusters:

dk = 1

p
min

μ1...μk
Er

[
(r − μr)

T Γ −1 (r − μr)
]
,

where r = (x, y) are the GT key points and p = 2 the
dimension of r. Γ is a fixed covariance matrix, μ1 . . . μK
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are the centroids computed by K-means and μr is the closest
centroid to the key point r.

With successive computed values of dk for all k between
1 and n, this algorithm generates a distortion curve which
tends to zero when k becomes large. As in [32], we select k∗
(the optimal k) as the position of the highest decrease along
the dk , taken at some power Y . The pseudo-code for the jump
method is as follows:

Algorithm 1 Jump method
Let Y = (p/2) .
Set an array A of size n + 1 with A[0] = 0
for k = 1 . . . n

– Apply k-means.
– Set dk as the distortion of the clustering (see above)
– A[k] = d−Y

k

Compute the variations along the distortion curve.
for k = 1 . . . n

– J (k) = A[k] − A[k − 1].
Return k∗ maximizing J .

We use all the key points in this process. However, some
points can be spurious or noisy, causing the jump method
to group them into small clusters, i.e., 5 points or less. In
that case, we assign them to another cluster by finding the
closest centroid to each point. We define a new cluster from
a key point label if the minimal distance to existing centroids
is higher than a given threshold. Finally, any cluster with
too few points is discarded and so is the corresponding sub-
trajectory.

Then, K-means is applied again over all the key points,
with k = k∗ and starting with the centroids found in the
previous step. Finally, the goals are defined as the cen-
troids of the key points clusters. They appear as circles in
Fig. 3 and their covariance is depicted with the ellipses.
In the offscreen region, at the bottom of this image, we
can observe some clusters/trajectories. This is because the
ground-truth trajectories (depicted as the detected bound-
ing box feet points) are inferred from the detected head of
pedestrian (the pedestrian height being the average height of
an adult). Thus, a trajectory starts when a pedestrian head
is detected and it ends when the head leaves the field of
view.

4.2 Hierarchies of goals

After computing the clusters, our proposal puts in competi-
tion all the potential goals through goal-dependent motion
models (see Sect. 4.5). However, we observe that some of
the obtained centroids are spatially close enough to cor-
respond to the same real entrance/exit, see for example
Fig. 3. Hence, for targets far enough from those centroids,

Fig. 3 Clusters obtained with training trajectories from the Town Cen-
tre video sequence [6]. The circles and the crosses depict the starting
and ending points of each sub-trajectory, respectively. The colors are
related to each of the six clusters, and the sub-trajectories take the colors
corresponding to their associated goals

with one of it being the real goal, there is computational
waste at estimating motion distributions that differ signif-
icantly only when the targets become close to their goals.
Moreover, as will be described in the next sections, the com-
plexity of our approach is linear in the number of goals
in competition. To make it scalable, we need to control
the number of models simultaneously active in the tracking
module. That is why we propose a hierarchical goal rep-
resentation that both reduces the computational cost of our
overall approach and maintains the precision of the motion
prediction. We build it in a bottom-up fashion as explained
hereafter.

This process consists in applying again the steps of
Sec. 4.1 using the cluster centroids instead of the key points.
First, we compute the optimal number of clusters through
the jump method, with a range of search between 1 and
the current number of clusters. The results of this second
clustering gives us upper-level goals. A key point is finally
associated to one or more clusters at different levels of clus-
tering, forming a tree of goals. The process is repeated while
necessary, i.e., until the new optimal number of clusters does
not evolve anymore. In all our examples, only two levels are
used. Hence, in the remaining, the ng top-level centroids are
called root-goals and bottom-level centroids are called sub-
goals. There are ns(g) such goals for a given root-goal g.
Figure 4 shows the two-level clustering resulting from this
proposal. The lines at ground-level represent target trajec-
tories. The crosses depict the key points, while circles are
the root-goals, squares are the sub-goals, and ellipses are
their covariance. We can observe that some goals have two
sub-goals (cluster 2, in red), while others do not have any
(cluster 3 in yellow) and some have 3 (bottom-right cluster
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Fig. 4 Ground-truth (GT) trajectories key points and their correspond-
ing clusters in the Town Centre video sequence. The ellipses with
numbers depict the goal id, each with a different color. Each key point
(cross) is associated to one goal and is drawn with the same color as
the goal target. The ground-level lines depict GT trajectory segmented
according to the associated goal

4, in magenta). In the following, we will mainly refer to the
sub-goals indices with the letter s, and to the root-goals with
the letter g. We will also refer to the root-goal associated to
s as g(s).

4.3 Goals zones of influence

As mentioned above, sub-goals s are taken into account only
when a target is close to a goal zone of influence. These
zones are computed through the covariance matrix of the
key points associated to the root-goal g(s), assuming that
they follow a Gaussian distribution. This zone, referred to as
Rg(s), is defined as a 2σ ellipse, given the covariance matrix
eigenvalues. An example is given in Fig. 6. As some zones
could be too narrow, like ellipse 7 (left side) of Fig. 4, we
project the corresponding ellipses to the world plane, with
the camera calibration, and set any of the axis to a mini-
mum size of 2m if they have a length inferior to that value.
Then, we re-project those rectified ellipses back to image
plane.

4.4 Segmentation of GT trajectories

Finally, the GT trajectories are segmented in function of the
determined key points and labeled with the id of their asso-
ciated goals. In other words, a trajectory is segmented from
its beginning until the first key point found or between two
key points. Then, each fragment is labeled according to the
labels of the final key point, which consists of the branch
computed by the hierarchical technique of Sect. 4.2. This

Fig. 5 Clustering of the training trajectories with samples from the
PETS2009 S2L2 video sequence [30]. The circles and crosses depict
the starting and ending points of each sub-trajectory, respectively. The
colors are related to each of the four clusters and the sub-trajectories take
the colors corresponding to their associated goals. a View 1, b View 2

way, all segments have their leaf-root branch from the goal
hierarchy.

