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Abstract This paper introduces a method based on robust
statistics to build reliable gait signatures from averaging
silhouette descriptions, mainly when gait sequences are
affected by severe and persistent defects. The term robust
refers to the ability of reducing the impact of silhouette
defects (outliers) on the average gait pattern, while taking
advantage of clean silhouette regions. An extensive experi-
mental framework was defined based on injecting three types
of realistic defects (salt and pepper noise, static occlusion,
and dynamic occlusion) to clean gait sequences, both sep-
arately in an easy setting and jointly in a hard setting. The
robust approach was compared against two other operation
modes: (1) simplemean (weak baseline) and (2) defect exclu-
sion (strong benchmark). Three gait representation methods
based on silhouette averaging were used: Gait Energy Image
(GEI), Gradient Histogram Energy Image (GHEI), and the
joint use of GEI and HOG descriptors. Quality of gait sig-
natures was assessed by their discriminant power in a large
number of gait recognition tasks. Nonparametric statistical
tests were applied on recognition results, searching for sig-
nificant differences between operation modes.
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1 Introduction

Biometric systems have become increasingly widespread as
the need for higher security levels has grown. They address
person identification or verification by analyzing physiolog-
ical or behavioral traits. The use of physical portions of the
body, such as face, fingerprint, and hand geometry, has been
more popular due to the traditional cooperation of the sub-
ject and the inherent static nature of these biometric sources.
Conversely, the use of behavioral traits is intended to encode
the singular way in which a human performs a common
action (walking, signing, typing, etc.). Their main advantage
over physiological traits is the potential of capturing peo-
ple in their everyday lives, although the need for managing
(possibly unconstrained) dynamic information could lead to
inaccurate biometric patterns.

This paper focuses on recognizing human gait, a behav-
ioral biometric source that has received much attention in the
last two decades [11,13]. In addition to not requiring sub-
ject’s cooperation, human gait is a universal action that can
be captured at a distance by simple sensors, even in adverse
conditions. These strengths havemade this biometric a highly
valuable information source in video-based security and sur-
veillance systems.

From a biomechanical point of view, each person is
supposed to have a unique walking pattern because this
action is supported by a particular musculoskeletal struc-
ture [25]. However, this uniqueness is usually very hard
to elicit due to a large number of factors that can affect
either the gait dynamic or the gait perception. Dynamic may
be altered by surface, footwear, age, body weight, mood,
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physical injuries, and neurological disorders. Similarly, gait
perception depends on subject appearance and video qual-
ity. Appearance can be affected by changes in clothing, load
carrying, and camera viewpoint, while quality can degrade
by the presence of noise or occlusions. Gait description
under severe quality problems defines the scope of this
work.

Representation methods are expected to be able to extract
discriminant information, allowing classifiers to recognize
or verify a person’s identity by their gait. They have been
broadly separated into two major families: model-based and
model-free approaches. Model-based methods build a pre-
defined model of the human walking by continuously mea-
suring dynamic attributes such as joint angles and body part
locations, what makes these approaches robust to changes
in viewpoints and scale. However, they tend to be error-
prone and time-consuming due to the need for estimating
parameters. On the contrary, model-free techniques do not
use a explicit body model. They usually capture subject’s
dynamic and appearance directly from binary silhouettes,
being thus robust to changes in color, texture, and lighting
conditions, but also sensitive to viewpoints. Besides, unlike
model-based approaches, they are simpler (a model is not
required), less costly, and able to better encode body shape
(appearance), which carries considerable biometric informa-
tion [6,13]. These advantages havemademodel-freemethods
an appealing choice for gait analysis in uncontrolled scenar-
ios.

Both the model-based and model-free approaches have
been applied to the analysis of low-quality gait sequences.
Those methods that rely on a model [12,15,23,36] have
showed an outstanding ability to reconstruct incomplete
body parts (due to occlusions or segmentation errors),
although the resulting gait representations usually suffer
from standardization without much of their individual infor-
mation. Poor gait recognition results reported in some of
these works validate the detrimental effect of model fit-
ting. On the other hand, a number of general-purpose
model-free methods [4,6,7] have been proposed and suc-
cessfully assessed on imperfect silhouettes. However, most
of the gait samples used in these researches are just
slightly affected by a few minor defects scattered along the
sequences.

With the aim of having heavily contaminated gait
sequences, just a fewworks [4,23,35,36] have injected artifi-
cial major defects to human silhouette images to simulate the
impact of environmental factors in the segmentation process.
Common practices have been salt and pepper noise, that can
potentially arise due to a continuously changing background
(e.g., water in motion, tree leaves blowing in the wind) or
sensor malfunction, and partial occlusions caused by static
objects (e.g., vertical and horizontal bars) or by superposition

of silhouettes of the person of interest and other objects in
motion (e.g., people, cars). All these works injected only one
type of defect in each sequence, while the impact of the size
of the contaminated part on the recognition accuracy was not
assessed.

This paper introduces a method for a more reliable com-
putation of a gait representation that results from averaging
silhouette descriptions. Typical examples would be the Gait
Energy Image (GEI) [6] and GEI-based methods such as
the Gradient Histogram Energy Image (GHEI) [7]. The pro-
posed approach is inspired by a statistical framework called
robust statistics (RS) [10,17] which, unlike the classic con-
jecture of data normality, assumes an approximately normal
distribution where most data fit a normal shape, but there
are heavy tails of atypical observations (outliers). The term
robust refers tomitigation of the impact of outliers in parame-
ter estimation. Within the context of gait representation, this
proposal is intended to neutralize the influence of silhouette
defects (outliers) on the average gait pattern under construc-
tion, while it takes advantage of clean silhouette regions.

Experiments have been organized in two levels of defect
injection, as regards the portion of gait sequence that was
affected. In an easy setting, only one-fifth of each sequence
was contaminated, while in a hard one, three-fifths were
corrupted. Three types of defect (salt and pepper, static occlu-
sion, and dynamic occlusion) were added to gait sequences
separately in the easy setting and jointly (in a random man-
ner) in the hard setting. Gait patterns were obtained from
combining three gait representation methods (GEI, GHEI,
and GEI+HOG) and three operation modes (simple mean,
defect exclusion, and robust mean). To assess the quality of
gait patterns, a number of recognition tasks based on two
classifiers (1-NN, RankSVM [19]) were designed: 108 and
36 in the easy and the hard settings, respectively. Besides, a
neutral setting was defined as an auxiliary collection of 24
tasks built from the original clean sequences. Nonparametric
statistical tests were applied on recognition results, search-
ing for significant differences between operation modes and
representation methods.

Summarizing, the main contributions of this paper are: (1)
a robust statistical approach to obtain reliable gait patterns
from averaging silhouette descriptions and (2) a thorough
experimental study of gait recognition on a wide range of
defective sequences.

The rest of the paper is structured as follows. Section 2
examines the literature that concerns quality of gait rep-
resentations. Section 3 provides a theoretical basis for the
method proposed, which is introduced in Sect. 4. Experimen-
tal methodology is outlined in Sect. 5. Section 6 presents
statistical results and performance curves. Finally, Sect. 7
discusses conclusions and promising directions for future
research.
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2 Related work

Some works in the literature have dealt with low-quality gait
sequences. They could be roughly divided into two groups.
On the one hand, some authors have focused on devising
methods to grade the level of complexity or degradation of
gait samples. Within this context, some strategies have been
proposed to improve or reconstruct the quality of degraded
silhouettes. On the other hand, a number of gait representa-
tions have been designed to work directly with defective gait
samples. Hereinafter, most relevant works from both groups
are reviewed.

