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Abstract We clarify themathematical equivalence between
low-dimensional singular value decomposition and low-
order tensor principal component analysis for two- and
three-dimensional images. Furthermore, we show that the
two- and three-dimensional discrete cosine transforms are,
respectively, acceptable approximations to two- and three-
dimensional singular value decomposition and classical
principal component analysis. Moreover, for the practical
computation in two-dimensional singular value decomposi-
tion, we introduce the marginal eigenvector method, which
was proposed for image compression. For three-dimensional
singular value decomposition, we also show an iterative
algorithm. To evaluate the performances of the marginal
eigenvector method and two-dimensional discrete cosine
transform for dimension reduction, we compute recogni-
tion rates for six datasets of two-dimensional image patterns.
To evaluate the performances of the iterative algorithm and
three-dimensional discrete cosine transform for dimension
reduction, we compute recognition rates for datasets of gait
patterns and human organs. For two- and three-dimensional
images, the two- and three-dimensional discrete cosine trans-
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forms give almost the same recognition rates as the marginal
eigenvector method and iterative algorithm, respectively.

Keywords Dimension reduction · Principal component
analysis · Tensor principal component analysis · Singular
value decomposition · Discrete cosine transform

1 Introduction

In this paper, we clarify the equivalence between N th-
order tensor principal component analysis (TPCA) and
N -dimensional singular value decomposition (NDSVD) for
N = 2, 3. We also show that the NDSVD is theoretically
equivalent to classical principal component analysis (PCA),
which is based on a vector representation. We refer to the
classical PCA for vectors as vector PCA. Furthermore, for
the practical computation in the 2DSVD, we introduce mar-
ginal eigenvector (MEV) method, which was proposed for
image compression in 1981 by Otsu. Moreover, we present
an extension of the properties represented in second-order
tensors [1] to third-order tensors. These results imply that
the TPCA for N th-order tensors can be approximated by the
N -dimensional discrete cosine transform (NDDCT). Table1
summarises the abbreviations that we use in this paper.

A pattern is assumed to be a square integrable func-
tion defined on a finite support in N -dimensional Euclidean
space. For planar and volumetric pattern, the dimensions of
Euclidean spaces are two and three, respectively. Organs are
essentially spatial textures which are functions defined in
three-dimensional Euclidean space. Furthermore, for video
sequence [2] and volumetric sequence [3], the dimensions of
the data spaces are three and four, respectively, since in these
applications for planar and spatio-temporal data are focused
to analysis. Moreover, planar multichannel images [4,5] are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-016-0806-2&domain=pdf
http://orcid.org/0000-0002-1410-1078


1260 H. Itoh et al.

Table 1 Glossary of abbreviations

SVD Singular value decomposition

PCA Principal component analysis

TPCA Tensor principal component analysis

MEV Marginal eigenvector

FP Full projection

FPT Full projection truncation

2DPCA Two-dimensional principal component analysis

GPCA Generalised principal component analysis

2DSVD Two-dimensional principal component analysis

2DDCT Two-dimensional discrete cosine transform

ALS Alternating least squares

NDSVD N -dimensional singular value decomposition

HOSVD Higher-order singular value decomposition

MPCA Multilinear principal component analysis

3DDCT Three-dimensional discrete cosine transform

NDDCT N -dimensional discrete cosine transform

also expressed as three-way arrays. For these data, elements
of two-dimensional array use an additional axis to express
frequencies of elements. Multichannel image pattern recog-
nition has been a central issue in remote sensing of earth and
planets [6]. In seismic data analysis, the dimension of the
data space is five, since waves stated by a planar source array
migrated to planar receiver array are focused to analyse [7].

For numerical computation, we deal with sampled pat-
terns. In traditional pattern recognition, these sampled pat-
terns are embedded in an appropriate-dimensional Euclidean
space as vectors. The other way is to deal with sampled pat-
terns as higher-dimensional array data. These array data are
expressed by tensor to preserve multilinearity of function in
the original pattern space. Tensors allow expressing multidi-
mensional array data inmultilinear forms. Figure1 illustrates
the relation among sampling, vectors and tensor representa-
tion for multilinear structure.

For applications of modern pattern recognition techniques
such as deep learning [8] and machine learning for big
data [9], we are mathematically and numerically required
to evaluate the performance of tensor-based pattern recogni-
tion of multilinear data. Importantly, for fast image pattern
recognition, a compact representation of these image data
is desirable. Tensor expressions fulfil these requirements in
applications of pattern recognition ofmultidimensional array
data.

The vector PCA method is a traditional method for data
compression. It has been extended to higher-dimensional
array data [10,11]. For example, tensor PCA method con-
structs a small-size tensor using the orthogonal decompo-
sition of a tensor, while the classical PCA (vector PCA)
estimates a low-dimensional linear subspace using PCA.
Second-order TPCA, which directly decomposes an image

f(x) ∈ R

f Sf(x) = f(Δz)

Interpolation Sampling

arraytensor

fz ∈ R

vecF

Fig. 1 Sampling, vectors and tensors. The sampled value f (Δz), z ∈
Z
n of a function f (x), x ∈ R

n yields an array fz, z ∈ Z
m×m×···×m . This

array fz is expressed as a tensor F to preserve multilinearity of f (x).
Interpolation procedure reconstructs f (x) from S f (x) through F . The
vector f whose elements are sample values of f (z) is constructed from
F by vectorisation operator vec to the tensor F

matrix, is the tensorPCAmethod [10,11] for two-dimensional
images. A survey [11] reported that there are three basic
projections for a tensor. Second- and third-order TPCA use
tensor-to-tensor projections consisting of 1- and 2-mode
projections, and 1-, 2- and 3-mode projections for two-
dimensional and three-dimensional images, respectively.

For image representation, two-dimensional principal com-
ponent analysis (2DPCA) [12] has been proposed. However,
the projection method in the 2DPCA is not a bilinear form
since the 2DPCA uses only the 2-mode projection. TheMEV
method [13], which is based on both 1- and 2-mode projec-
tions, has beenproposed for image compression.The2DSVD
[14,15], which is also based on both 1- and 2-mode pro-
jections, has been proposed for image compression as an
extension of the SVD [16]. The projections in the MEV
method and the 2DSVD are equivalent to the tensor-to-tensor
projection for a second-order tensor. Thismathematical prop-
erty implies that the 2DSVD is a special case of the TPCA.
However, the compression rate of the 2DSVD is smaller than
that of the 2DDCT [14] for the same reconstruction quality.
An iterative algorithm [17] for the second-order TPCA has
been proposed. This iterative algorithm is referred to as gen-
eralised principal component analysis (GPCA). This GPCA
method is a two-dimensional version of the iterative algo-
rithm for the SVD [18,19].

