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Abstract The need for faster feature matching has left as
a result a new set of feature descriptors to the computer
vision community, ORB, BRISK and FREAK amongst oth-
ers. These new descriptors allow reduced time and memory
consumption on the processing and storage stages, mitigating
the implementation of more complex tasks. The problem is
now the lack of fast interest point detectors with good repeata-
bility to use with these new descriptors. A blob-detection
algorithm was recently presented that uses an innovative
non-deterministic low-level operator called the Brightness
Clustering Transform (BCT) (Lomeli-R. and Nixon in The
brightness clustering transform and locally contrasting key-
points. In CAIP. Springer, Berlin, pp 362-373, 2015). This
algorithm is easy to implement and is faster than most of the
currently used feature detectors. The BCT can be thought
as a coarse-to-fine search through scale spaces for the true
derivative of the image. The new algorithm is called Locally
Contrasting Keypoints detector (LOCKY). Showing good
robustness to image transformations included in the Oxford
affine-covariant regions dataset, LOCKY is amongst the
fastest affine-covariant feature detectors. In this paper, we
present an extension of the BCT that detects larger structures
maintaining timing and repeatability; this extension is called
the BCT-S.
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1 Introduction

The detection of points of interest in images is one of the
most basic operations in computer vision. The detection of
such points is a relatively fast process, with timings usually
varying in the range of the milliseconds in implementations
in modern computers. Nonetheless, it is necessary to con-
sider that feature detection is in many cases the first step in
more complicated tasks, and therefore more rigorous time
constrains apply.

In 2008, Tuytelaars and Mikolajczyk presented a survey
on local invariant feature detectors discussing many of their
characteristics [1]. Perhaps the most important topic is the
criteria used to decide which features are more appropri-
ate for particular applications. Nevertheless, it was shown
that some features are more suitable for different tasks. Fea-
tures can be categorised into three general groups, corners,
blobs and regions. For instance, corner detection has long
been researched and therefore many approaches to solve this
problem exist. The Harris corner detector [2] is arguably
the most well-known feature detector; based on the eigen-
values of the second-order moment matrix, corners can be
detected with rotation invariance. Faster solutions have been
proposed, SUSAN [3], FAST [4] and more recently AGAST
[5], amongst others.

The main problem with corner points is that, because
of their persistence through changes in scale, they are ill-
suited for describing the size of keypoint they represent; one
solution to this problem is the use of blobs. The fact that
blobs are contrasting regions implies that their shape carries
information about both the scale and affine transformations.
Moreover blobs are known to be more robust to noise and
blurring than corners. The use of such features is limited
nowadays because the detection of blobs is usually slower
than the detection of other features.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-016-0785-3&domain=pdf

1188

J. Lomeli-R., M. S. Nixon

Some of the most well-known blob detectors are the
Laplacian of Gaussian [6] (and its approximation by dif-
ference of Gaussians) and the determinant of Hessian. A fast
implementation of the Hessian approach was presented by
Bay et al. in [7], this algorithm is well known as Speeded up
Robust Features (SURF). More recently, Agrawal et al. pre-
sented in [8] an algorithm known as CenSurE (also known as
STAR detector); this algorithm, using integral and rotated-
integral images, sets a polygon in every pixel and calculates
an approximation of the Laplacian of Gaussian.

Detectors are called invariant to some transformations,
Tuytelaars and Mikolajczyk suggest the term should be
covariant when the features change covariantly with the
image transformation [1]. Mikolajczyk and Schmid [9]
present an affine-covariant solution that, based on the second-
order moments of the regions surrounding the detected
points, the features are affine-normalised; their solution is
robust and elegant but very slow. The Maximally Stable
Extremal Regions (MSER) [10] is an affine-covariant inter-
est region detector that improves the computation time over
Mikolajczyk’s work; however, it lacks robustness against
blurring and noise. The use of affine features is related to the
intention of making detectors robust to perspective changes.
Human vision is very robust to image transformations like
blurring, rotation and scaling, and also to changes in perspec-
tive. Although perspective transformations are different from
affine transformations, affine-covariant local feature detec-
tors are good approximations due to their local nature.