A method for measuring the quality of a range of silhou-
ettes from their 1-D foreground-sum signal was proposed
in [14]. Thismetric, named Silhouette QualityQuantification
(SQQ), was exploited to weight gait patterns by their qual-
ity in order to improve the recognition rate. Experiments on
raw sequences from videos recorded in a challenging envi-
ronment (complex background, variations in illumination)
yielded recognition results higher than those of a baseline.
In a related work [20], a GEI complexity index is computed
based on a probabilistic model, to quantify how far the sam-
ple under analysis is from a normality model. Experiments
showed a high correlation between the complexity index and
the recognition error. Recently, a novel occlusion model was
presented in [22], to statistically describe the level of occlu-
sion in videos based on three parameters: the initial phases
of motion of both the target and the occluder subjects, and
the duration of the occlusion. It was employed to synthesize
dynamic and static occlusions in clean videos, as well as to
characterize real occlusions in defective videos from chal-
lenging databases. Experiments showed the precision of the
occlusion model, in addition to its usefulness in designing
realistic gait recognition tasks.

Within this scope, some fewworks have focused on strate-
gies to improve the quality of degraded gait silhouettes.
In [23], gait cycles were modeled as chains of estimated key
poses. This scheme allows to detect partially occluded and
missing silhouettes in the frames of a gait sequence, which
are then reconstructed using a Balanced Gaussian Process
Dynamical Model. This solution was tested on sequences
occluded by real static and dynamic objects, and on frames
degraded by normal distributions. A simpler approach based
on the amount of foreground pixels was proposed in [9].
It is aimed to detect gait subsequences where silhouettes
appear partially or totally occluded. Affected silhouettes are
then replaced by similar-pose clean silhouettes retrieved from
non-affected cycles. Although this method effectively han-
dles occlusions, it is at the expense of replicating information.
In [4], the problem of silhouette incompleteness was also

addressed. The method consists in classifying the raw sil-
houettes into clusters and computing aGEI from each cluster.
Then, each GEI is denoised resulting in a Dominant Energy
Image (DEI). Finally, each original silhouette is substituted
by a new image (FDEI) that arises from the summation of
its cluster’s DEI and the positive portion of its difference
with the preceding silhouette. A different strategy to deal
with problems in silhouettes is to exclude affected regions
as in [30], where covariate factors are removed from gait
representations.

Other works rely on prior models to clean noisy silhou-
ettes or to reconstruct missing parts of them. In [12], a global
pedestrian population model and subject-dependent HMM-
basedmodelswere created to refine andfill inmissing parts of
silhouettes, possibly caused by a faulty segmentation. A sim-
ilar procedure was followed in [15], where an eigen-stance
gait model was created from a series of manually selected
silhouettes. This model, along with an HMM-driven strat-
egy, was applied to match silhouettes to stances so that noise
could be detected and removed. Despite the improvement in
representing appearance, these approaches led to low recog-
nition rates due to the loss of individual clues.

Some model-based and model-free approaches have been
proposed to obtain gait patterns directly from low-quality
gait sequences. In [36], authors built a simplified articu-
lated model which accurately fits the silhouettes, even in
presence of noise or occlusions. The model is defined by
a series of static and dynamic parameters used to char-
acterize gait poses. The method was tested in recognition
tasks, outperforming a baseline in outdoor scenarios but
not indoors. As regards the model-free family, methods
range from simple gait characterizations as in [33], where a
contour-based approach is designed to mitigate little defects
on silhouettes, to intricate methodologies as in [35], where
a fractal-based gait description is introduced. However, the
most popular model-free methods are those based on the
GEI, which can be considered a de-facto standard. GEI
is computed as the average image of a series of normal-
ized binary silhouettes previously extracted from a gait
video. A similar strategy is followed in [7], where his-
tograms of oriented gradients (HOG) are first computed from
individual silhouettes. Then, histograms are averaged to pro-
duce the Gradient Histogram Energy Image (GHEI). Other
approaches [27,29] also make use of HOG to describe a gait
sequence, but HOG descriptors are extracted directly from
the GEI. All these proposals share a key operational issue:
they compress silhouette information by averaging, which
effectively reduces the negative effects of scattered defects.
However, they fail in case of major and persistent over time
defects.
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3 Statistical framework

3.1 Robustness

This section introduces basic concepts of robust statistics that
appear in the book [17]. Readers are encouraged to consult
it for a more in-depth understanding.

Given a set of observed values {x1, x2, . . . , xn}, the max-
imum likelihood estimate (MLE) of the mean μ can be
expressed by the following optimization problem:

μ̂ = argminμ

n∑

i=1

ρ (xi − μ) (1)

where ρ = − log f , with f being the underlying probability
density function of the error ei = xi−μ. Ifρ is differentiable,
then differentiating (1) with respect toμ and equating to zero
lead to:

n∑

i=1

ψ
(
xi − μ̂

) = 0, with ψ = ρ′ (2)

Assuming that ei ∼ N (0, σ 2), the solution of Eq. (2) is:

μ̂ = 1

n

n∑

i=1

xi (3)

This way of estimating the mean equally weights all
observed values, which opens the door to the negative impact
of outliers. It suggests a straightforward strategy to deal with
outliers: to detect them [2] and to leave them out. However,
as discussed in [17], the decision of removing outliers is
inherently subjective because the outlyingness of observa-
tions should be measured and thresholded. In addition, it
encloses the risk of discarding “genuine” observations which
could induce a bias in the mean estimation. Another alterna-
tive is to use the sample median, as it has proven to be less
sensitive to outliers. Nevertheless, the statistical performance
provided by the median is generally poorer than that of the
mean when data contain no outliers. Thus, a good solution
should behave like the mean when no outliers affect the data,
while it should ignore outliers otherwise. This is just the ulti-
mate goal of robust estimation.

In most cases of interest, ψ(0) = 0 and ψ ′(0) exists. Let
W (x) be a function defined from ψ(x) as follows:

W (x) =
{

ψ(x)/x : x �= 0
ψ ′(0): x = 0

(4)

Then, using the W (x) function, Eq. (2) can be reformu-
lated as:

n∑

i=1

W
(
xi − μ̂

) (
xi − μ̂

) = 0 (5)

From Eq. (5), the sample mean can be expressed in terms
of a weighted mean:

μ̂ =
∑n

i=1 wi xi∑n
i=1 wi

, where wi = W
(
xi − μ̂

)
(6)

The Eq. (6) establishes a weighted computation of the
sample mean μ̂, where the term wi = W (xi − μ̂) weights
the observation xi . Note that μ̂ appears in both the left- and
the right-hand sides of the Eq. (6), thus it can be rewritten
as a recurrence and solved by a numerical iterative method,
typically a fixed point algorithm.