Thus, they can be used for the learning of goal-dependent
motion priors. Typically, this process may generate goals in
the middle of the scene where the pedestrians are walking to,
or goals at the exit zones. Figs. 3, 4 and 5 show the trajectory
segmentation resulting from one- and two-level goal hier-
archies within the TownCentre dataset and one-level goal
hierarchy within the PETS2009 dataset, respectively. The
lines at ground-level represent target trajectories already seg-
mented, and their color is the same as the top-level goals. We
can observe goal switches as they change direction, i.e., the
yellow line at the bottom of Fig. 4 continues its upward path
until it reaches goal 3 (yellow) and then switches to goal 6
(orange) to finally attain goal 7 (light blue).
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Fig. 6 Illustration for the learning of sub-goal motion prior field. a The
2σ ellipse associated to root-goal 2 is computed from the covariance
matrix learned from the key point clustering process. b The MPFs for
sub-goals 0 and 1 are only learned within the ellipse R2 (which is
R0 = R1 = R2). a Root-goal 2 and its sub-goals 0 and 1, b MPF
learning from GT trajectories

4.5 Learning goal-specific motion prior fields

The learning step is adapted froma frameworkwehave devel-
oped in a previous work [29], and that we briefly review here.
Observe that our new clustering approach described before
gives us a hierarchy of goals; this allows to learn goal-driven
motion priors and to take advantage of the hierarchical struc-
ture of goals. For each root-goal (i.e., a goal which is not a
sub-goal of another), we compute a motion prior model as
follows.

4.5.1 Motion prior fields for root-goals

First, we detect visual features along the video sequences
and track them as long as possible with a sparse optical flow
algorithm, i.e., Kanade-Lucas-Tomasi tracker (KLT) [9].
This gives us a set of tracklets (short, pointwise trajectories).
Each tracklet is associated to its closest GT sub-trajectory,
so that we can label the tracklet with a root-goal id (the one
associated to the closest GT sub-trajectory) and use it as a

data to build the motion prior field (MPF) of the respective
root-goal.

The MPF is a statistical model associated to each root-
goal. We denote the state for a single target as a vector
including the target position, orientation and its velocity
(in polar coordinates) Xt = [xt , yt , θt , vlt , vθ

t ]T . To define
the MPF for each goal, we first divide the full image into
a number of spatial cells and divide each 2D cell again
into D possible discretized entry velocity orientations vθ

q .
This way, for a goal g, we obtain a 3D grid of C cells{
cq = (rq , vθ

q )
}
1≤q≤C

. Then, in each cell, based on the

goal-specific data from the KLT tracklets, and on the col-
lected ground-truth trajectories, a state transition distribution
conditioned to the root-goal g and the current cell is built
as [29]:

p (Xt |Xt−1, g) ≈ p
(
vlt |cq (Xt−1) , g

)

×p
(
vθ
t , rt |cq (Xt−1) , g

)
,

where r = (x, y) is the position. Implicitly here, the pedes-
trians motions are non-holonomic [4] (vθ

t ≈ θt ). The model
includes, for each goal g and each cell cq :

– A discrete distribution for the orientation transitions,
p(vθ

t , rt |cq(Xt−1), g), where cq(Xt−1) is the cell associ-
ated to state Xt−1. For the D possible directions, a target
may follow from the current cell, we keep the correspond-
ing frequency among the training data.

– The first two moments of p(vlt |cq(Xt−1), g) (as a con-
tinuous, Gaussian distribution), also computed from the
training data.

Experimentally, we obtained acceptable results starting
from D = 8 directions. We present a few raw results in
Figs. 8a, b, where we have also superimposed some trajec-
tories associated to the corresponding goal.

4.5.2 Motion priors fields for sub-goals

Once motion prior fields have been computed for each root-
goal, we refine these MPFs for the sub-goals s with the
following two guidelines: (1) far from any sub-goal, the
motion prior will be given by the MPFs associated to root-
goals g; only within the goal zone of influence Rg(s) will
the MPF specific to sub-goal s be estimated, with specific
GT data labeled with its id; (2) the raw MPF for the root-
goal is estimated at the same time as the raw MPF fields
for its sub-goals. This is because the corresponding GT
trajectories are already labeled for both the root- and sub-
goals. Figure 6 depicts these ideas in the sub-goal MPF
learning. The sub-goal zone of influence Rg is computed as
described in Sect. 4.3. Therefore, sub-goal MPFs are learned
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RegReg

Initial

Sub-goals,
level n

Sub-goals,
level n-1

S1 S2

Initial

Fig. 7 Regularization scheme. First, we regularize the sub-goals mod-
els (red square). The optimization process is initialized with an empty
histogram (bottomgreen square). Then, the regularized sub-goalsMPFs
are used as inputs to regularize the root-goals MPFs

only with labeled trajectories inside Rg . Figure 6b shows
how the learning phase uses two trajectories, that both con-
tribute to build the statistical model associated to root-goal 2
(inner red line). However, the (outer line) blue sub-trajectory
also contributes to the model of sub-goal 1 and the (outer
line) green sub-trajectory contributes to the model of sub-
goal 0.