Theorigin of theTPCAfor the third-order tensorswas pro-
posed as the decomposition of tensors by Tucker [20]. For
the Tucker decomposition of second- and third-order tensors,
Kroonenberg andLeeuw [21] discussed the properties of con-
vergence of alternating least squares (ALS) algorithms. In
general for Tucker decomposition, orthogonality constraints
on decomposed tensors are not required. Cichoki et al. [22]
imposed that the existence of the constraints is the difference
between the TPCA and parallel factor analysis. In Ref. [22],
in addition to orthogonal constraints, sparse constraints and
nonnegative constraints for tensor decomposition are studied.
For practical computation in higher TPCA, higher-order sin-
gular value decomposition (HOSVD) [23] was formulated.
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In Refs. [23,24], ALS algorithm for the smaller-size tensor
approximation of higher-order tensors was studied. For pat-
tern recognition, there are variants of the TPCA [10,25–27].
Multilinear principal component analysis (MPCA) [10] is an
iterative algorithm used for TPCA and is the N -dimensional
version of the GPCA. This iterative algorithm is the same as
the ALS algorithm. Robust MPCA [25] is a robust version
of TPCA for image pattern recognition including outliers.
Uncorrelated MPCA [26] searches for a tensor-to-vector
projection that obtains most of the variation in the original
tensorial input by deciding the maximum number of uncor-
related features. Sparse higher-order principal component
analysis [27] searches for the minimum number of bases
for input tensors by assuming sparsity in tensor decompo-
sition.

For image pattern recognition, the two-dimensional tensor
subspace method (2DTSM) [28], which measures the simi-
larity between an input image and each tensor subspace of a
class, has been proposed as extension of the subspacemethod
[29]. The 2DTSM adopts the MEVmethod to construct each
tensor subspace of a class. We extend the 2DTSM for use
with three-dimensional images in this paper.

To evaluate the performances of the MEV method and
the 2DDCT for the dimension reduction of two-dimensional
images, we compute recognition rates for image patterns. To
evaluate the performances of the HOSVD and the NDDCT
[30] for three-dimensional images, we compute recognition
rates for image sequences in gait classification and voxel
images of livers in computational anatomy. For the two-
dimensional images, the results show that the MEV method
and the 2DDCT have almost the same performances in terms
of the recognition rates for images in six datasets. Further-
more, for the three-dimensional images, the results show that
the HOSVD and the NDDCT have almost the same per-
formances in terms of the recognition rates for images in
a dataset of gait patterns.

The 2DDCT-II is used for the coding inMPEG. InMPEG,
a digital image of n × n pixels is first partitioned to N × N
blocks. Usually, the size of each block is 8× 8 pixels. Then,
each N × N block is transformed to the frequency domain
using the 2DDCT-II. Finally, each transformed value in each
block is encoded. If we use MPEG for a sequence of two-
dimensional images, that is, for a tensor with size N×N×N ,
we apply N times partitioning with block and encoding with
the 2DDCT for N frames. Note that we use the 2DDCT and
3DDCT without partitioning of two- and three-dimensional
images, respectively, in this paper.

2 Tensor projection for images

We briefly summarise the multilinear projection for multi-
dimensional arrays from Ref. [11]. A N th-order tensor X

defined in RI1×I2×···×IN is expressed as

X = (
xi1,i2,...,iN

)
(1)

for xi1,i2,...,iN ∈ R, using N indices in . Each subscript n
denotes the n-mode ofX . For the outer products of N vectors,
if the tensor X satisfies the condition

X = u(1) ◦ u(2) ◦ · · · ◦ u(N ), (2)

where ◦ denotes the outer product, we call this tensor
X a rank-one tensor. For X , the n-mode vectors, n =
1, 2, . . . , N , are defined as the In-dimensional vectors
obtained from X by varying this index in while fixing all
the other indices. The unfolding of X along the n-mode vec-
tors of X is defined as

X(n) ∈ R
In×(I1×I2×···In−1×In+1×···×IN ), (3)

where the column vectors of X(n) are the n-mode vectors
of X . Figure2 shows two examples of n-mode unfolding for
second- and third-order tensors. The n-mode productX ×nU
of a matrix U ∈ R

Jn×In and a tensor X is a tensor G ∈
R

I1×I2×···×In−1×Jn×In+1×···×IN , with elements

gi1,i2,...,in−1, jn ,in+1,...,iN =
In∑

in=1

xi1,i2,...,IN u jn ,in (4)

by themanner inRef. [22].We define the inner product of two
tensors X = (xi1,i2,...,iN ),Y = (yi1,i2,...,iN ) ∈ R

I1×I2×···×IN

by

〈X ,Y〉 =
∑

i1

∑

i2

· · ·
∑

iN

xi1,i2,...,iN yi1,i2,...,iN . (5)

Using this inner product, the Frobenius norm of a tensor X
is

‖X‖F = √〈X ,X 〉. (6)

For the Frobenius norm of a tensor, we have

‖X‖F = ‖vec X‖2, (7)

where vec and ‖·‖2 are the vectorisation operator and Euclid-
ean norm of a tensor, respectively. For the two tensorsX1 and
X2, we define the distance between them as

d (X1,X2) = ‖X1 − X2‖F . (8)

Although this definition is a tensor-based measure, this dis-
tance is equivalent to the Euclidean distance between the
vectorised tensors X1 and X2.
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(a) (b)

Fig. 2 Unfoldings of second- and third-order tensors. a 1- and 2-mode unfoldings of a second-order tensor X ∈ R
6×8. b 1-, 2- and 3-mode

unfoldings of the third-order tensor X ∈ R
4×5×3

For a tensor, a multilinear projection maps the input ten-
sor data from one space to another space. We have three
basic multilinear projections, that is, the vector-to-vector
projection (VVP), tensor-to-vector projection (TVP) and
tensor-to-tensor projection (TTP). The VVP is a linear pro-
jection from a vector to another vector. To use the VVP for
tensors, we need to reshape tensors into vectors before the
projection. The TVP, which is also referred to as the rank-one
projection [31,32], consists of elementarymultilinear projec-
tions (EMPs). An EMP projects a tensor to a scalar. Using
d EMPs, the TVP obtains a d-dimensional vector projected
from a tensor. The TTP projects a tensor to another tensor of
the same order. In this paper, we focus on methods of finding
the optimal projection for the TTP.