Image retrieval [11], matching of stereo pairs of images
[10,12], object detection [13], tracking [14], and many other
applications are aided by the use of feature matching. The
usual process that follows the detection of points of inter-
est is description; by extracting information from the region
surrounding a point of interest, it is possible to measure the
similarity between two points in an image. The algorithm
that introduced the idea of feature description is SIFT [15],
recently a new set of efficient algorithms for description was
introduced, ORB [16], BRISK [17], FREAK [18] and others.
The work presented in [19] by Heinly et al., analyses char-
acteristics of the stages of feature detection and description,
and it is left clear that the area of feature detection has not
received as much attention as description in the last decade.
The problem is now the lack of fast interest point detectors
with good repeatability to use with these new descriptors.

This paper is an extension of the work presented by
Lomeli-R. and Nixon [20]. The Brightness Clustering Trans-
form (BCT) is a novel low-level operator that transforms the
image into an accumulator matrix (a blob map), and it bene-
fits from the use of integral images to perform a fast search
through different scale spaces. Information from the accumu-
lator matrix is extracted to detect points of interest. The new
algorithm s called Locally Contrasting Keypoints (LOCKY).
LOCKY features contain information about scale and affine
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Fig. 1 Blobs detected on an image of daisies. LOCKY features are
shown in blue (detected using the BCT). In yellow are the LOCKY-S
features (detected using the BCT-S) (color figure online)

transformations and are up to three times faster to detect than
the MSER regions. We introduce the BCT-S, an extension to
the regular BCT; this extension concentrates on the extraction
of larger structures. We refer to the features extracted using
the BCT-S as LOCKY-S features. LOCKY and LOCKY-S
features show good repeatability scores using the measure
presented in [21]. Figure 2 shows a flowchart of the presented
algorithm. The spacial dispersion of the detected features is
analysed, and we also discuss how some applications can
benefit from the sparseness of features in images. Figure 1
illustrates the difference between LOCKY and LOCKY-S
features.

2 The brightness clustering transform

The BCT is a non-deterministic low-level operator that
employs a voting scheme on an integral image for improv-
ing performance. Each vote is randomly initialised to extract
information from a region on the image; when the next vote
is initialised, the algorithm changes the location of attention.

The integral image as presented by Viola and Jones [22]
is a very useful tool to calculate the sum of rectangular areas
of pixels in only three operations disregarding the size of
the rectangles; it is widely used because it allows to make
calculations at different scales without added computational
cost.

Equation 1 shows the definition of the integral image of the
image function P(x, y). The recurrences in Eqs. 2 and 3 allow
the calculation of ii (x, y) in one pass over the image, (s(x, y)
is the cumulative row sum, s (x, —1) = Oandii(—1, y) = 0).

iix, )= >, P,y ()
x'=x,y'<y

s(x,y) =506,y = 1) + P, ). )

i, y) = ii(x = 1, y) +5(x, y). 3)
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Fig. 2 The process for extracting the LOCKY features begins with the
transformation of the image into a blob map using the BCT (blue) or the
BCT-S (yellow). The accumulator matrix is thresholded, and the set of

The result of the BCT is an accumulator matrix that is ini-
tialised as a null-matrix of the same size as the input image;
a vote means incrementing the value of an element in the
accumulator matrix by one; each vote is obtained in three
steps. First, a rectangle with random position and size is ini-
tialised within the image. For creating blob maps, we select
the width and the height of the rectangle to be a power of two
i.e. width = 2" and height = 2" {n, m € N}. The second step
is to divide the rectangle into four smaller subregions, and
the subregion with the biggest sum of brightness is now con-
sidered to be the initial rectangle; the sum is calculated using
the integral image. Consider the rectangle R; where t = 0
for the initial position and size, and its subregions rg, 11, 12
and r3; the next region will have an initial rectangle R; .
The second step is repeated until R; has either width = 2 or
height = 2.

Ripp=argmax » P(x.y). i=0,12,3. )

Ti X,yEr;

Suppose the last R, is situated in (xy,yy) and has
width = wy and height = h ¢; in the third step, the pixel in
loc = (xf +wg/2,yr + hy/2) is voted. This sequence of
steps is graphically presented in Fig. 3. Algorithm 1 shows
the pseudocode for the BCT.

After a user-defined number of votes, the accumulator
matrix is smoothed with a small Gaussian kernel and then
normalised. Smoothing the accumulator matrix removes the
effects of noise in the voting process and helps to find the true
shape of the extracted blobs. As mentioned in [23], interme-

connected components is then extracted. The LOCKY features are the
ellipses with the same second-order moments as the connected binary
components (color figure online)

LA X r2 r

7T
-

- D Region 1 (initial size)

D Region 3 (only iteration on the left) :

X Voted pixel

Fig. 3 A squared vote on the left and a rectangular vote on the right.
Ro in blue, Ry in green and R; in red. The subregions of every step are
marked as r_i with the same colour as the step they belong to (color
figure online)

diate shape priors yield discriminative shape structures; these
structures can improve recognition tasks.