4.5.3 Regularization

It is clear that these raw local distributions within the MPFs
are not smooth, mainly because of the scarceness of train-

ing examples gathered from the ground-truth dataset. As
explained above, we do not expect here to be able to col-
lect hours and hours of training data, as in [18]. That is why,
as described in our previous work [29], we add a regulariza-
tion phase (optimization over a Markov random field with
smoothness terms) of the obtained data so as to complete the
model when data are missing, by using a strong smoothness
prior. The variables to optimize in this optimization scheme
are the histogram entries. This process is done recursively
by taking advantage of the hierarchical structure of our set
of goals and sub-goals. We depict it in Fig. 7. We regularize
the sub-goals priors first (within their corresponding zones
of influence), i.e. the raw data illustrated in Fig. 8, and then,
we proceed to build the regularized model for the common
root-goal shared by these sub-goals as follows:

1. In all intersections of the supports of sub-goals sharing
the same root-goal, merge (sum and normalize) the cor-
responding histograms;

2. Use thismerged representation as an initial input for root-
goal regularization.

Figs. 9a, b show some results after regularization. This is a
key element in our approach, since it allows not to rely on
too many data for this learning stage.

5 Target and goal tracking

Taking advantage of the motion priors built according to the
previous Section, we propose an algorithm capable of track-

Fig. 8 A few raw, un-regularized results for the statisticalmodels asso-
ciated to goals 1 and 2. A subset of all trajectories are drawn to explain
the learning behavior in some particular regions. Each arrow depicts
the value of the marginal over input orientations vθ

i at one fixed direc-

tion vθ
j (the position of the image in the frame giving which direction)

with the arrowmagnitude representing the probability associated to this
direction. The images have been cropped for better readability. a Goal
1, b Goal 2
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Fig. 9 Regularized results for goals 1 and 2. Each arrow depicts the
value of the marginal over input orientations θi at one fixed direction θ j
(the position of the image in the frame giving which direction) with the

arrow magnitude representing the probability associated to this direc-
tion. The central image gives the two main modes (as vectors) per cell.
The images have been cropped for better readability. aGoal 1, bGoal 2

ing the pedestrians motion and also of estimating each target
goal. For this purpose, we estimate the target state by fol-
lowing a Bayesian scheme, implemented through particle
filtering jointly with an interactive multiple model (IMM)
algorithm which allows to incorporate our aforementioned
multiple-goal motion prior fields. The idea is that eachmodel
corresponds to one of the goals (root-goals or sub-goals) and
that those compete with each other through the IMM. Thus,
the tracker should explore at the same time all the possi-
ble goals a target could take. With this in mind, each IMM
motion model uses one goal-specific MPF. At the end, the
filter selects the model (hence, the goal) that fits better to the
target trajectory and appearance.

5.1 Motion model: predicting targets next moves

In the particle filter, the posterior p(Xt |Z1:t ), which we can-
not evaluate directly, is represented by a set of N weighted
random samples generated from a known proposal distri-
bution. Those weighted samples are called particles. The
multi-modality is implemented by assigning one (out of G)
goal-oriented motion prior field (MPF) to each particle, indi-
cated by a label g ∈ {1 . . .G}. Thereby, a particle n with
weight ω at time t is represented by (X(n)

t , ω
(n)
t , g(n)). The

sampling step (i.e., the handling of the probabilistic motion
model within the particle filter framework to set a new par-
ticle state) is realized per MPF by a transition model trg(·).
The sampling of a new particle based on the previous state
is given by

X(n)
t = trg(n) (X(n)

t−1) + ν, (1)

where ν is an additive Gaussian noise with fixed variance.
The index g(n) indicates which goal model the particle n is
associated to. For example, g(n) = g means that the particle
n is associated to the goal g.

This probabilistic transition model trg(Xt−1) includes the
information of the MPF associated to goal g and is used as a
sampling distribution as follows:

1. Determine the cell cq(X
(n)
t−1) the current particle X(n)

t−1
corresponds to;

2. From the learned distribution of g(n), sample a direction
vθ∗ that the target is likely to take;

3. Sample a velocity magnitude vl∗ in the same way;

Hence, the particle stateX(n)
t is updated as a linear combina-

tion of this sample and the current state:

trg(X
(n)
t−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (n)
t−1 + vlt−1 ∗ cos(θ(n)

t−1)

y(n)
t−1 + vlt−1 ∗ sin(θ(n)

t−1)

θ
(n)
t−1 + v

θ(n)
t−1

(1 − α)v
l(n)
t−1

(1 − α)v
θ(n)
t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

α ∗ vl∗
α ∗ vθ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α = 0.5 is a fixed value which controls the contribu-
tion of the current and sampled velocity.

Since all the describedmodels apply on individual targets,
when performing multiple-target tracking, we also include
social forces terms, in that case, repulsion forces among close
targets to avoid trajectory id switches [27].
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Last, we have verified that the model presented up to now
is not very useful when the targets are static. In that case, the
only hint about the current goal pursued by the pedestrian
is his orientation, observed through the image. As explained
below (5.5), we use an observation model that allows to esti-
mate the orientation [11], but that alone, is quite unreliable.
Hence, we add another “goal” model (a random walk with
zero velocity), that we refer to as Constant Position model,
corresponding to static targets “without current goal” for han-
dling this case.