As the tensorX is in the tensor spaceRI1⊗R
I2⊗· · ·⊗R

IN ,
the tensor space can be interpreted as the Kronecker product
of N vector spacesRI1 ,RI2 , . . . ,RIN . To projectX ∈ R

I1 ⊗
R

I2 ⊗ · · · ⊗R
IN to another tensor Y in a lower-dimensional

tensor space R
P1 ⊗ R

P2 ⊗ · · · ⊗ R
PN , where Pn ≤ In for

n = 1, 2, . . . , N , we need N matrices {U (n) ∈ R
In×Pn }Nn=1.

Using the N matrices, the TTP is given by

Y = X ×1 U (1)	 ×2 U (2)	 · · · ×N U (N )	. (9)

This projection is established in N steps, where at the nth
step, each n-mode vector is projected to a Pn-dimensional
space byU (n). Figures3a and4a show the steps for the projec-
tion of second- and third-order tensors to lower-dimensional
tensors, respectively. Figures3b, c and 4b–d show the pro-
cedures used to project second- and third-order tensors,
respectively.

(a)

(b) (c)

Fig. 3 Tensor-to-tensor projection of a second-order tensorX ∈ R
6×8

to a lower-dimensional tensor Y ∈ R
3×3. a Tensor-to-tensor projec-

tion for a tensor X . b 1-mode projection for X represented by a linear
projection. c 2-mode projection forX represented by a linear projection

3 Decomposition of tensors

3.1 Two-dimensional singular value decomposition

A second-order tensor X ∈ R
I1×I2 , which is the matrix X =

(xi1,i2) ∈ R
I1×I2 , is denoted as a pair of indices (i1, i2). For

a tensor X , the unfolding of X is defined by

X(1) = X ∈ R
I1×I2 , X(2) = X	 ∈ R

I2×I1 . (10)

The 1- and 2-mode products of a tensor by a matrix U	 are
given by

X ×1 U	 = U	X, X ×2 U	 = U	X	, (11)
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(a)

(b)

(c)

(d)

Fig. 4 Tensor-to-tensor projection of a third-order tensorX ∈ R
4×5×3

to a lower-dimensional tensor Y ∈ R
3×2×1. a Tensor-to-tensor projec-

tion for a tensor X . b 1-mode projection for X represented by a linear
projection. c 2-mode projection forX represented by a linear projection.
d 3-mode projection for X represented by a linear projection

respectively. For a tensor X in the tensor space RI1 ⊗ R
I2 ,

using two matrices, we have the TTP

Y = X ×1 U (1)	 ×2 U (2)	, (12)

which projects X to a lower-dimensional tensor space.
Replacing the tensor X with m = I1 and n = I2, and a
matrix X ∈ R

m×n , we have the TTP

Y = U (1)	XU (2) (13)

for the second-order tensor with a matrix representation.
From the reducedmatrix Y , we have the reconstruction given
by

X = U (1)YU (2)	. (14)

For a collection of matrices {X i }Ni=1 ∈ R
m×n satisfying

with zero expectation condition E(X i ) = 0, the orthogonal
projection-based data reduction

X̂ i = U	X iV , (15)

where U = [u1, . . . , um] and V = [v1, . . . , vn], is per-
formed by minimising the criterion

J− = E
(
‖X i − U X̂ iV	‖2F

)
(16)

and maximising the criteria

J+ = E

(∥∥∥U	X iV
∥∥∥
2

F

)
, (17)

JV = E

(∥
∥∥V	X	

i X iV
∥
∥∥
2

F

)
, (18)

JU = E

(∥∥∥U	X iX	
i U

∥∥∥
2

F

)
, (19)

with respect to the conditions

U	U = Im and V	V = In, (20)

where Im and In are the identitymatrices inRm×m andRn×n ,
respectively.

Eigen decomposition problems are derived by computing
the extremals of

E− = J− + tr
(
(I − V	V )Λ

)
+ tr

(
(I − U	U)Σ

)
,

(21)

E+ = J+ + tr
(
(I − V	V )Λ

)
+ tr

(
(I − U	U)Σ

)
,

(22)

EV = JV + tr
(
(I − V	V )Λ

)
, (23)

EU = JU + tr
(
(I − U	U)Σ

)
. (24)

For covariant matrices M = 1
N

∑N
i=1 XX	 and N =

1
N

∑N
i=1 X

	X , the optimisation of J− and J+ derives the
eigenvalue decomposition

MU = UΣ and NV = VΛ, (25)

where Σ ∈ R
m×m and Λ ∈ R

n×n are diagonal matrices sat-
isfying the relationships λi = σi and rank(M) = rank(N) =
K for

Σ = diag(σ1, σ2, . . . , σK , 0 . . . , 0), (26)

Λ = diag(λ1, λ2, . . . , λK , 0 . . . , 0). (27)

The optimisation of JV and JU derives the eigendecomposi-
tion problems inEq. (25).1 Using a set of orthonormal vectors
{ek}Kk=1, where only kth element of ek is 1 and others are 0,

we set orthogonal projection matrices P1 = ∑k1
k=1 eke

	
k and

P2 = ∑k2
k=1 eke

	
k . Using these P1 and P2, the low-rank

matrix approximation [33,34] is achieved by

1 For an iterative method, see Refs. [18,19]. These iterative algorithms
are a special case of the HOSVD [23].
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Y i = (P1U)	 X i (P2V ) = L	X i R, (28)

where P1 and P2 select k1 and k2 bases of orthogonal matri-
cesU andV, respectively. The low-rank approximation using
Eq. (28) is called the 2DSVDmethod in the context of image
compression [14,15]. Moreover, the method based on the
transform

Y i = X i R (29)

is called the 2DPCA [12]. This 2DPCA proposed by Yan and
Zhang is not bilinear form. Therefore, this 2DPCA is not the
TPCA for second-order tensors.

For the 2DSVD, we have the following theorem.

Theorem 1 The 2DSVD method is equivalent to the vector
PCA method.

Proof The equation

(P1U)	X(P2V ) = Y (30)

is equivalent to

(P2V ⊗ P1U) vecX = vecY . (31)


�
Furthermore, the 2DDCT is an acceptable approximation of
the 2DSVD since the 2DDCT is an acceptable approximation
of the PCA for the reduction of images [1,28,29]. Moreover,
the projection that selects K = k1k2 bases of the tensor space
spanned by ui ⊗ v j , i = 1, 2, . . . ,m and j = 1, 2, . . . , n, is

(P2V ⊗ P1U) = (P2 ⊗ P1) (V ⊗ U) = PW , (32)

where W and P are an orthogonal matrix and a projection
matrix, respectively. Therefore, the 2DSVD is equivalent to
the TPCA for matrices because matrices are second-order
tensors. In our application, an n × n digital array is directly
compressed by the 2DDCT-II with order O(n2). If we apply
the fast Fourier transform to the computation of the 2DDCT-
II, the computational complexity is O(n log n).