Within this robust framework, ρ is chosen in order to
ensure that W (x) is a symmetric, non-increasing function
of |x |, and that W (x) → 0 when x → +∞. Thus, the far-
ther away is an observation xi from the sample mean μ̂, the
smaller will be the associated weight W (xi − μ̂). Accord-
ingly, outliers should receive small weights, reducing their
impact in the mean estimation.

There exist several examples of robust functions [3]. A
popular choice forρ andψ is the bisquare family, fromwhich
the following weight function can be deduced:

Wb(x | t) =
{[

1 − ( x
t

)2]2 : |x | ≤ t

0 : |x | > t
(7)

Note that Wb(x | t) has nontrivial zeros at x = t and
x = −t , beyond which the function vanishes. That is, any xi
located at a distance of μ̂ greater than or equal to t will have
no impact on the mean estimation. Figure 1a shows a plot of
Wb(x | t) for t = 3, which could correspond to ±3σ when
ei ∼ N (0, 1).

3.2 Quasi-robustness

Reducing the influence of outliers in the mean estima-
tion is usually performed by weight functions W (x) that
decrease very quickly and, unlike the bisquare-based func-
tion, approach zero at infinity. Despite weights are rigorously
greater than zero, they become very small even for moder-
ately deviated samples, thus involving a considerable risk of
losing genuine information.

A more reasonable approach could be the one known as
quasi-robust, which is described “as beingmuchmore robust
than ordinary solutions without being strictly robust” [21].
This principle can be shaped in terms of a (quasi-robust)
weight function that guarantees at least a minimum weight
ε > 0 to any uncommon value (possibly an outlier), dis-
regarding how far from the mean it is located. Formally, a
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Fig. 1 Bisquare-based weight functions: a robust, and b quasi-robust

quasi-robust weight functionw(x) should satisfy the follow-
ing properties:

1. w(x) is symmetric
2. w(x) is a non-increasing function of |x |
3. ∃ ε > 0, such that w(x) ≥ ε

For instance, the bisquare-based functionWb(x | t) can be
generalized into a new quasi-robust realizationwb(x | t, ε) so
that wb(·) → ε when |x | → t :

wb(x | t, ε) =
{[

1 − ( x
t

)2
(1 − √

ε)
]2 : |x | ≤ t

ε : |x | > t
(8)

Figure 1b illustrates wb(x | t = 3, ε = 0.05).

4 Robust gait representation

4.1 A general recurrence

This section introduces a method inspired by robust statistics
to build more reliable gait patterns.

Let S = {s1, s2, . . . , sn} be a sequence of n binary sil-
houette images gathered from a gait video, and let X =
{x1, x2, . . . , xn} be a related set of silhouette descriptions,
such that xi is a vector of d numerical features that describes
si . For instance, xi could be a vector of pixel values or HOG
descriptors. A gait pattern g ∈ R

d can be obtained by aver-
aging all xi :

g = 1

n

n∑

i=1

xi (9)

Someparticular g-like representations areGEI,GHEI, and
the joint use of GEI+HOG.

Let us assume now that S can be divided into m dis-
joint subsequences S j , 1 ≤ j ≤ m, such that S = S1 ∪
S2 ∪ · · · ∪ Sm , with each S j corresponding to the j-th gait
cycle (one stride or two steps).1 Thus, it can be assumed
that all subsequences S j are chronologically ordered. This
structure induces an equivalent partition on the set X , lead-
ing to a related collection of silhouette description subsets
{X1, X2, . . . , Xm}. Let g j be a cycle-based gait representa-
tion obtained by averaging all silhouette descriptions in X j .
An alternative (and in general approximate) way of comput-
ing g is:

g ≈ 1

m

m∑

j=1

g j (10)

Since all g j result from averaging and given the cycli-
cal nature of gait, each of the d features over the set
{g1, g2, . . . , gm} is expected to approach a normal distrib-
ution. Then, it makes sense to measure the deviation of a
particular feature value with respect to that feature’s mean,
|g j (k) − g(k)|, where k, 1 ≤ k ≤ d, denotes the k-th feature
of g j . As each g j summarizes silhouette information within
the j-th cycle, a high deviation value |g j (k) − g(k)|, assum-
ing a reliable g(k), could be a symptom of poor-quality data
in regions that contribute to the feature g j (k). It is important
to note that any perceived anomaly in g j necessarily comes
from a persistent cause along that cycle j , such as partial
occlusions, serious segmentation errors, etc.

This paper proposes a quasi-robust formulation of Eq.
(10) based on an incremental method introduced in [18],
which computes cumulative gait representations from cycles
in the order they occur. Given a gait sequence that consists
of m cycles, the Eq. (10) can be rewritten as the following
recurrence:

g ≈ g1:m = (1 − αm) g1:(m−1) + αm gm (11)

1 This scheme admits a series of half cycles.
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withα j = 1/j , g1: j denoting a gait representation that aggre-
gates the first j cycles, and g1:1 = g1 being the seed value.
Equation (11) equally weight (by 1/m) all features in all gait
patterns, no matter how corrupted they can be. The solution
of this recurrence leads to an incremental computation of
the gait pattern, from the first cycle (seed) to the final one.
All cycle-based patterns g j are ultimately weighted by 1/m;
hence, the order of cycles does not affect the resulting g1:m .

Let us assume that the seed value g1:1 = g1 is a clean
cycle-based gait pattern built from high-quality silhouettes
that are present in the first cycle, and let α jk be a weight
function defined as follows:

α jk = ω jk
∑ j

i=1 ωik

,

with ωik =
{

wk(gi (k) − g1:i−1(k)) : i > 1
1 : i = 1

(12)

where wk(·) is a quasi-robust weight function as character-
ized in Sect. 3.2, and g1:i (k) is the accumulated value of the
feature k along the first i cycles. Then, a feature-dependent
generalization of Eq. (11) can be:

G(k) = g1:m(k) = (1 − αmk) g1:m−1(k) + αmk gm(k) (13)

Equation (13) can be seen as an approximate and incre-
mental way of computing Eq. (6). Since the contribution of
each g j (k) is affected by a history-dependent factor wk(·),
embedded in α jk , Eq. (13) depends on the order of cycles. In
order to make Eq. (13) easier to understand, an analysis of
wk(·) is provided:

– As suggested above, wk(·) fulfills the three properties
stated in Sect. 3.2.

– There are d feature-dependent weight functions wk(·),
one for each feature k.

– The function wk(·) is intended to model a threshold over
the distribution of the deviation (as a random variable) of
gi (k) from g1:i−1(k), ∀i > 1, to separate genuine devia-
tions from those considered as irregular (large deviations
produced by outliers).

– In the hypothetical case of zero deviations of all fea-
tures across all cycles, i.e., gi (k) − g1:i−1(k) = 0 ∀i, k,
by properties 1 and 2 (Sect. 3.2), ωik = maxwk(·)
and Eq. (13) turns into the simple mean. The function
wk(·) should be chosen such that small deviations receive
ωik ≈ maxwk(·).

– In case of large deviations (greater than the threshold
encoded in wk(·)), by property 3 (Sect. 3.2), ωik ≈ ε.
That is, the related gi (k) (possibly an outlier) will con-
tribute by a minor weight.