5.2 Goal estimation

In the IMMPF methodology, the goal model g ∈ {1 . . .G}
contributes to the posterior estimation according to its impor-
tance, which is defined by its weight π

g
t . Each model g has

Ng particles associated to it, with a total of N = ∑G
g=1 Ng parti-

cles. The posterior is represented by considering both particle
weights (ω(n)

t ) and models weights (π g
t ):

p(Xt |Z1:t ) =
G∑

g=1

π
g
t

∑
n∈ψg

ω
(n)
t δx(n)

t
(xt ),

s.t.
G∑

g=1

π
g
t = 1 and

∑
n∈ψg

ω
(n)
t = 1, (2)

where ψg
def= {n ∈ {1 . . . N } : g(n) = g} represents the

indexes of the particles that belong to model g and π
g
t is

the posterior probability associated to goal g given the set
of observations Z1:t , i.e., p(g|Z1:t ), which can be updated
as

π
g
t = p(g|Z1:t ) = π

g
t −1ω̃g

t∑G
g=1 π

g
t−1ω̃

g
t
,

where ω̃
g
t are the unnormalized weights of the particles, the

terms π
g
t weigh each model contribution in the mixture, and

ω̃
g
t = ∑

j∈ψg
ω̃

( j)
t sum up the unnormalized weights of all

the particles associated to goal model g (i.e., a set ψg of
particles).

Thus, the most probable goal of the target is the model g
with the highest value π

g
t .

5.3 Resampling

We implement the resampling process as in [27]. First, we
sample over all particles, following a common cumulative
distribution function built with the weights of particles and
goal models. Thus, the best particles from the best goal mod-
els are sampled more often, leaving more particles with goal
models fitting better the observed target motion.

We also re-sample on a permodel basis. Eachmodel keeps
at least a percentage of the whole set of particles to pre-
serve diversity. Note that this resampling process manages
the model transition implicitly, so no prior transition infor-
mation is required (such as in [18]).

The resampling applied over all particles is done every 4
frames and the one per model every 5 frames.

5.4 Goal activation

When a target is far away from any goal, particles are used
only with the ng root-goal models to estimate their new state
as described in Sect. 5.2. It is only when a target is inside a
goal zone of influence that a particle switches to one sub-goal
models s associated to a root-goal g(s). This happens when
the target tracker state (the mean of all particles) gets close
to g(s). In that case, any root-goal particle selects randomly
a sub-goal s in such a way that each sub-goal associated to
the root-goal g(s) has finally the same number of particles.
As, at that moment, there is no indication on which sub-goal
will be the most probable, the selection is done uniformly
and particles associated to a given root-goal g (among ng)
are distributed uniformly among its ns(g) sub-goals. Then,
these particles are updated according to their sub-goalmotion
prior field instead of the root-goal one. Thereby, the number
of goalmodelsG in competition is:G = ng when the target is
far from root-goals; andG = ng+ns(g∗)−1when it is inside
region Rg∗ (see Sect. 4.3), which includes all the ns(g∗)
sub-goals associated to g∗and the ng root-goals, except g∗.
The resampling step is performed as in Sect. 5.3 and con-
siders a minimum number of particles for each sub-goal
too.

5.5 Observation model

We have focused our proposal in the learning of a motion
model with multiple goals, more than in the definition of
new observation models. Hence, we have implemented our
tracking algorithm likelihood models as a combination of
known models from [31] and [11]. The model proposed
in [31] relies on HSV-space color histograms and motion
histograms. From the work of [11], we include a likeli-
hood term that helps us in discriminating target orientations
with respect to the sensor. The body pose angle, which
is discretized into eight directions, is evaluated with a set
of multiple-level histogram of oriented gradients features
(HOG) extracted from the image inside each target candi-
date position. They are decomposed into a sparse, positive
linear combination of training samples, and the orientation
likelihoods are determined based on the resulting weights.
The resulting likelihoods are then classically used to update
the particle weights.
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6 Path prediction

Path prediction is performed similarly as the sampling step
of Sect. 5.1. The predicted path is created by drawing sam-
ples ρ at each step from the proposal distribution, within a
window of time τ ∈ [t . . . t + T ]. These samples are drawn
conditionally to the model g. Starting from the target state
at t :

ρt = x̄i,t = 1

N

N∑
n=1

x(n)
i,t .

The configurations ρτ+1 are sampled as follows:

1. Let cq = (vθ
q , rq) (velocity direction+position) the cell

the sample ρτ corresponds to;
2. Sample a destination cell cq ′ fromamixture of the learned

motion prior p(vθ
q ′, rq ′ |vθ

q , rq) and a von Mises distribu-
tion (with mean θτ and variance 0.5).

3. Sample a velocity magnitude v
m,(n)
i,τ+1 from

p(vmi,τ+1, |v(n)
i,τ , r(n)

i,τ );
4. Given cells cq and cq ′ , build a cubic curve joining the

center cells and tangent to the initial and final orientations
(Hermite interpolation);

5. Apply this path to particle ρτ and sample a point on it
around the position reached given v

m,(n)
i,τ+1 (lateral noise is

also added at this point).

In other words, from the current target state, we find
the cell cq where the target is (according to its position).
Then, we sample a cell from p(vθ

q ′ , rq ′ |vθ
q , rq). The cell

location rq ′ defines a pointing direction. We sample another
pointing direction from a von Mises distribution centered
around the current target orientation. The former extends
the path from the learned MPF while the latter gives pref-
erence to path extensions according to the present target
orientation. Finally, we select the cell cq ′ from the mean of
both samples. Also, we sample velocity magnitude from the
learned distribution. Next, we perform a Hermite interpola-
tion between both cell positions so that we can sample a new
position that the target reaches given the sampled velocity
magnitude.

Figure 10 shows the output of this process.