3.2 Three-dimensional singular value decomposition

A third-order tensor X ∈ R
I1×I2×I3 , which is the array

X = (xi1,i2,i3) ∈ R
I1×I2×I3 , is denoted as a triple of indices

(i1, i2, i3). Here we summarise the HOSVD for third-order
tensors. For a collection of tensors {Xi }Ni=1 ∈ R

I1×I2×I3 satis-
fying the zero expectation condition E(Xi ) = 0, we compute
the

X̂i = Xi ×1 U (1)	 ×2 U (2)	 ×3 U (3)	, (33)

where U ( j) = [u( j)
1 , . . . , u( j)

I j
], that minimises the criterion

J− = E
(
‖Xi − X̂i ×1 U (1) ×2 U (2) ×3 U (3)‖2F

)
(34)

and maximises the criteria

J+ = E

(∥∥∥X̂i

∥∥∥
2

F

)
, (35)

with respect to the conditions

U ( j)	U ( j) = I j , (36)

where I j , j = 1, 2, 3, is the identity matrices inRI j×I j . For
this criterion, by fixing two of U (1), U (2) and U (3), we have
the following criteria

J j = E

(∥∥
∥U ( j)	Xi,( j)X 	

i,( j)U
( j)

∥∥
∥
2

F

)
, (37)

where Xi,( j), j = 1, 2, 3, are the j-mode unfolded tensor
Xi , with respect to Eq. (36).

Eigendecomposition problems are derived by computing
the extremal of

E− = J− +
N∑

j=1

tr((I j − U ( j)	U ( j))Σ ( j)). (38)

As an extension of the two-dimensional problem, we define
the system of minimisation problems

E j = J j + tr((I j − U ( j)	U ( j))Σ ( j)), j = 1, 2, 3. (39)

For matrices M( j) = 1
N

∑N
i=1 Xi,( j)X 	

i,( j), j = 1, 2, 3, the
optimisation of J− derives the eigenvalue decomposition

M( j)U ( j) = U ( j)Σ ( j), (40)

where Σ ( j) ∈ R
I j×I j , j = 1, 2, 3, are diagonal matrices

satisfying the relationships σ
( j)
k = σ

( j ′)
k , k ∈ {1, 2, . . . , K },

K = rank(M(1)) = rank(M(2)) = rank(M(3)) for

Σ ( j) = diag
(
λ

( j)
1 , λ

( j)
2 , . . . , λ

( j)
K , 0 . . . , 0

)
. (41)

The optimisation of each J j derives the eigendecomposi-
tion problems in Eq. (40). However, for the optimisation of
{J j }3j=1, there is no closed-form solution to this maximisa-
tion problem [23,24]. Algorithm 1 is the iterative procedure
of the MPCA. For Algorithm 1, we have the following prop-
erty.

Property 1 TheMPCAwithout iteration is equivalent to the
HOSVD if dimensions of a projected tensor are coincident
with ones of the modes of the original tensor.
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Algorithm 1: Iterative method in the MPCA (ALS algorithm)
Input: A set of tensors {Xi }Ni=1. Dimension of projected tensors

{k j }3j=1. A maximum number of iteration K . An order
ξ1, ξ2, ξ3 to select the unfolded tensors. A sufficiently
small number η.

Output: A set of projection matrices {U ( j)}3j=1.
1: Compute the eigendecomposition of a covariant matrix
M( j) = 1

N

∑N
i=1 Xi,( j)X	

i,( j), where Xi,( j) is an j-mode
unfolded Xi , for j = 1, 2, 3.

2: Construct projection matrices by selecting eigenvectors
corresponding to the k j largest eigenvalues for j = 1, 2, 3.

3: Compute Ψ0 = ∑N
i=1 ‖Xi ×ξ1 U

(ξ1)	 ×ξ2 U
(ξ2)	 ×ξ3 U

(ξ3)	‖F.
4: Iteratively compute the following procedure.
for k = 1, 2, . . . , K
for j = ξ1, ξ2, ξ3
Update U ( j) by decomposing a covariant matrix
M( j) = ∑N

i=1 Wi,( j)W	
i,( j), where Wi,( j) is an j-mode

unfolded Wi = Xi ×ξα U(ξα)	 ×ξβ U(ξβ )	 with
ξα, ξβ ∈ {ξ1, ξ2, ξ3} \ j , ξα = ξβ .

end
Compute Ψk = ∑N

i=1 ‖Xi ×ξ1 U
(ξ1)	 ×ξ2 U

(ξ2)	 ×ξ3 U
(ξ3)	‖F

if |Ψk − Ψk−1| < η

break
end

For third-order tensors, there are 3! combinations in selecting
the order of modes ξ1, ξ2 and ξ3 in a tensor-to-tensor projec-
tion for Algorithm 1. On the other hand, one combination
exists in selecting the order of modes for the second-order
tensors.

Property 2 For third-order tensors, the selection of order
of modes does not effect to the results of a tensor-to-tensor
projection.

From these two properties, we adopt Algorithm 1 [10] to
solve the optimisation of {J j }3j=1. For a set of orthonor-

mal vectors {ek}Kk=1, where only kth element of ek is 1
and others are 0, we set orthogonal projection matrices

P ( j) = ∑k j
k=1 eke

	
k for j = 1, 2, 3. Using these {P ( j)}3j=1,

the low-rank tensor approximation [24] is achieved by

Y = X ×1

(
P (1)U (1)

)	 ×2

(
P (2)U (2)

)	 ×3

(
P (3)U (3)

)	
,

(42)

where P ( j) selects k j bases of orthogonal matricesU ( j). The
low-rank approximation using Eq. (42) is used for compres-
sion in the TPCA.

For the HOSVD for third-order tensors, we have the fol-
lowing theorem.

Theorem 2 The HOSVD method is equivalent to the vector
PCA method.

Proof The equation

X ×1

(
P (1)U (1)

)	 ×2

(
P (2)U (2)

)	 ×3

(
P (3)U (3)

)	 = Y
(43)

is equivalent to

(
P (3)U (3) ⊗ P (2)U (2) ⊗ P (1)U

)	
vecX = vecY . (44)


�
This theorem implies that the 3DDCT is an acceptable
approximation of the HOSVD for third-order tensors since
this is the analogy of the approximation of the PCA by the
2DDCT [29].

Furthermore, we have the following theorem.

Theorem 3 The compression computed by the HOSVD is
equivalent to the compression computed by the TPCA.