– An area for a further generalization is to encapsulate the
computation of a deviation measure of a new observation

gi (k) from its expected value g1:i−1(k) within a function
v(gi (k), g1:i−1(k)), and to create a function composition
wk(v(·)) as proposed next:

α jk = ω jk
∑ j

i=1 ωik

,

with ωik =
{

wk(v(gi (k), g1:i−1(k)) : i > 1
1 : i = 1

(14)

Until now, the implicit form of v(·) has been the absolute
value of the difference |gi (k) − g1:i−1(k)|. However, as
will be seen later,wk(v(·)) allows for a greater flexibility
when using different gait representation methods.

The quasi-robust approach formulated by the Eq. (13) is
expected to approach the simple mean when there are no out-
liers, while it should underweight largely deviated samples
(possibly outliers) otherwise.

4.1.1 On the applicability of the Eq. (13)

The recurrence defined in Eq. (13) can be considered a sim-
ple and natural way to address an inherently cyclical process
(gait). It supports strategies for controlled injection of defects
into cycles as they occur, so as to track the quality of the gait
pattern under construction as a function of time/cycle. This
serial scheme could also provide reliable and early identifi-
cation hypotheses, by only considering a few initial cycles,
that can be of great value in real-time systems. In addition,
Eq. (13) entails a much more simple solution than numerical
computation required by Eq. (6), avoiding potential conver-
gence problems inherent to the latter.

A typical approach to robust estimation consists in the iter-
ative optimization of an initial estimate. This first state should
be built from well-behaved data, so that it can be gradually
refined by samples that differ slightly or moderately from it
(samples that differ substantially are underrated). As Eq. (13)
can only be initialized with the first cycle, it is required to be
of an acceptable quality. This issue turns critical since there
are usually a few cycles (iterations) to improve the estimate.
On the contrary, in case of a noisy first cycle, and thus a
poor-quality initial estimate (outlier), a few iterations would
be insufficient to push the estimate to a satisfactory state.

Unlike Eq. (13), conventional approaches that fit Eq. (6)
operate on all samples at once. This allows for more standard
initialization choices such as the sample median [17], which
has proven to be resistant to outliers.

This operational context could inspire more general solu-
tions to the problem of computing robust gait patterns,
provided that the full gait sequence is given as input. In this
regard, well-behaved initial estimates could be obtained from
any clean cycle, not necessarily the first one, or from a syn-
thetic cycle built by linking complementary clean silhouettes

123



Gait recognition from corrupted silhouettes: a robust statistical approach 21

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 4 8 12 16 20 24 28 32 36 40 44 48

w l
og
(x
)

x

Fig. 2 Logistic-based weight function, with ε = 0.1, s = 1, and t =
24

picked fromdifferent partially affected cycles. Previous goals
could be even further relaxed if they are reduced to half a
cycle.

However, dealing with (6) would require new solution
methods (e.g., a numerical analysis algorithms) that involve a
number of challenges such as convergence to local minima,
low convergence speed, poor choices of initialization, etc.
Besides, such a free setting would have made it impractical
to thoroughly study the behavior of the robust approach.

4.2 A logistic-based weight function

In this work, a weight function based on the logistic curve
is chosen to implement Eq. (13). This function, denoted by
wlog(·), is formulated as follows:

wlog(x | t, s, ε) = 1 − 1 − ε

1 + e−s(x−t)
(15)

where ε = minwlog(·) (the minimum possible weight), s
is the curve steepness, x is a measure of the deviation of an
observation from its expected value (in the sense of v(·)), and
t is a threshold to discriminate between acceptable deviations
and ill-suited ones.

Figure 2 shows awlog(·) example, which looks similar to a
step function with a sharp fall at x = t . This function assigns
the maximum weight to those observations which are close
enough to their expected values (their deviations are lower
than t), while it gives a small weight otherwise. With respect
to a true step function, wlog(·) is a more adaptable function
that allows for more diverse shapes and smoother transitions.
As can be easily proven, wlog(·) is a particular case of the
class of quasi-robust functions w(·) defined in Sect. 3.2 and
characterized in Sect. 4.1.

From an implementation point of view, two issues of the
function composition wlog(v(·)) should be closely exam-
ined. A first point is related to model complexity. Equa-
tion (13) involves d feature-dependent weight functions
wk(·),

1 ≤ k ≤ d, each of them requiring parameter fitting. How-
ever, the dimensionality of most gait representation models
is high, usually of thousands of features, even for low-
resolution images. For the sake of simplicity, this work uses
a common weight function w(·) to all features, which is
adjusted from the distribution of deviations of all feature val-
ues together. A second key issue concerns the definition of
the function v(·), which provides a measure of the devia-
tion of a feature value from its expectation. Because features
are closely connected with image pixels, to have a higher
tolerance to segmentation and alignment inaccuracies the
computation of v(·) should involve some contextual infor-
mation of the feature under analysis. As this relationship
usually depends on the representation method, different v(·)
functions have been proposed (see Sect. 5.3.1).

5 Experimental methodology

Figure 3 depicts a methodology overview, where five areas
can be identified: Data usage, Silhouette defect injection,
Gait representation, Parameter estimation and learning, and
Classification and performance evaluation. Next subsections
describe these stages.

5.1 Data usage

5.1.1 Data partitioning

Given a database of gait sequences, the methodology begins
by roughly equally distributing subjects (along with all their
sequences) into the Training and the Test subsets. On the one
hand, training data are used for two purposes: (1) to learn
some transferable knowledge required by a ranking-based
method used in the classification stage (RankSVM) and (2)
to estimate parameters of the weight function wlog(x). Both
tasks are detailed in Sect. 5.4. On the other hand, following
a classical supervised approach, test sequences are equally
divided by chance into theGallery andProbe subsets, in such
a way each subject has samples in both of them.

As depicted in the Fig. 3, clean gallery sequences are rep-
resented by full gait patterns g to be used as reference data
within a template matching strategy. This decision-making
process is tested on in-between gait patterns g1:i built from
clean and corrupted probe sequences, following three opera-
tion modes: simple mean, defect exclusion, and robust mean
(see Sect. 5.3.2). More details of this process are given in
Sect. 5.5.2.

5.1.2 Dataset analysis

The experimental methodology proposed in this work can
benefit from certain database characteristics:
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Fig. 3 Overall methodology graph

1. An adequate number of subjects is recommended to have
enough data for the two-level partition: first into training
and test subjects, and then the test data into gallery and
probe sequences. An acceptable amount could be no less
than 50–60 people.

2. At least two different gait sequences per person under
neutral appearance are required, in order to ensure at least
one sample of every test subject in each of the gallery and
the probe subsets.

3. All sequences must comprise at least four gait cycles to
permit an incremental data processing as proposed here,
including up to three types of defect injected in interme-
diate cycles.