7 Results

We have tested the described proposal on two benchmarks
of common use in video surveillance, known as PETS2009
[15] and Town Center [6]. The PETS09 dataset consists of
a set of 8 outdoor camera video sequences. We evaluate the
performance of our proposal using views 1 and 2. We train

Fig. 10 Output of our path prediction system. Ground-level arrows
depict the possible future positions of each target in some time horizon.
The set of arrows depict the predicted path for a given goal and share
with it the same color. The arrow thickness is associated to the model
weights, such that the thickest arrows depict the most probable path

our proposal with all sequences of view 1 of this dataset but
the test sequence. We do the same with view 2. We chose
the sequence S2-L1:12-34 to test our learned multiple-goal
motion model in pedestrian tracking. Although it is not the
most difficult sequence in terms of crowdedness, it presents
challenging situations for pedestrian tracking, such as occlu-
sions by clutter, and is likely to generate identity switches.
It includes 21 pedestrians, and some of them wear similar
clothing or change their direction at some point. We have
manually generated a ground-truth (GT) dataset, for each
pedestrian in the scene over all frames of views 1 and 2 of
the PETS2009 S2-L1 scenario. Both videos are processed
independently.

The second dataset consists in a single high definition
video, with 1920×1080 resolution and a frame rate of 25 fps,
of a Town Centre street with a medium-dense crowd, with
always around of sixteen pedestrians visible (see Fig. 11).
The latter makes this sequence challenging due to the multi-
ple occlusions that occur. Also, it contains a lot of pedestrians
with different whereabouts, so that it is a convenient scenario
for our hierarchical goal approach. It is providedwith a hand-
labeled ground-truth (GT) data for the first 7500 frames. In
this GT, bounding boxes are determined based on the head
regions, using the camera calibration and the average size of
an adult. Hence, the GT trajectory at the ground-level could
start outside of the image. We use the first 1000 frames for
testing and the rest for training our goal-orientedmotionfield.

As mentioned above, our tracker is based on the parti-
cle filter which includes an additive Gaussian random noise
when sampling new states X(n)

t (Eq. 1). Thus, every execu-
tion of the tracking algorithm gives unique results. Hence,
the results presented here are the median of 30 executions
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Fig. 11 Tracking on the TownCentre dataset. The ground-level lines
depict the target trajectory, where the color indicates the most probable
goal at each instant

of the same experiment. In all the cases, the variance of the
results is smaller than 0.0001.

7.1 Indicators for tracking performance

We evaluate our tracking algorithm with six standard track-
ing evaluation metrics developed under the US Government
VideoAnalysis and Content Extraction (VACE) program and
the CLassification of Events, Activities, and Relationships
(CLEAR) consortium [21]:

1. Detection-based metrics:
Sequence Frame Detection Accuracy (SFDA) is a
frame-level measure evaluating the spatial alignment of
system output and ground-truth objects. It finds the best
match between targets and GT detections at frame-level
and averages their overlapping over all the sequence.
Small values reflectmissed detections and false positives.
Multiple Object Detection Precision (MODP) mea-
sures the target detection rate and precision, through the
average overlap per trajectory.
Multiple Object Detection Accuracy (MODA) evalu-
ates the ratio of missed detections and false positive.

2. Tracking-based metrics:
Average Tracking Accuracy (ATA) estimates the spa-
tiotemporal overlapping between the output and ground-
truth trajectories, finds their best association through the
Hungarian algorithm and evaluates their average over-
lapping. It penalizes short trajectories and indicates how
well a tracking systemworks as what is desired is to keep
the identity of the target as long as possible, ideally one
tracker per target. It includes the number of detected tar-
gets, missed detections and false positives.
MultipleObjectTrackingPrecision (MOTP)measures
the tracks spatiotemporal precision, through the average
overlap per frame.
Multiple Object Tracking Accuracy (MOTA) is sim-

ilar to MODA but it takes into account the identity
switching of the trackers.

Those six indicators give a tracking quality score between
1 (best) and 0 (worst) and allow to compare proposals.
Note that in the literature, there are several metrics to mea-
sure the performance of a multi-target tracking system. We
chose these indicators since each one is focused to measure
the performance of a specific characteristic. For example,
ATA favors to have only one trajectory than multiple track-
lets, even though the latter covers better the real trajectory.
Meanwhile, MOTA considers gives more importance to the
detection quality. For more details and the mathematical for-
mulation, please see [16] or [21].

A few more details about our implementation: new track-
ers are created from the blobs provided by a foreground
detector algorithm. Trackers are deleted when the overall
likelihood stays under a threshold for a given number of
frames. We set the number of particles per goal model at
100, so that N = G × 100.

7.2 Automatic goal detection

Figures 3 and 5 depict the GT trajectories used in the
goal learning process for both PETS2009 and TownCentre
datasets. The number of goals is automatically computed
using the jump method described above, and as illustrated
in Fig. 12. We note that some trajectories may have differ-
ent goals along time, i.e., trajectories switching to goal 7 in
Fig. 3. In Fig. 13, we see the distortion curve obtained using
points in the image plane as the data points. The optimal value
of k is 4 for PETS2009, view1; it is 8,withmultiple sub-goals
(1–3), for Town Centre. For PETS09, view 2, we obtained
similar results as in view 1. We have set the search range
between 1 and 20 as we know the number of goals should
be within this range. We have tested the clustering algorithm
using key points in both the world and the image plane. In
the former case, key points are projected from the image to
the world plane by using an approximate homography. The
results are very similar both qualitatively (see Fig. 12) and
quantitatively (i.e., small variance). For purposes of clarity,
we present tracking results using the clustering step in the
image plane.