Proof The projection that selects K = k1k2k3 bases of the
tensor space spanned by u(1)

i1
◦ u(2)

i2
◦ u(3)

i3
, i j = 1, 2, . . . , k j

for j = 1, 2, 3, is

(
P (3)U (3) ⊗ P (2)U (2) ⊗ P (1)U (1)

)

=
(
P (3) ⊗ P (2) ⊗ P (1)

) (
U (3) ⊗ U (2) ⊗ U (1)

)
= PW ,

(45)

where W and P are an orthogonal matrix and a projec-
tion matrix, respectively. Therefore, HOSVD is equivalent
to TPCA for third-order tensors. 
�

In our application, an n × n × n digital array is directly
compressed by the 3DDCT-II with order O(n3). If we apply
the fast Fourier transform to the computation of the 3DDCT-
II, the computational complexity is O(n log n).

4 Tensor subspace method

4.1 Second-order tensors

As an extension of the subspace method for vector data,
we introduced a linear tensor subspace method for a matrix
called the 2DTSM [28]. For a matrix X , setting PL and PR

to be orthogonal projections, we call the operation

Y = P	
L X PR (46)

the orthogonal projection of X to Y . Therefore, using this
expression for a collection of matrices {X i }Ni=1, such that
X i ∈ R

m×n and E(X i ) = 0, the solutions of

(PL, P R) = arg max E

(
‖P	

L X i PR‖F
‖X i‖F

)

w.r.t. P	
L PL = I, P	

R PR = I (47)
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define a bilinear subspace that approximates {X i }Ni=1. Here,
the norm ‖X‖F for matrix X represents the Frobenius norm.
Therefore, using the solutions of Eq. (47), if a query matrix
G satisfies the condition

arg

(

max
i

‖P	
L,iGPR,i‖F
‖G‖F

)

= {PL,k, PR,k}, (48)

we conclude that G ∈ Ck(δ), k = 1, 2, . . . , NC for NC cate-
gories if

Ck(δ) =
{
X | ‖P	

L,kXPR,k − X‖F � δ
}

. (49)

In practical computation to find the projections PL and
PR in Eq. (47), we adopt the MEV [13] method. This is a
projection considering the distributions of column and row
vectors of sampled images. We define two matrices

Mr = 1

N

N∑

i=1

X iX	
i ∈ R

m×m, (50)

Mc = 1

N

N∑

i=1

X	
i X i ∈ R

n×n . (51)

Using these two matrices, we have

E
(
‖P	

L X i PR‖2F
)

= 1

N

N∑

i=1

(
P	
L X i PR

) (
P	
L X i PR

)	

= P	
L Mr PL, (52)

E
(
‖P	

L X i PR‖2F
)

= 1

N

N∑

i=1

(
P	
L X i PR

)	 (
P	
L X i PR

)

= P	
RMcPR. (53)

Furthermore, for the two matrices Mr and Mc, using the
Lagrange multipliers Λr and Λc, we find projections satisfy-
ing

J (PL) = tr
(
P	
L MrPL

)
− tr

((
P	
L PL − I

)
Λr

)
, (54)

J (PY ) = tr
(
P	
RMcPR

)
− tr

((
P	
R PR − I

)
Λc

)
, (55)

where I is the identity matrix. The solutions of Eqs. (54)
and (55) are given as the solutions of the eigenproblems of
Mr and Mc, respectively. We set {u j }k1j=1 and {v j }k2j=1 as
the eigenvectors of Mr and Mc, respectively. We define the
eigenvectors of Mr and Mc as ‖u j‖2 = 1 and ‖v j‖2 = 1
for eigenvalues λr1 ≥ λr2 ≥ · · · ≥ λrj ≥ · · · ≥ λrn and
λc1 ≥ λc2 ≥ · · · ≥ λcj ≥ · · · ≥ λcn , respectively. There-
fore, for given numbers k1 ≤ m and k2 ≤ n, the operators
PL and PR are defined as PL,k1 = [u1, u2, . . . , uk1 ] and

PR,k2 = [v1, v2, . . . , vk2 ] as the matrices consist of each set
of eigenfunctions, respectively. These obtained projections
are equivalent to the projections obtained by 2DSVD [14]
using Eq. (28). Practically, the computational complexity of
solving the eigendecomposition problem for an n×n-matrix
is O(n3).

4.2 Third-order tensors

As an extension of the subspace method for vector data, we
introduce a new linear tensor subspacemethod for third-order
tensors. This method is a three-dimensional version of the
2DTSM [28]. For a third-order tensor X , setting P j , j =
1, 2, 3, to be orthogonal projections, we call the operation

Y = Xi ×1 P	
1 ×2 P	

2 ×3 P	
3 (56)

the orthogonal projection of X to Y . Therefore, using this
expression for a collection of matrices {Xi }Mi=1, such that
Xi ∈ R

I1×I2×Ie and E(Xi ) = 0, the solutions of

{Pj }3j=1 = arg max E

(
‖X ×1 P	

1 ×2 P	
2 ×3 P	

3 ‖F
‖Xi‖F

)

w.r.t. P	
j P j = I f or j = 1, 2, 3 (57)

define a trilinear subspace that approximates {Xi }Mi=1. Here,
the norm ‖X‖F for matrix X represents the Frobenius norm.
Therefore, using the solutions of Eq. (57), if a query tensor
G satisfies the condition

arg

⎛

⎜
⎝max

i

∥∥∥G ×1 P	
k,1 ×2 P	

k,2 ×3 P	
k,3

∥∥∥
F

‖G‖F

⎞

⎟
⎠ = {Pk, j }3j=1,

(58)

we conclude that G ∈ Ck(δ), k = 1, 2, . . . , NC for NC cate-
gories if

Ck(δ) =
{
X | ‖G ×1 P	

k,1 ×2 P	
k,2 ×3 P	

k,3 − X‖F � δ
}

.

(59)

For the practical computation of projections {Pk, j }3j=1, we
adopt the iterative method described in Algorithm 1.

5 Numerical examples

5.1 Second-order tensors

To validate the relation between the 2DDCT and theMEV
method (2DSVD), we compute the recognition rate using
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Fig. 5 Examples of images belonging to the same class in each dataset.
a Face images of the same person with different conditions of illumina-
tion. b Face images of the same person with different camera positions.
c Images of the same object with different camera positions, where the
number of degrees of freedom is two. d Images of the same object with
different camera positions, where the number of degrees of freedom
is one. e Images of the same handwritten digit. f Images of the same
handwritten Chinese character written by different people

Table 2 Sizes and number of images in each dataset

#class #data/class Image size [pixel] Reduced
image size
[pixel]

YaleB 38 64 192 × 168 32 × 32

ORL 40 10 112 × 92 32 × 32

ETH80 30 41 128 × 128 32 × 32

NEC 60 72 480 × 580 32 × 32

MNIST 10 7000 28 × 28 15 × 15

ETL9G 152 200 127 × 128 32 × 32

�class and �data/class represent the number of classes and the number
of data in each class, respectively. The image size is the original size
of the images in each dataset. The reduced image size is the size of the
images after image representation-based dimension reduction

six image datasets: cropped versions of the extended YaleB
dataset [35], ORL face dataset [36], ETH80 dataset [4],
NEC animal dataset [37], MNIST dataset [38] and ETL9G
character dataset [39]. Figure5 shows examples of images
belonging to the same class in each dataset. For the vali-
dation, we compress images in these datasets by the MEV
method and the 2DDCT. Table2 shows the sizes and the num-
ber of images in each dataset and the parameters used in the
compression.