After a thorough search of publicly available databases,
two well-known collections were chosen: the OU-ISIR
Treadmill Dataset B [16] and the USF Human ID Gait Data-
base [24]. Both are large sets of sequences from people
recorded several times,which broadlymeet the requirements.
The former is composed of indoor recordings of 68 subjects
from their side viewwith variations on clothing up to 32 com-
binations. To fulfill the requirement of appearance neutrality,
only two types of sequences close to a neutral appearance
were used in this work. One shows subjects in regular pants
and full shirt, whereas the other type in regular pants and
parka. The second dataset consists of videos of 122 subjects
recorded outdoors under combinations of up to five covariate

conditions: (1) surface (concrete or grass), (2) viewangle (left
or right), (3) footwear (two types of shoes), (4) carrying con-
dition (with or without a briefcase), and (5) time of recording
(May or November). Again, sequences of the two combina-
tions that best represent a neutral appearance were chosen
for each subject. They agree in the values of four covariates
(concrete, shoe type A, no briefcase, andMay), and just differ
in the view angle. Since the goal is to recognize gait under
low-quality samples, three types of defect were simulated
and injected into gait sequences. Next subsection explains
how this process was carried out.

It is also worthy to mention the TUM-IITKGP gait
dataset [8], since it includes sequences with real static
and dynamic occlusions that severely affect the gait per-
ception. Nevertheless, some crucial dataset properties have
dissuaded us from using it in this work. First, this database
consists of recordings of binarized frames from 35 individ-
uals, an amount that can be considered lacking as regards
the previously stated criteria. Second, defects seem to be
specific to sequences of a same individual, thus making
an exogenous positive contribution to the related biomet-
ric signature. Finally, some sequences do not include even
a first complete clean cycle, which is an assumption of
the Eq. (13) in Sect. 4.1. Other widely used gait data-
bases like CMU MoBo [5] and CASIA [34] were also
discarded, because they did not satisfy some of the given
conditions.
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5.2 Silhouette defect injection

As none of the databases analyzed comprises heavily con-
taminated gait sequences, three types of defects have been
artificially injected in silhouettes of OU-ISIR and USF, sim-
ulating different contextual factors that affect the quality of
segmentation. These types of defects are:

Salt & Pepper noise When introducing S&P noise on an
image, a percentage α of the pixels are randomly turned
into black or white. Here, a high-level noise of α = 75%
has been applied on all silhouettes of a cycle, simulating
a defective segmentation resulting from a scenario with a
highly variable background. This could be due to a chang-
ing light intensity (e.g., sunlight) potentially caused by
physical events such as reflection from surfaces in motion
like water, or moving objects (or their shadows) as foliage
blowing in thewind. Figure 4b shows how the noise affects
the silhouettes and blurs the resulting GEI, as compared
to the clean cycle in Fig. 4a.

Static occlusion It represents a background object that is
located in a plane nearer to the camera than that of the
subject of interest. In experiments, a weed silhouette has
been sequentially added to human silhouettes representing
a stationary element of the scene. The use of this kind of
stuff was motivated by the fact that it affects mostly the
lower part of the body, which is expected to contain highly
relevant gait information. Figure 4c shows how weed is
introduced along the frames of a cycle, and the damage
produced in the lower part of the GEI.

Dynamic occlusion It represents a foreground object which
follows a trajectory that crosses that of the subject of inter-
est. In a similar way to static occlusions, a car silhouette is
added to human silhouettes simulating an object inmotion
in the scene. At this point, it is worth remarking the dif-
ference between both types of occlusion: static objects
belong to the background, causing missing body parts in
human silhouettes, while dynamic objects are segmented
as foreground, distorting the shape of human silhouettes
or generating several blobs. Figure 4d illustrates the super-
position of silhouettes, spotting considerably the resulting
GEI.

As can be appreciated in Fig. 4, all silhouettes (disregard-
ing their nature) appear centered in boxes of the same size,
which represent the region of interest. They could be the ideal
output of a segmentation process based on a smart tracker
able to reliably estimate the silhouette’s location (e.g., its
centroid) on each video frame. This process could rely on
probabilistic models of gait pose transitions over time [23]
or on detecting and tracking isolated body parts (e.g., the
head) [26,32]. Once the silhouette’s centroid is located, a
fixed-size window can be used to bound the silhouette. Peo-
ple detection and tracking are active research areas, but they
are out of the scope of this work. Thus, it is assumed that
there exists such a smart tracker feeding the gait representa-
tion stage. In this work, the size of the boxes has been set to
64 × 44 px.

Fig. 4 Gait cycle (through a number of key frames) along with its GEI including: a no defects; b 75% of S&P noise; c a static occlusion (weed);
and d a dynamic occlusion (car)
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5.3 Gait representation

5.3.1 Methods based on averaging silhouette data

As suggested in Sect. 4.2, the computation of ameasure of the
deviation of some feature value from its expectation by the
v(·) function should consider some contextual information,
whichmay depend on the gait representationmethod. A brief
description of each method, along with the proposed v(·), is
given next:

– Gait Energy Image (GEI) [6]. It is a widely known
model-free method for gait representation. It computes
an average image (GEI) from a set of normalized binary
silhouettes, which reflects the shape and dynamic of
the body parts. Pixels of the resulting GEI are used as
features. Given a pixel (feature) gi (k), let ri, h(k) be a h2-
dimensional vector composed of the pixels that belong to
the h × h region in theGEI centered at the pixel gi (k). Let
r1:i−1, h(k) be the corresponding vector gathered from the
pattern g1:i−1(k). Then v(gi (k), g1:i−1(k)) is defined as
the normalized Euclidean distance between ri, h(k) and
r1:i−1, h(k). The normalization by the number of pixels
allows a direct comparison between (full) internal regions
and (smaller) border regions. In the experiments, a 5 by
5 neighborhood was used.

– Gradient Histogram Energy Image (GHEI) [7]. It is a
model-freemethod that computes normalized histograms
of oriented gradients (HOGs) on binary silhouettes,
which are then averaged to obtain a vector of mean HOG
descriptors (GHEI). Since each descriptor condenses
contextual information by itself, the v(·) function keeps
its implicit form, i.e., v(gi (k), g1:i−1(k)) = |gi (k) −
g1:i−1(k)|. GHEI can also be obtained from color images
but, for the purpose of comparison with GEI, in this work
only binary silhouette images have been used.

– Gradient histograms from a GEI (GEI+HOG) [27,29].
It follows an opposite strategy to that of GHEI: binary
silhouettes are first averaged to obtain a GEI; then, HOG
descriptors are computed on that GEI. Since the gait pat-
tern is encoded as in GHEI, the v(·) function keeps the
same implicit definition.

5.3.2 Operation modes

Given a gait representation method based on averaging
silhouette descriptions, three operation modes have been
defined: simplemean, defect exclusion, and robust mean. The
first refers to the standard operation of the method by the
Eq. (10). It is intended to play the role of a somewhat weak
baseline, because it handles defective silhouette descriptions
without any filtering technique. The second mode, denoted
as defect exclusion, consists in solving Eq. (10), but exclud-

ing those cycles gi that are known to be contaminated. This
process simulates the existence of an ideal filtering technique,
like an oracle, which is able to detect corrupted cycles so
that they can be avoided. Since this mode makes the most of
the a priori information about what cycles are defective, it
is deemed as a very demanding benchmark. Finally, robust
mean concerns themethod introduced in Eq. (13). This mode
directly acts on all cycles, without using a priori information
on their quality.

5.4 Parameter estimation and learning

Next, the two learning tasks embedded in the methodology
are addressed. They learn from the Training subset, which
comprises only clean sequences of subjects different to Test
people.