The BCT can be thought as a coarse-to-fine search through
scale spaces for the true derivative of the image. Every sub-
division of a rectangle is in the next smaller octave, and thus,
the votes start at a big scale and refine until they get to the
smallest scale possible in the image. The use of rectangles
benefits affine locality; for example, a horizontal rectangle
discards some information in the y axis and operates in the
same scale in the x axis; this allows an improvement on the
detection of oval blobs. Suppose a vote lies in (x,, y,) with
an initial rectangle in (xg, yo), another vote will most likely
lie in (x, + 1, yp) if a rectangle of the same size is set in
(xo + 1, yo). This property clusters votes around the centre
of blobs, and so the shape of the blobs is extracted.
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Algorithm 1 BCT. Algorithm 2 BCT-S.
integ = calculate integral of the input image Modified Second Step:

accum = initialise accumulator matrix
for (vote = 1 to max_votes) do

First Step:

Init region R:
n =rand(rangeMin, rangeMax)
m =rand(rangeMin, rangeMax)
width = 2"
height =2
x =rand(0, imWidth — width)
y =rand(0, imHeight — height)

Second Step:
while (width > 2 & height > 2) do

divide R in 4 subregions rg, 1, r2 and r3
T'max = max-brightness(ro, r1, 12, 3) (use integ)
R = rpqy  this implies:

width = width/2

height = height/2

X = Xy,

Y = Yrmax
end while

Third Step:
loc = (x +width/2,y + height /2)
accuml[loc] = accum[loc] + 1

end for

The implementation of the BCT requires the selection of
two parameters, i.e. the size of the rectangles and the amount
of votes. The most commonly used values for the width and
height of the rectangles range from 23 to 27, and this range
may be modified depending on the size of the image and
the size of the blobs to be extracted. From experiments, we
deduce that 5 x 10% to 1 x 103 votes are enough to extract the
blobs in a 1024 x 768 image; nonetheless, amounts as small
as 2 x 10* votes suffice to extract significant blobs from the
same image.

So far the bright blobs are extracted by finding the subre-
gions with the biggest sum of pixels; if we want to find dark
blobs, we could either modify Eq. 4 to be

Ripp=argmin »  P(x,y), i=0,1,23 )

i x,yer;

or, find the bright blobs of the inverted image, i.e. considering
the image is an 8-bits representation, we do P’ = 255 —
P(x, y) or P’ =not(P(x, y)).

Continuing the voting process while the width and the
height are greater than two concentrates the votes in a com-
pact manner around locally contrasting regions. This com-
pactness achieves good shape description of small regions,
and therefore the detection of larger features in images with
higher resolution is difficult.

Sometimes fine features are desired, when this is not the
case the second and third steps can be modified to be able to
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for (div =0; div < 3; div++) do

divide R in 4 subregions rg, r1, 2 and r3
I'max = max-brightness(rg, 1, r2, r3) (use integ)
R = rypqyx  this implies:

width = width/2

height = height/2

X = Xrpax

Y = Yrmax
end for
Modified Third Step:

accum|rpqy] = accum([ryg] + 1

detect larger features. The extension of the BCT for extracting
larger structures (BCT-S) is described in Algorithm 2. In the
second step, instead of iterating the rectangle reduction until
either the width or the hight equal two, the reduction is only
performed three times (rangeMin > 2). On the third step,
all the pixels within the last r,,,, region are voted. This is
the equivalent to running the algorithm at multiple scales.
Figure 4 shows the detected features using the BCT and the
BCT-S.

3 Locally contrasting keypoints

LOCKY features are blob keypoints extracted directly from
the accumulator image result of the BCT. After the normal-
isation process, the accumulator image is thresholded; the
set of all the connected components in the binary image are
the detected blobs. The threshold is the third parameter of
the entire process required to detect LOCKY features, the
strength of the detected features is related to this threshold,
and the lower it is the more features will be detected. Com-
mon values for the threshold vary from 0.1 to 0.3 (if the
transform is normalised in the range [0, 1]).