Using the compressed images belonging to the same class
in each dataset, we compute the cumulative contribution ratio
(CCR) for the eigenvalues of the covariance matrices of the
1- and 2-modes for the images.

Figure 6 shows the CCRs for the six datasets. In Fig. 6a–
f, we define the compression ratio as 322/k2 for the case of
using k ∈ {1, 2, . . . , 32} eigenvectors, corresponding to the k
largest eigenvalues of each mode to construct the linear sub-

(a) (b) (c)

(d) (e) (f)

1

1

Fig. 6 Cumulative contribution ratios for the six datasets. The vertical
and horizontal axes represent the cumulative contribution ratio and the
compression ratio, respectively. For the reduced size 1024 = 32 × 32
and the reduced size K = k2 for the case of selecting the k highest
eigenvalues, the compression ratio is given as D/K . Upward triangles
and diamonds represent the cumulative contribution ratios of the eigen-
values of the covariance matrices for the 1- and 2-modes, respectively,
of the images compressed by the MEV method. Downward triangles
and squares represent the cumulative contribution ratios of the eigen-
values of the covariance matrices for the 1- and 2-modes, respectively,
of the images compressed by the 2DDCT. a YaleB, b ORL, c ETH80,
d NEC, e MNIST, f ETL9G

1 1 1

–

(a) (b) (c)

Fig. 7 Computational time of dimension reduction for tensors of the
second order. a, b the computational time of construction of projection
matrices for the MEV and 2DDCT, respectively. c The mean computa-
tional time of projecting images to low-dimensional tensor space for six
datasets. In a–c, the vertical and horizontal axes represent the computa-
tional time and compression ratio, respectively. For the original reduced
size D shown in Table2 and the reduced size K = k1×k2, the compres-
sion ratio is given as D/K . Here, we adopt k1, k2 ∈ {4, 8, 16, 32, 64}

space. As shown in Fig. 6a–d, the CCR curves for the MEV
method and the 2DDCT are coincident. In Fig. 6b, the CCR
curves for the 1- and 2-modes are coincident for the MEV
method and the 2DDCT. This means that the eigenvalues of
the 1- and 2-modes are coincident. In Fig. 6a, c–f, the CCR
curves are approximately the same except for a few of the
largest eigenvalues.

Figure7 summarises the computational time of the dimen-
sion reduction for six datasets. For computation, we use
Intel Xeon X5570 Quad core 2.93GHz. For computation of
2DDCT, we construct three DCT-II matrices without FFT.
Note that the computational times of TTP in the MEV and
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Recognition rates for original and compressed images. The
vertical and horizontal axes represent the recognition rate [%] and com-
pression ratio, respectively. For the first reduced size D and the second
reduced size K = k2,where k ∈ {1, 2, . . . , 32} is the number of selected
bases, the compression ratio is given as D/K . Circles, upward trian-
gles and downward triangles show the recognition rates for the original
dimension, the MEV method and the 2DDCT, respectively. a YaleB, b
ORL, c ETH80, d NEC, e MNIST, f ETL9G

the 2DDCT are the same. In Fig. 7, computational time of
the 2DDCT is smaller than one of the MEV.

For the validation, we compute the recognition rate using
the original and dimension-reduced images of the six datasets
with the 2DTSM as the classifier. The MNIST dataset is pre-
divided into training and test data before it is distributed. For
the YaleB, ORL, ETH80 and NEC datasets, images labelled
with even numbers are used as training data and the other
images are used as test data. The recognition rate is defined
as the successful label estimation ratio for 1000 label esti-
mations. In each estimation of a label for a query, queries
are randomly chosen from the test data. For both the 1- and
2-modes, we evaluated the results for linear subspaces with
one to 32 dimensions.

Figure8a–f shows the recognition rates for the original and
compressed images in the six datasets. In Fig. 8, we define
the compression ratio as the original dimension divided by
k2, where k is the number of selected principal axes for both
the 1- and 2-modes. According to these results, the MEV
method and the 2DDCT give almost the same recognition
rate.

5.2 Third-order tensors

Tovalidate the relation between theHOSVDand the 3DDCT,
we compute recognition rates using the OU-ISIR dataset
[2] and the computational anatomy (CA) dataset. Figure9
shows examples of sequences of silhouette images from
two different categories in the OU-ISIR dataset. Figure10

2 km/h

6 km/h

10 km/h

2 km/h

6 km/h

10 km/h

(a) (b)

Fig. 9 Examples of sequences of silhouette images. These are binary
images whose pixel values are 0 or 255. The figure illustrates the 1st,
21st, 41st, 61st, 81st silhouette images of sequences from a person
walking at different speeds. Each sequence consists of 90 silhouette
images of four steps. For each sequence, we manually selected the start
and finish of the sequence from the original OU-ISIR treadmill dataset.
Each sequence is obtained by resampling of the selected sequence with
linear interpolation, where the linear interpolation is only used for mode
3. a Person �001. b Person �128

Fig. 10 Examples of the voxel images of human livers in CA dataset.
a, e show the volume rendering of shape of livers for male and female,
respectively. These rendering is computed from CT images of livers.
b–d, and f–h are axial CT images used in the rendering for a and e,
respectively

shows examples of voxel images of human livers in the
CA datasets. In Fig. 10, voxel images are rendered using the
computed tomography (CT) images of human livers. Table3
summarises the sizes of tensors of the two datasets. For the
compression of the silhouette-image sequences, we use the
HOSVDand the 3DDCT.For the practical computation of the
HOSVD, we use the iterative method described in Algorithm
1 [10]. If we set the number of iterations to 0 in Algorithm 1,
we have the three-dimensional version of the MEV method.
If we set the number of bases to the size of the original tensors
in Algorithm 1, we call the method full projection (FP). If we
set the number of bases to less than the size of the original
tensors in Algorithm 1, we call the method full projection
truncation (FPT).