5.4.1 Logistic-based weight function

The robust characterization of gait sequences introduced in
Sect. 4.1 requires the adjustment of the parameters of the
weight function. Concerning the logistic-based weight func-
tion wlog(x) proposed in Eq. (15), parameters s, t , and ε

need to be appointed for each combination of gait represen-
tation method g and database. The parameter s, that defines
the steepness of the curve, has been manually set to ensure
a behavior similar to the step function. As this is ultimately
determined by the distribution of x , with x = v(·) depending
on the representation method, s was set to 1 for GEI and to
1000 for GHEI and GEI+HoG representations.2

Since the slope of wlog(x) has been adjusted to perform
close to a step function, the parameter t can be understood as
a threshold at which the logistic curve drops, beyond which
x values are considered outliers (see Fig. 2). That is, for
almost all x < t , wlog(x) reaches its maximum value 1,
whereas for almost all x > t ,wlog(x) outputs its minimum ε.
Thus, t should separate genuine deviations from the irregular
ones. The parameter t is proposed to be tuned from some
distribution of v(·) computed over an independent set of clean
gait sequences. This process is detailed below:

1. Let Y be an independent set of clean gait sequences with
at least four cycles each one. In this work, the set Y is
represented by the Training subset.

2. Given a particular gait representation, let Di = {v(gi (k),
g1:i−1(k))}, i > 1, be the set of all deviations from the ith
cycle of all clean sequences y ∈ Y , including all features

2 In the case of GEI, v(·) computes normalized Euclidean distances
between vectors of grayscale pixel values, thus v(·) ∈ [0, 255], while
in GHEI and GEI+HoG, v(·) measures absolute differences between
features normalized in [0, 1].
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Fig. 5 a Histogram H4 of deviations based on GEI computed on a training subset of USF sequences, and b probability density function of an
exponential distribution with λ estimated from H4 data

k, 1 ≤ k ≤ d. Thus, Di is expected to contain only
genuine deviations.

3. Let Hi be a histogram that condenses Di . Figure 5a shows
H4 built using GEI on a Training subset of the USF data-
base. As can be seen in Fig. 5b, H4 roughly approach an
exponential distribution.

4. Formally, an exponential distribution is defined by the
following probability density function (PDF):

f (x | λ) =
{

λe−λx x ≥ 0
0 x < 0

(16)

where the maximum likelihood estimate of λ is λ̂ = 1/x̄ ,
with x̄ being the sample mean.

5. Given an exponential PDF f (x | λ), the Tukey crite-
ria [28] determines a limit l beyond which data can be
interpreted as outliers. This criteria establishes the fol-
lowing formula to compute l:

l = Q3 + 1.5|Q3 − Q1| = ln(4)

λ
+ 1.5

ln(3)

λ
(17)

with Q1 and Q3 being the first and the third quartiles,
respectively. The amount of data higher than l (anom-
alies) is expected to account for 4.81%.

6. Assuming Di follows an exponential distribution, the
Tukey criteria is used to estimate t , i.e., t = l.

7. The parameter t was estimated from D4, to better exploit
sequences with at least four cycles.

With regard to GEI, Di = {v(gi (k), g1:i−1(k))} con-
sisted of only those v(·) deviations in which either gi (k) or
g1:i−1(k), or both, was a foreground pixel. This is expected

to lead to a more reliable estimation of λ, because it pre-
vents a bias to zero deviations caused by background pixels.
Conversely, this strategy cannot be applied to GHEI and
GEI+HOG since their features are not directly associated
to pixel locations, and all v(·) were taken into account to
build Di .

Finally, the parameter ε was set to 0.1, a minimumweight
value that can be considered as reasonable.

5.5 Classification and performance evaluation

5.5.1 Ranking-based classification

Ranking-based classification in Fig. 3 refers to the use of
a scoring function to perform template matching between a
probe sample and all available gallery samples.

The Ranking Support Vector Machine (RankSVM) [19]
was chosen because of its ability to suitably manage chang-
ing conditions between training and test data. In this
work, training is based on clean gait sequences, while test
involves defective sequences simulating uncontrolled sce-
narios. RankSVM learns from the Training subset how to
rate gait features within a scoring (dissimilarity) function,
so as to reward features that are invariant under intra-class
changes. For comparison purposes, the traditional 1-Nearest
Neighbor classifier (1-NN) has also been considered. Since
1-NN does not require modeling, the Training subset was not
used.

5.5.2 Cumulative performance curves

Let us denote as study an experimental design that com-
bines a gait database, a data partition that fits the Train-
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ing+ (Gallery+Probe) scheme, a representation method g,
a strategy to inject defects, an operation mode, and a classi-
fier.Given a particular study, a recognition task canbe defined
for each cycle i , 1 ≤ i ≤ m, with m being the number of
cycles of the shortest probe sequence. At cycle i , the classi-
fier uses the gallery sequences represented by g, to score and
rank probe samples characterized by g1:i . Then, a series of
m recognition results (i, acci ) is obtained and represented as
a cumulative performance curve (CPC), where acci denotes
the classification accuracy over g1:i .

A CPC allows for continuous monitoring of method per-
formance along the cycles. That is, it is possible to know the
impact of adding both defective and clean cycles at some
cycle i , when building the pattern g1:i . Thus, CPCs can
be considered as a suitable tool to benchmark the robust
approach proposed.

5.5.3 Statistical analysis of results

This section introduces three experimental settings as regards
the amount of defect injected, provided that all probe
sequences consist of at least five cycles:3

Easy setting Only the cycle in the middle (the third cycle)
is affected by a particular type of defect (S&P noise, sta-
tic occlusion, dynamic occlusion). Thus, one-fifth of the
sequence is contaminated.

Hard settingThe three cycles in themiddle (the second, third
and fourth) are affected by the three types of defects (one
each) in a random way. In this case, three-fifths of the
sequence are contaminated.

Neutral setting No cycle is affected. Thus, recognition tasks
perform on original clean sequences.

The easy setting comprises 108 studies (each one depicted
by aCPC) that result from combining the two databases (OU-
ISIR and USF), the two classifiers (1-NN and RankSVM),
the three gait representations (GEI, GHEI, and GEI+HOG),
the three operation modes (simple mean, defect exclusion,
and robust mean), and the three defect scenarios (S&P noise,
static occlusion, and dynamic occlusion). Unlike the easy
setting, the hard setting considers only one defect scenario
(mixtures of defects), thus entailing 36 studies. Finally, the
neutral setting defines 24 conventional studies from clean
sequences, which arise from the combination of the two
databases, two classifiers, three gait representations, and two
operation modes (defect exclusion makes no sense).

The CPC of each study involving defective sequences was
sampled twice, the first one right after summing the corrupted
gait cycle(s) (early sampling) and the second one at the end
of the sequence analysis (final sampling). The former occurs

3 This is a particular case of having at least four cycles.

in the third and the fourth cycles in the easy and the hard set-
tings, respectively. It is aimed to assess the immediate impact
of noisy cycles, while final sampling allows for assessing the
final pattern.