7.3 Evaluation of tracking performance

Figures 1 and 11 show qualitative results on the PETS2009
and TownCentre datasets (respectively) where the bound-
ing boxes depict the tracking results. The left rectangles at
each bounding box represent the contribution weight of each
model (the p(g|Z1:t ) described above), i.e., the dominant
color indicates the model that fits best to the dynamic of the
target. In those images, we can observe the switches between
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Fig. 12 Goal clustering. Top: Results in image plane. Bottom: Clus-
tering in world plane. The circles depict the centroids computed by the
clustering algorithm, the crosses are the key points and the ellipses show
the covariance of each cluster. The color of each element is the one of
the closest centroid

goal models. When the target remains at the same position,
the dominant color in the left rectangle is red which means
that the Constant Position (CP) model is the one who con-
tributes most to the state estimation. When the target moves,
the dominant color changes to the model associated to the
goal that fits best to the target motion. An example of this
is the leftmost person in Fig. 1 who stops before reaching
the green goal. However, this goal switching may be incor-
rect sometimes, since when the target is moving slowly, the
tracker belief may be balanced between the CP model and a
proper goal model.We can observe this trend with the couple
at the upper right of Fig. 1.

We present quantitative results over both datasets with
the metrics mentioned above. We have tested three models:

Fig. 13 Distortion curve computed by the jump algorithm using
PETS2009 and TownCentre datasets.We use the key points in the image
plane

a classic constant velocity model (CV), our goal-oriented
motion prior proposal alone (IMMPF GMP) and our pro-
posal including the social forces (IMMPF GMP SF). The
rest of the implementation (observationmodel, initialization,
termination, etcetera) remains in the same. The goal-specific
models and the repulsion forces give an overall improve-
ment in the global performance. Table 1 presents the results
for the PETS09, view 2 sequence. This sequence is tested
with two goal-oriented based motion prior maps, one with
four goals (without sub-goals) and one with eight root-
goals, each one with one or two sub-goals for a total
of 15 goals. Figure 14 compares our performance (last
two diagrams) against other approaches which results were
extracted from [16] using view 1 of PETS09. In Fig. 15,
we show the results using the TownCentre dataset. One
can observe in particular that our approach ATA stands
out. This means that our proposal, with the SFs, can track
the same target longer than other techniques that fail in
preserving the identity of targets with similar appearance.
More globally, when considering all the scores, we obtain
a good balance between indicators, compared to other
approaches.

7.4 Evaluation of prediction performance

We measure the accuracy of our path predictor (see Sect. 6)
by considering themissed detections and false positives in the
following way: First, we define an area in which we intent to
predict whether the target reaches this zone in a given interval
of time, i.e., the blue squared zone at the left side of Fig. 10.
Then, we check the ground-truth (GT) trajectories and the
predicted paths over this area to count the number of missed
detections (mds) and false positives ( f ps) within the win-
dow of time f ∈ {5, 10, 15, 20, 25}. From this information,
we can compute the normalized Multiple Object Detection
Accuracy metric (MODA) as:
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Table 1 Quantitative results of
our proposals with PETS09
dataset view 2

Auth SFDA ATA MODP MOTP MODA MOTA

CV 0.47 0.39 0.79 0.79 0.41 0.40

IMMPF GMP View 2 4G 0.68 0.57 0.91 0.72 0.52 0.50

IMMPF GMP View 2 4G SF 0.72 0.59 0.91 0.75 0.63 0.62

IMMPF GMP View 2 8G 0.67 0.58 0.91 0.66 0.48 0.46

IMMPF GMP View 2 8G SF 0.74 0.64 0.91 0.71 0.65 0.64

Fig. 14 Tracking performance evaluation in the PETS video sequence:
On the upper part, we depict detection and precision-related indicators;
on the lower part, continuity and absence of id switches indicators.
The different groups of columns (indicators) represent state-of-the-art

algorithms (left), a particle filter with a simple linear motion (3rd from
right) and our proposal (without/with repulsion forces). The results of
Breitenstein, Yang, Hofmann, Heili and Foggia were extracted from
[16], Dehgan from [14] and Andriyenko from [3]

MODA( f ) = 1 −
∑Nframes

f=1 mds + f ps
∑Nframes

f=1 N ( f )
GT

where N ( f )
GT is the number of GT trajectories in the region

of interest at frame step f and Nframes is the total number
of frames in the sequence. We use the Hungarian algorithm
to make matches between the GT and our proposal output
at a given time t . The associated GT trajectory is then com-
pared against our predicted path through the MODA metric.
The results are depicted in Table 2. In Fig. 16 we plot the
MODA evaluation with the PETS2009 dataset. The red and
green lines are the MODA metric resulting from our MPF
predicting path. They differ in the use of social forces (SF)

included in the tracking system and not in the prediction
itself. We compare them with a third path predictor (PP)
which consists in a simple constant velocitymodel.We apply
our goal-oriented tracking framework with this predictor in
such a way that the results labeled CV PP and MPF PP use
the same tracking system but with a different path predictor.
We can observe that the results with the motion prior field
predictor are very similar regardless the use of the social
force model, which moves the target state positions a little
bit. Instead, if we compare them with the CV path predic-
tor, we observe that the latter has lower values of MODA.
This means that its prediction is less accurate than the first
two. In all the cases, without surprise, the predictors accuracy
decreases with longer prediction times.
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Fig. 15 Tracking performance evaluation in Town Centre video
sequence: The different groups of columns (indicators) represent a parti-
cle filter with a simple linear motion (left) and our proposal considering

single-level (GMP) and two-level (HGMP) of hierarchy (without/with
social forces). The results of GMMCP were extracted from [12] and
Benfold, Zhang and Shu are taken from [24]

Table 2 Path prediction evaluation

Frames 5 10 15 20 25

Model

CV PP 0.59 0.46 0.34 0.19 0.07

MPF PP 0.63 0.51 0.39 0.28 0.19

MPFSF PP 0.61 0.49 0.38 0.26 0.20

MODAmetric evaluated in an area of the PETS2009 sequence, the blue
area in Fig. 10, left side. GT trajectories are compared against predicted
paths for 5 time window horizons (t = {5, 10, 15, 20, 25})