Firstly, we observe the properties of the iterative method.
Using sequences of silhouette images from a category, we
compute the sum of the energies of projected tensors after k
iterations and theCCRof the eigenvalues for the threemodes.
For the computation of tensor products, we select different
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Table 3 Sizes and number of
tensors of the resampled
OU-ISIR and CA datasets

�class �data/class Tensor size Reduced tensor size

OU-ISIR 34 9 128 × 88 × 90 d × d × d

CA 2 25 (male) 89 × 97 × 76 d × d × d

7 (female)

�class and �data/class represent the number of classes and the number of data in each class, respectively.
That CA dataset consists of two classes, that is, male and female. The tensor size is the size of the dataset
before dimension reduction. The reduced tensor size is the size of the tensor after dimension reduction. We
set d ∈ {32, 16, 8} for the size in the dimension reduction

orders of selection of themodes. Since there are threemodes,
we have 3! = 6 orders. For FPT, we set the numbers of bases
for each mode to 64× 64× 64 and 32× 32 × 32. Figure11
shows the sum of the energiesΨk after every 10 iterations for
the FP and FPT with the six different orders of computation
of the tensor projection. Figure12 shows the CCRs of the
three modes in the FP for the different orders of computation
of the tensor projections. Figure13 summarises the CCRs of
the three modes for projections to the three different sizes.
Figure14 shows the CCRs of each mode for FP and FPT.

In Fig. 11, the iterations do not significantly affect the sum
of the energies of the projected tensors. According to both
Figs. 11 and 12, changing the order of computation of the
tensor projections does not give different results. In Fig. 13,
the CCRs of the three decompositions are almost coinci-
dent in the three modes. Figure14 shows that the eigenvalues
obtained by FP and FPT are not coincident. The decompo-
sition of tensors for the FPT gives larger eigenvalues with a
smaller number of bases than those obtained by FP.

Next, we compute the CCRs of the eigenvalues obtained
by 10 iterations of Algorithm 1 for compressed tensors. For
the compression of the tensors from128×88×90 to 32×32×
32,we adopt theFP, theFPTand the3DDCT.Figure15 shows
the CCRs of each mode for the three types of compressed
tensor. The tensors compressed by the 3DDCT give larger
eigenvalues than those compressed by the FP and the FPT
with a smaller number of bases. The FP and the FPT gives
the same CCRs for each mode.

Thirdly, we compute the recognition rate of the sequences
of silhouette images by the TSM. In this validation, we use
the original sizes of the tensors and compressed tensors for
comparison. For the compression, we adopt the HOSVD, the
FP, the FPT and the 3DDCT. Using these four methods, we
compress the tensors to the sizes 32×32×32, 16×16×16 and
8×8×8. TheOU-ISIR dataset contains sequences of images
of 34 people with nine different walking speeds. We use the
sequences with walking speeds of 2, 4, 6, 8 and 10km/h for
learning data and the sequenceswithwalking speeds of 3, 5, 7
and 9km/h for test data. The recognition rate is defined as the
successful label estimation ratio for 1000 label estimations.
In each estimation of a label for a query, queries are randomly
chosen from the test dataset. For the 1-, 2- and 3-modes, we
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(a) (b) (c)

Fig. 11 Convergence of iteration described in Algorithm 1. a–c The
sum of energies Ψk in each iteration for the given numbers of bases of
128 × 88 × 90, 64 × 64 × 64 and 32 × 32 × 32, respectively. In the
a–c, horizontal and vertical axes represent the number of iterations and
Ψk , respectively. For the computation of the tensor projections using
Algorithm 1, we adopt the six orders of selection of the modes, where
the legends in the figures summarises the six orders
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Fig. 12 Cumulative contribution ratio of eigenvalues obtained by 10
iterations using Algorithm 1. a–c The cumulative contribution ratios for
the 1-, 2- and 3-modes, respectively. Here, the given number of bases
is 128 × 88 × 90 for Algorithm 1. For the computation of the tensor
projections using Algorithm 1, we adopt six orders of the selection
of modes, where the legends in the figures summarises the six orders.
The horizontal and vertical axes represent the compression ratio and
cumulative contribution ratio, respectively. For the original size D =
128× 88× 90 and the reduced size K = k × k′ × k′′, the compression
ratio is given as D/K

evaluate the results for multilinear subspaces with sizes from
one to the dimension of the compressed tensors.

Figure16a–c shows the recognition rates for the four
compression methods with three different sizes of the com-
pressed tensors of OU-ISIR dataset. For the images of size
32 × 32 × 32 shown in Fig. 16a, the recognition rates for
all four types of compressed tensor are almost coincident
with those of the original tensors, if the compression ratio
is higher than 103. If the compression ratio is less than 103,
the recognition ratio of the FPT is higher than those of the
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(a) (b) (c)

Fig. 13 Cumulative contribution ratio of three modes. a–c The cumu-
lative contribution ratios of the threemodes for the input sizes 128×88×
90, 64×64×64 and 34×34×34 inAlgorithm 1, respectively. The hori-
zontal and vertical axes represent the compression ratio and cumulative
contribution ratio, respectively. For the original size D = 128×88×90
and the reduced size K = k × k′ × k′′, the compression ratio is given
as D/K

(a) (b) (c)

Fig. 14 Comparison of cumulative contribution ratio between full
projection and full projection truncation. a–c A comparison of the
cumulative contribution ratio for the 1-, 2- and 3-modes, respectively.
The horizontal and vertical axes represent the compression ratio and
cumulative contribution ratio, respectively. For the original size D =
128× 88× 90 and the reduced size K = k × k′ × k′, the compression
ratio is given as D/K

(a) (b) (c)

Fig. 15 Comparison of cumulative contribution ratio for three types of
compressed tensor. For the compression of tensors, we use Algorithm 1
and the 3DDCT. In Algorithm 1, we respectively adopt sizes of 128 ×
88× 90 and 32 × 32 × 32 for the computation by FP and FPT. For the
three types of compressed tensor of 32×32×32, we apply 10 iterations
of Algorithm 1. a–cThe cumulative contribution ratios for the 1-, 2- and
3-modes, respectively. In a–c, the horizontal and vertical axes represent
the compression ratio and cumulative contribution ratio, respectively.
For the first reduced size K1 = 32 × 32 × 32 and the second reduced
size K2 = k × k′ × k′′, the compression ratio is given as K1/K2

HOSVD, the FP and the 3DDCT. The recognition ratio of
the 3DDCT is lower than those of other methods since the
silhouette images are binary images. For the images of sizes
16 × 16 × 16 and 8 × 8 × 8 shown in Fig. 16b, c, although
the recognition rates for the four types of compressed ten-
sor are almost the same, the recognition rates are smaller
than those for the original tensors. This recognition property