In order to ease the comparison of such a large num-
ber of results, they were conveniently grouped considering
three criteria defined in Sects. 6.1.1, 6.1.2, and 6.1.3, respec-
tively. Each of them builds equal-sized series of results of
similar methods, which are pairwise compared using the
Wilcoxon’s signed-rank test [31]. For each pair, Wilcoxon’s
null hypothesis assumes that both methods perform equally.
Then, evidence is searched for in the data to reject the null
hypothesis, thus establishing the superiority of one method
over the other.

6 Experiments

This section has been structured into two major areas of
analysis. The former involves a statistical study based on the
Wilcoxon’s signed-rank test, which was conducted using the
KEEL software [1]. The second area focuses on performance
analysis based on CPCs.

The statistical analysis follows three perspectives. First,
operation modes are compared under each type of defect,
considering all results from combining the two databases, the
twoclassifiers, and the three gait representations (Sect. 6.1.1).
The second perspective entails again a comparison
between operation modes, but on each database separately
(Sect. 6.1.2). It is intended to be amore general view, because
each series comprises results from both clean and defective
scenarios. Finally, gait representations are compared on each
database, taking into account results from the joint use of the
two classifiers and the three operation modes on both clean
and defective sequences (Sect. 6.1.3).

The performance analysis focuses on GEI results, since it
is probably the most popular gait representation method. A
total of 56 studies or CPCs are examined, 36 of which belong
to the easy setting, 12 to the hard setting, and 8 to the neutral
setting.

Each result involved in the analyses is an average com-
puted over five repetitions of the related experiment with
different random data partitions according to Sect. 5.1.1.
Finally, as a reminder, the structural parameters introduced
in Sect. 5 are given below:

– Level of the Salt & Pepper noise, α = 75% (Sect. 5.2)
– Size of silhouette boxes, 64 × 44 px. (Sect. 5.2)
– Size of the neighborhood used to compute v(·) in GEI,
5 × 5 px. (Sect. 5.3.1)

– The weight function wlog(·) (Sect. 4.2)
– Steepness of the weight function wlog(·), s = 1 for GEI,

s = 1000 for GHEI and GEI+HoG (Sect. 5.4.1)
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– Domain value at whichwlog(·) drops, t is estimated from
the Training subset (Sect. 5.4.1)

– Minimum of wlog(·), ε = 0.1 (Sect. 5.4.1)

6.1 Statistical analysis

6.1.1 Defect-conditional analysis of operation modes

Given a defect scenario and a sampling event, this analy-
sis consists in pairwise statistical comparisons between the
three operationmodes (simplemean, robustmean, and defect
exclusion). Recognition results were grouped into three
series, each one corresponding to an operation mode. Over-
all, eight groups were built:

– Easy setting Six (3 defective scenarios×2 sampling
events) three-series groups, where each series comprises
12 recognition results (2 databases×2 classifiers×3 gait
representations).

– Hard setting Two (1 defective scenario×2 sampling
events) three-series groups, where each series comprises
12 recognition results (2 databases×2 classifiers×3 gait
representations).

Figure 6 shows the results of the Wilcoxon’s test applied
to the eight groups. A first relevant finding is that robustmean
performed better than or equal to simple mean in all cases,
being statistically better in five out of the eight groups with
a confidence of 95%. This proves that robust mean is able
to mitigate the negative impact of faulty regions, while takes
advantage of clean parts. When focusing on each setting,
defect exclusion outperformed both types of means in the
easy setting (1/5 sequence corrupted),while robustmeanwas
the best mode in the hard setting (3/5 sequence corrupted).

The latter observation demonstrates again that robust mean
leverages profitable pieces of information from faulty cycles
to construct better gait patterns, whereas defect exclusion
simply discards these cycles.

These results suggest that robust mean is the best choice
when the contaminated portion of a gait sequence is high,
while defect exclusion (ideal benchmark) leads to the best
performance under low defect rates.

6.1.2 Database-conditional analysis of operation modes

Given a database and a sampling event, this analysis consists
in pairwise statistical comparisons between the three oper-
ation modes. Results were grouped into three series, each
one corresponding to an operation mode. Overall, eight new
groups of results were built:4

– Easy setting Four (2 databases×2 sampling events)
three-series groups, where each series comprises 24
recognition results [2 classifiers×3 gait representations
× (3 defect+1 clean scenarios)].

– Hard setting Four (2 databases×2 sampling events)
three-series groups, where each series comprises 12
recognition results [2 classifiers×3 gait representations
× (1 mixture of defects+1 clean scenarios)].

Figure 7 summarizes the outcomes of the Wilcoxon’s test
on the eight groups. As in the first analysis, robust mean
always performs at least equal to simple mean, statistically
overcoming it in OU-ISIR at early sampling. Thus, the robust

4 Note that each series includes results from both defective and clean
scenarios together.
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Fig. 8 Summary of the Wilcoxon’s test for pairwise comparisons of
representation methods (G: GEI; GH: GHEI; G+H: GEI+HOG),
under each combination of database and sampling event. The symbol
“•” (“◦”) indicates that the model in the row (column) significantly out-

performs that in the column (row). Results below the main diagonal are
supported by a level of confidence of α = 0.95, while results above that
diagonal, by a level of confidence of α = 0.90

method allows for eliciting faster and no less reliable identi-
fication hypotheses, as compared to the simple mean.

By examining each setting, defect exclusion proved to be
the best mode in the easy setting, while the robust approach
outperformed defect exclusion in the hard setting in both
databases with a confidence of 95%. This effect is clear
in the USF database, which contains low-quality silhouettes
captured outdoors. As in Sect. 6.1.1, robust gait patterns sig-
nificantly benefited from high-quality pieces of information
retained from defective cycles, mainly in the more realistic
scenario proposed in USF. However, it is imperceptible at the
final sampling in OU-ISIR, composed of high-quality indoor
sequences. It means that using only two clean cycles (the first
and the fifth) from the OU-ISIR sequences, is statistically as
reliable as building robust patterns.

In brief, results on the more challenging tasks prove again
that it is better to robustly consider all cycles instead of

blindly adding them (simple mean) or simply discarding the
affected ones (defect exclusion).

6.1.3 Database-conditional analysis of gait representation
methods

Given a database and a sampling event, the third analy-
sis compares gait representation methods (GEI, GHEI, and
GEI+HOG) by pairs. Resultswere grouped into three series,
each one corresponding to a representation method. Overall,
eight new groups were built:

– Easy setting Four (2 databases×2 sampling events)
three-series groups, where each series comprises 24
recognition results [2 classifiers×3 operation modes
× (3 defect+1 clean scenarios)].
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Fig. 9 Cumulative performance curves based on GEI patterns built from the OU-ISIR (left) and USF (right) databases within a neutral setting,
i.e., without artificial defect injection

– Hard setting Four (2 databases×2 sampling events)
three-series groups, where each series comprises 12
recognition results [2 classifiers×3 operation modes
× (1 mixture of defects+1 clean scenarios)].

Figure 8 summarizes the results of the Wilcoxon’s test on
the eight groups. A first observation focuses on the fact that
no differences exist between the early and thefinal samplings.
Thus, the analysis betweengait representations does not seem
to depend on the CPC point where the recognition accuracy
is measured.