In another experiment, we have calculated the MODA
metric defined above for all predicted paths over the entire
sequence. At each evaluation time, the Hungarian algorithm
generates the GT/estimated target matches. We consider the
distance between the GT and predicted trajectories and we
mark it as a missed detection/false positive if the distance
is higher than a given threshold (i.e., 20 pixels in image
plane). Also, we compute the mean squared errors (MSE)
between the GT and prediction and calculate the average
over all trajectories and frames. Tables 3 and 4 depict the
normalized MODA and the average MSE, respectively, for
bothPETS2009andTownCentre datasets.We show inFig. 17
the results of PETS2009. We observe how, in the course of

Fig. 16 Path prediction evaluation using the normalizedMODAmetric
on the PETS2009 dataset.We compareGT trajectories against predicted
paths in the blue square at the left side of Fig. 10. We consider 5 time
window horizons (t = {5, 10, 15, 20, 25})

time, the CV predictor decreases faster compared with the
MPF predictors, as seen in Fig. 18.

7.5 Computational times analysis

Finally, we calculate the time that our method takes under the
PETS09 and TownCentre (TC) datasets. This evaluation is
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Table 3 Path prediction
evaluation using MODA metric

Dataset Model

Frames 5 10 15 20 25

PETS2009 view 1 CV PP 0.47 0.32 0.21 0.15 0.11

MPF PP 0.49 0.38 0.30 0.25 0.21

MPFSF PP 0.48 0.39 0.31 0.26 0.22

PETS2009 view 2 CV PP 0.47 0.37 0.28 0.22 0.17

MPF PP 4 Goals 0.45 0.37 0.31 0.26 0.23

MPF PP 8 Goals 0.48 0.42 0.36 0.31 0.27

MPFSF PP 4 Goals 0.45 0.38 0.32 0.27 0.24

MPFSF PP 8 Goals 0.52 0.46 0.39 0.34 0.30

TownCentre CV PP 0.17 0.12 0.09 0.07 0.05

MPF PP 0.21 0.20 0.18 0.15 0.13

MPFSF PP 0.23 0.22 0.19 0.17 0.14

GT trajectories are compared against predicted paths for 5 time window horizons (t = {5, 10, 15, 20, 25})

Table 4 Path prediction
evaluation: Average of the mean
squared error between GT
trajectories and predicted paths
for all the tracked objects

Dataset Mod.

t 5 10 15 20 25

PETS2009 view 1 CV 18.27 21.16 25.48 30.27 35.17

MPF 16.52 18.70 21.83 25.22 26.69

MPF SF 16.88 18.95 21.96 25.30 26.65

PETS2009 view 2 CV PP 15.44 18.53 22.14 26.10 30.31

MPF PP 4 Goals 14.51 17.16 20.21 23.29 26.69

MPF PP 8 Goals 13.69 15.34 17.44 19.74 22.04

MPFSF PP 4 Goals 13.58 16.22 19.16 22.15 25.21

MPFSF PP 8 Goals 12.10 13.71 15.87 18.17 20.49

TownCentre CV PP 51.44 52.47 56.68 61.74 67.41

MPF PP 32.36 32.32 32.75 33.66 34.91

MPFSF PP 33.03 33.03 33.53 34.34 35.55

We evaluate those for 5 time window horizons

Fig. 17 Path prediction evaluation using normalizedMODAmetric on
the PETS2009 dataset. We compare GT trajectories against predicted
paths for 5 time window horizons (t = {5, 10, 15, 20, 25})

Fig. 18 Path prediction evaluation using normalized MODA metric
on the TownCentre dataset. We compare the GT trajectories against
predicted paths for 5 time window horizons (t = {5, 10, 15, 20, 25})
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Table 5 Learning (per frame) and regularization steps performance
time comparison.

Time Learning Regularization

Model

PETS09v1 0.08s 0.55s

PETS09v2 1L 4G 0.08s 0.55s

PETS09v2 2L 8G 15S 0.08s 0.55s

TC 1L 16G 0.44s 4.3s

TC 2L 8G 15S 0.45s 4.02s

We calculate the average time which our framework takes in learning
and regularization steps. Results are the median of 30 executions

Table 6 Performance time comparison.

Time Per frame Per tracker

Model

PETS2009v1 0.46s 0.08s

PETS2009v1 SF 0.52s 0.09s

PETS2009v2 4G 0.40s 0.07s

PETS2009v2 8G 0.66s 0.10s

PETS2009v2 4G SF 0.45s 0.09s

PETS2009v2 8G SF 0.75s 0.15s

TC 1L 16G 4.79s 0.29s

TC 2L 8G 15S 2.78s 0.18s

TC 1L 16G SF 5.38s 0.34s

TC 2L 8G 15S SF 3.13s 0.22s

We calculate the average time that our tracking system takes to process
each frame and each tracker. Results are the median of 30 executions

done with a C++ implementation using a single core of a 2.2
GHz Inter Core i7 processor. Table 5 shows the required time
in the learning and regularization steps (Sect. 4.5). We show
the obtained time for the PETS09, view 1 dataset (referred to
as PETS09v1) and TownCentre dataset in a non-hierarchical
way, with 1 level and 16 root-goals (referred to as TC 1L
16G); we also show results on PETS09, view 2 for a hier-
archical version with 2 Levels and 15 sub-goals spread in
8 root-goals (referred to as PETS09v2 2L 8G 15S). We can
observe how the processing times for Town Centre under the
hierarchical version is smaller than the non-hierarchical ver-
sion, even if the latter must regularize 23 MPFs (see Fig. 4).
This is thanks to our hierarchical regularization scheme.
Table 6 presents the performance time of the tracking process
(Sect. 5). We see how the models that take social forces into
consideration are the ones that consume more time. How-
ever, they are more accurate. Moreover, by comparing the
Town Centre results, we see that hierarchical versions (TC
2L 8G 15S) are computed faster than regular versions (TC
2L 16G). This is because the latter have to evaluate more
models at once.