1

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 16 Recognition rates of gait patterns and liver data for original
and compressed tensors. We adopt the reduces sizes of 32 × 32 × 32,
16 × 16 × 16 and 8 × 8 × 8. a–c and d–f The recognition rates for
three reduced sizes of OU-ISIR and CA datasets, respectively. For
compression, we use the HOSVD, FP, FPT and 3DDCT. In a–f, the
horizontal and vertical axes represent the compression ratio and recog-
nition ratio [%], respectively. In a–c and d–f, for the original reduced
sizes D = 128 × 88 × 90 and D = 89 × 97 × 76, respectively the
compression ratio is given as D/K for reduced size k

1 1 1 05 23

(a) (b) (c)

Fig. 17 Computational time of dimension reduction for tensors of the
order three. a, b The computational time of construction of projection
matrices for 306 sequences of silhouette images and 35 voxel images of
livers, respectively. cThemean computational timeof projecting images
to low-dimensional tensor space for OU-ISIR and CA datasets. In a,
b, we compare the HOSVD, FP, FPT and 3DDCT. In a–c, the vertical
and horizontal axes represent the computational time and compression
ratio, respectively

depends on the size of the images, and the images used for
the comparison are too small to evaluate our methods of the
recognition of sequences of silhouette images. In Fig. 16a–c,
the HOSVD and the FP give the same recognition rate. These
results imply that the decomposition for the FP is indepen-
dent of the number of iterations.

Fourthly, we compute the recognition rate of the voxel
images of human livers by the TSM. For the computation,
we use the CA dataset. The CA dataset contains livers of 25
males and 7 females. We use the voxel images of livers of
13 males and 4 females as training data. The residual voxel
images are used as test data. In the recognition, we estimate
the gender of livers. The recognition rate is defined as the
successful estimation ratio for 1000 gender estimations. In
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each estimation of a gender for a query, queries are randomly
chosen from the test dataset. For the 1-, 2- and 3-modes, we
evaluate the results for multilinear subspaces with sizes from
one to the dimension of the compressed tensors.

Figure16d–f shows the recognition rates for the four com-
pressionmethodswith three different sizes of the compressed
tensors. For the voxel images of sizes 32 × 32 × 32 and
16 × 16 × 16 shown in Fig. 16d, e, the recognition rates for
all four types of compressed tensor are almost coincident
with those of the original tensors. For the voxel images of
sizes 8×8×8 shown in Fig. 16f, the recognition rates for all
four types of compressed tensor are almost coincident with
those of the original tensors, if the compression ratio is higher
than 104. Compared to the recognition rates of the sequences
of silhouette images, the 3DDCT gives better approximation
for ones of the volume data of livers since livers are essen-
tially volumetric objects, which consists of textures of liver
tissues.

Finally, using Intel Xeon X5570 Quad core 2.93GHz, we
compare the computational times of the four reduction meth-
ods for OU-ISIR data and CA data. In the comparison, for
TPCA, we set 3 iterations for Algorithm 1. For computation
of 3DDCT, we construct three DCT-II matrices. Therefore,
we do not use FFT. Note that the computational times of
TTP in the four methods are the same. Therefore, we show
only themean of the computational time. Figure17 shows the
comparison of computational times for two datasets. In both
cases for OU-ISIR and CA datasets, 3DDCT gives the fastest
construction of projection matrices in the four methods.

For voxel images, the 3DDCTgives an acceptable approx-
imation of the HOSVD, the FP and the FPT in the context
of pattern recognition. Even for sequences of binary silhou-
ette images, the 3DDCT gives an acceptable approximation
of the HOSVD, the FP and the FPT in the context of pattern
recognition.Moreover, fromFigs. 14, 15, and 16a–c, changes
in the energies of the projected tensors and the CCRs of the
eigenvalues in the decomposition of tensors in these methods
are not important in the context of pattern recognition.

6 Conclusions

We first clarified the equivalence between N th-order tensor
principal component analysis and N -dimensional singular
value decomposition for N = 2, 3. Second, we intro-
duced the marginal eigenvalue method and the iterative
algorithm as practical computation methods for two- and
three-dimensional singular value decomposition, respec-
tively. Furthermore, we introduced the N -dimensional dis-
crete cosine transformas an approximationof N -dimensional
singular value decomposition. Finally, to evaluate the effects
of the N -dimensional discrete cosine transform and N -
dimensional singular value decomposition for N = 2, 3

on tensor pattern recognition, we presented two numerical
examples.

For the first example, we presented two validations for
two-dimensional images. Using the images compressed
by the marginal eigenvalue method and two-dimensional
discrete cosine transform, we computed the cumulative con-
tribution ratio of the eigenvalues of a tensor subspace as the
first validation. As the second validation, we computed the
accuracy of image pattern recognition for images compressed
by the marginal eigenvalue method and two-dimensional
discrete cosine transform. All the results in these two val-
idations demonstrated the equivalent performance of the
marginal eigenvalue method and two-dimensional discrete
cosine transform for two-dimensional image pattern recog-
nition.

For the second example, we presented two validations for
sequences of the two-dimensional images and voxel images
of human livers. Using the sequences of binary images
compressed by the iterative algorithm of the higher-order
singular value decomposition and the three-dimensional
discrete cosine transform, we computed the cumulative con-
tribution ratio of the eigenvalues of a tensor subspace as the
first validation. As the second validation, using the sequence
images and voxel images, we computed the accuracy of ten-
sor pattern recognition for tensors compressed by the iterative
algorithm and the three-dimensional discrete cosine trans-
form for the sequences and volumetric data. All the results
in these two validations demonstrated the equivalent perfor-
mance of the higher-order singular value decomposition and
three-dimensional discrete cosine transform for third-order
tensor pattern recognition. Furthermore, for the decompo-
sition procedure, the results showed that tensor projection
is independent of the order of selection of the modes in
tensor projections. Moreover, for the sequences compressed
the higher-order singular value decomposition, these results
showed that the cumulative contribution ratio and recogni-
tion ratio are independent of the number of iterations in the
decomposition procedure.

These two numerical examples illustrated that the N -
dimensional discrete cosine transform can be an acceptable
approximation for N -dimensional singular value decomposi-
tion for N = 2, 3 in tensor pattern recognition if we adopt the
Euclidean distance as the metric of the pattern space. These
examples also imply that the approximation of the higher-
order singular value decomposition by the discrete cosine
transformmay be valid for tensors with order higher than the
third order without an iterative computation method. These
approximations are useful for the practical and fast compu-
tation of tensor recognition.
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