With regard to the effectiveness of each representation,
GEI outperforms GHEI and GEI+HOG with a level of
significance up to 95 % in OU-ISIR. However, exactly the
opposite occurs in USF, where the HOG-based methods beat
GEI, evidencing the dependence of method behavior on the
quality of gait samples. Disregarding the type of defect, the
well-defined silhouettes of OU-ISIR allowed GEI to con-
struct more reliable gait patterns from pixel values than those
based on HOG descriptors built by GHEI and GEI+HOG.
On the contrary, when managing the low-quality silhouettes
of USF, GEI led to poorer gait representations as compared
to the HOG-based patterns. Within this context, GEI+HOG
significantly outperformed GHEI when dealing with USF in
the easy setting, although these differences vanished in the
hard setting.

Considering all of the above, GEI representation seems
to be more appropriate when high-quality silhouettes are
available, due to its higher precision at encoding spatial
information. Otherwise, HOG-based methods can be a better
alternative under blurry or less sharpened silhouettes.

6.2 Performance analysis

This section conducts a complementary analysis on gait
recognition results which, due to the total amount of exper-
iments, involves only those studies (or CPCs) that are based

on GEI.5 The analysis consists of three parts, each one cor-
responding to a particular setting: neutral, easy, and hard.
Within each setting, CPCs were grouped into diagrams,
where each diagram comprises all results that arise from a
particular combination of a database and a clean or a defect
scenario.

Two preliminary remarks, common to the three settings,
are worth making at this point: (1) each RankSVM accu-
racy is higher than the comparable result of 1-NN due to the
learning power of the former; (2) each OU-ISIR accuracy is
higher than the comparable result from USF because of the
lower quality of USF silhouettes.

Figure 9 accommodates two diagrams, one for each data-
base,with classification results from the neutral setting (clean
sequences). Each diagram includes four CPCs resulting from
combining the two classifiers (1-NN andRankSVM) and two
operation modes (simple mean and robust mean). Note that
defect exclusion makes no sense within a neutral setting. The
most interesting point is that the simple and the robust means
performed roughly equal for each pair of classifier and data-
base. This proves that robust statistics can be effective even
on clean sequences, generating gait signatures as reliable as
those built by simply averaging.

Results from the easy setting are shown in Fig. 10, where
six diagrams are arranged (3 defect scenarios×2 databases),
with each diagram comprising six CPCs (3 operation modes
×2 classifiers). As can be observed, a notable drop in CPCs
based on simple mean took place when defects (no matter
which) were injected in the third cycle, although these curves
recovered slowly when the last two clean cycles (the fourth
and the fifth) were added. This fall was specially patent in
the USF database, since gait representations are based on
low-quality USF silhouettes, more sensitive to defect inser-
tion than those from OU-ISIR. Conversely, CPCs that came
from the robust characterization showed a high stability or

5 Performance curves from the other two methods are pretty similar to
those from GEI showed in this section.
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Fig. 10 Cumulative performance curves based on GEI patterns built from the OU-ISIR (left) and USF (right) sequences affected by the three
defect scenarios within the easy setting: a 75% of salt & pepper noise; b static occlusion (weed); and c dynamic occlusion (car)

an upward trajectory over all cycles in all diagrams, occa-
sionally surpassing curves based on defect exclusion (ideal
benchmark).

Finally, Fig. 11 depicts theCPCs of the hard setting, where
the three types of defects are injected at random into the
second, third and fourth cycles, respectively. Only two dia-
grams were needed, one for each database. As expected, gait
sequences affected by such a mixture of defects led to more
pronounced falls in the accuracy of methods based on simple
mean as compared to the easy setting, with these accuracies
being notably lower than their comparable results from the

robust mean. Again, it was particularly noticeable in USF,
where accuracies decreased below 0.4 in the first affected
cycle, making it impossible for them to reach again their
original performances. Meanwhile, curves from the robust
method kept growing along the three consecutive affected
cycles, being even generally better than those derived from
defect exclusion. This strengthens conclusions drawn in the
statistical analysis: The robust approach is able to provide
faster and more reliable gait representations than conven-
tional averaging methods, specially when gait sequences are
severely corrupted.
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Fig. 11 Cumulative performance curves based on GEI patterns built from the OU-ISIR (left) and USF (right) sequences affected by random
mixtures of defects within the hard setting

7 Conclusions and future work

This work introduces a weighted averaging method to build
reliable gait patterns from silhouette descriptions heavily
affected bymajor defects. It is based on a statistical approach
called robust statistics, which assumes data followan approx-
imate normal distributionwith heavy tails of atypical samples
(outliers). The proposed robust method is able to behave
nearly as the simple mean when there are no outliers, while
it underweights largely deviated samples (possibly outliers)
otherwise.

The robust method was compared to two other modes of
operating on silhouette descriptions, simple mean and defect
exclusion, as regards their discriminant capabilities under
a large number of biometric identification studies based on
clean and defective gait sequences. Each study was designed
from combining a gait representation method (GEI, GHEI,
GEI+HOG), defects used to corrupt gait sequences (salt and
pepper noise, static occlusions, dynamic occlusions), a strat-
egy to inject defects (single, mixtures), an operation mode
on silhouette descriptions, a gait database (USF, OU-ISIR),
and a classifier (RankSVM, 1-NN).

Result assessment was carried out from two perspectives.
First, the Wilcoxon’s signed-rank test was used for a qual-
itative pairwise comparison of operation modes and gait
representation methods. The robust approach proved to be
generally more reliable than the simple mean, as well as the
best choice in the more defective scenarios. That is, when
the contaminated portion of a gait sequence is high, it is bet-
ter to robustly consider all cycles instead of averaging them
indiscriminately (weak baseline) or discarding the affected
cycles (strong benchmark). Second, a complementary analy-
sis focused on gait recognition results based on the fact that
GEI supported the previous conclusion: The robust method
is able to provide faster and more reliable gait representa-
tions than conventional averaging methods, specially when
gait sequences are severely contaminated.

Next, some promising directions for future research are
suggested. First, to keep the model complexity to a mini-
mum, a singleweight functionwas used in the robustmethod,
whose parameters were adjusted from the distribution of all
feature deviations together. However, it is easy to see that fea-
tures (e.g., GEI pixels) do not share a common distribution
pattern nor feature deviations. That is, universal parameters
inferred fromageneral distribution could not be able tomodel
optimal feature-dependent criteria to separate genuine from
large feature deviations (from their featuremeans). Instead, it
can be expected that feature-dependent weight functions will
more accurately fit the deviation distributions by features,
allowing a more reliable outlier detection. Second, due to the
spatio-temporal nature of a gait sequence, the robust method
has been implemented as a recurrence over cycles. This for-
mulation assumes a clean first gait cycle, so that it can lead to
a well-behaved first estimate. However, more general robust
approaches could be devised,which can rely on any gait cycle
that fits a normalitymodel or on a synthetic cycle built by con-
catenating clean silhouettes chosen from different partially
affected cycles. Third, some structural parameters have been
manually set to widely accepted values. Thus, it would be
interesting to design new experiments to explore optimality
in parameter values, as well as their interactions. Finally, in
order to facilitate the interpretation of results, defect injection
was restricted to cycles. However, more realistic scenarios
can be generated if defects were freely added to any subse-
quence, disregarding cycle limits.
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