7.6 Discussion on the approach performance

The previous results show that our approach can improve
the tracking performance under challenging scenarios. It
is interesting to see that our method shows a significant
improvement in the ATA score. This is related to the fact
that our per goal motion prior field fits better to the complex
dynamic of the pedestrians. However, this is not the case in
terms of MOTA and MODA. This behavior is because the
other methods compared to us use a different (and proba-
bly better) pedestrian detector, which has an influence on the
number of false positives and missed detections. In our case,
we use a simple blob detector which uses the output of a fore-
ground/background (FG/BG) technique to find region with
motion. Depending on the quality of the FG/BG algorithm,
it may fail in the presence of illumination changes, noise or
targets with a similar color as the background. Meanwhile,
other proposals use feature-based detectors (i.e., Histogram
of oriented gradient) which have higher rate of detection.

Our approach is suitable for structured scenarios where
the exit points of the pedestrians, in the field of view of the
camera, are well defined, in an environment with bounded
areas of motion. This method could be used under unstruc-
tured scenes as long as shared common goals exist.

Our proposal is based on the fact that pedestrians follow
a path with a goal in mind. This also applies for pedestri-
ans in group (i.e., families, friends, couples, among others),
because their individual goals are the same as others in the
group. Even when a group member does not know its goal,
i.e., following a leader, it will act as if it know. This is due
to each pedestrian is influenced by the others in the group,
making the individual goal be the same as the goal of the
group.

With the proposed model, we can capture the trending
of long-term goals and dynamic motions of the pedestrians.
However, it supposes that the trajectories do not exhibit fre-
quent abrupt changes, which is the case in the datasets we
used.More generally, it is adapted tomid-dense public places
scenarios, such as shopping malls. In very highly dynamic
scenarios with abrupt changes in trajectories, we could use
more goals/sub-goals, but it would nevertheless lead to large
variations between trajectories sharing the same goal.

Another limitation of themethod is that it requires training
data from ground-truth trajectories. This limits the practical-
ity of the proposal, but the aquisition of a few ground-truth
trajectories could be done either manually in a calibration
phase or with a standard tracker with very confidence level
parameters, so that no necessarily all the pedestrians could be
tracked, but the tracked ones would be very safe trajectories.

Also, our system is built for static cameras only. If the
camera moves, the prior model will not match with the cur-
rent image. However, if we know the calibration parameters
and the motion of the camera (e.g., with a PTZ camera), we
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could adjust the goal-oriented model automatically with a
corresponding homography, but this is out of the scope of
this paper.

7.7 Overview of critical parameters

As commented in Sect. 4.1, we add as key points any position
where a trajectory has a strong change of orientation, superior
to 45 degrees. By changing this threshold, more or less key
points may appear, resulting in either the detection of many
irrelevant or spurious goals or the loss of a real goal.

After the clustering process, we remove the clusters with a
number of keypoints lower than 10% of the average number
of keypoints per cluster. Thus, we do not estimate motion
prior fields for these clusters.

Hierarchies of goals reduce the computational cost by
fusing multiple goals when the target is far enough from
these goals. The choice of the number of levels depends on
the number of goals. One level is fine for few widely sep-
arated goals, i.e., for PETS2009 dataset. More levels are
needed when the scene complexity and the number of goals
increases, i.e., TownCentre dataset.

The MPF regularization fills incomplete information and
smooths transitions between cells. It is controlled by two
variables λ1 = 0.25 and λ2 = 0.25. If we increase λ1, data
are shared among neighbor cells and missing information
due to lack of trajectories may be inferred. By increasing λ2
the cell histogram is smoothed.

During tracking, resampling consists in two indepen-
dent operations: (a) resampling over all particles, every four
frames; and (b) resampling on a per model basis, every five
frames. The former guides the particles to high values of the
posterior. The sampling frequency depends of how fast the
particles degenerate. We use a fixed value for practicality.
However, there are several criteria in the literature that can
be used. The latter controls the model transition. In general,
the more complex the targets motion will be (i.e., pedestrian
in a mall), the higher the resampling frequency should be.

The proposed framework does not require an exhaus-
tive tuning of the parameters. We have determined most
of them based on experimenting individually the different
sub-modules of the system. However, the use of inadequate
parameters could decrease the system performance, i.e., the
reduction in number of key points could results in the los-
ing relevant sub-goals, or could waste computational time,
i.e., applyingmore resampling steps than needed, or produce
undesired outputs, i.e., an over-regularized prior map.

8 Conclusions

We have presented an IMM-based methodology to perform
both target tracking and goal estimation, based on a com-

petition among goal-related motion models, and with an
implementation with particle filters. We have shown on two
standard datasets that the tracking can be improved on sev-
eral indicators, and moreover that one can estimate online
the intentionality of the pedestrian (i.e., his current goal). As
ongoing and future works, we plan to develop motion strate-
gies for mobile agents based on the output from this visual
tracking system; also, we would like to adapt our frame-
work to be able to learn continuously the motion priors and
the structure of goals. Another objective is to integrate our
framework within tracking-by-detection methods, in partic-
ular online versions of these methods, such as [20].
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