Finding the ellipse with the same second-order moments
as the connected components is a fast way of extracting
information from them. If F is a 2 x N matrix (N > 1)
containing the coordinates of the pixels in a connected com-
ponent (fo, f1,--., fn—1), the mean is the centre of the
feature (Eq. 7).

1 N
Q= 2 (= Mp)(fu = Mp)". 6)
n=0
M
M= [MJ ' @

The eigenvalues of the sample covariance matrix Q (Eq.
6) represent the size of the axes of the ellipse with the same
second-order moments; the eigenvectors define the direction
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Fig. 4 LOCKY features on the left (extracted using the regular BCT), and LOCKY-S features on the right (extracted using the BCT-S). The BCT-S

promotes the detection of larger structures in the image

Fig. 5 The first images of the sequences in the Oxford affine-covariant regions dataset [21]

of the axes. This step is similar to the ellipses of the MSER
regions. The advantages of this method are that one can detect
the scale of the features by the size of the axes and it is also
possible to extract information about affine transformations
and rotation of the blobs.!

4 Results

The Oxford affine-covariant regions dataset [21] (Fig. 5)
presents a good challenge for interest point detection, and it is
widely used for evaluation; eight sequences composed of six
images each with increasing image transformations includ-
ing decreasing illumination, change in perspective, blurring,
jpeg compression and a mix of scale and rotation. We use the
measure of repeatability defined in the same paper to com-

1 http://www.robots.ox.ac.uk/~vgg/research/affine.

pare LOCKY and LOCKY-S with both, affine-covariant and
non-affine-covariant interest point detectors. In the affine-
covariant group, we use as comparison the Harris-Affine and
Hessian-Affine detectors [9] and MSER [10]. In the non-
affine-covariant group, we use the BRISK detector [17], the
SUREF (fast-Hessian) detector [7], and the STAR detector [8].
LOCKY-1 uses 1 x 107 rectangles of size ranging from 23 to
25 and a threshold of 12 %; LOCKY-2 uses 1 x 10° rectangles
of the same characteristics. Both LOCKY-1 and LOCKY-2
use the regular BCT; LOCKY-S uses the same settings as
LOCKY-1 with the only difference that it uses the BCT-S to
extract the features.

The measure of repeatability consists of projecting the
detected features to the same basis as the original image (the
first image of the sequence) using an homography matrix,
then we compare correspondences of features and measure
how well the detected regions overlap. For more information
on this measure, see [21]. We use the correspondences with
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Fig. 6 LOCKY-S features in yellow and MSER regions in green, on
the second (fop) and fifth (bottom) images of the graffiti sequence. The
detected features change covariantly with the change in perspective
(color figure online)

40 % overlap. To be able to compare LOCKY and LOCKY-S
with non-affine-covariant detectors, we “disable” the mea-
sure by using a circle with a radius equal to half the size of
the major axis of the ellipses; these results are shown in Fig.
7. Since the detection of the LOCKY features is based in
a non-deterministic transform, every run matches different
features; the repeatability results of LOCKY-1, LOCKY-2
and LOCKY-S include the mean and variance over 100 runs
of the test (examples of the detected features are shown in
Fig. 6).

The timing results shown in Table 1 were obtained using
the OpenCV implementations of the algorithms (using mex
files in MATLAB) with a 2 GHz i7 processor (the used
Harris-Affine and Hessian-Affine implementations are the
binaries provided in www.robots.ox.ac.uk/~vgg/research/
affine/index.html). Note that BRISK uses a multi-scale ver-
sion of the AGAST detector which is a faster implementation
of the FAST detector; LOCKY and LOCKY-S have similar
timings while being able to provide information on affine
transformations of the features.

@ Springer

In 2008, Tuytelaars and Mikolajczyk suggested that the
density of features should reflect the information content
of the image [1]. This is a useful property for tasks such
as object detection; nevertheless, for tasks such as navi-
gation or landmark matching, occlusion can become a big
problem if features cluster on regions of the image. Spa-
cial dispersion of features and the use of other evaluation
measures were addressed in [19]. The measure of dispersion
presented in Table 1 is obtained by dividing the image into
B = 100 non-overlapping bins. We count the number of fea-
tures that lie in each bin as a two-dimensional histogram of
locations. If the location of a feature is represented with a
two-dimensional vector /, having N features, the count of
features in each bin (a region called I}) is represented by Cp,

(Eq. 8).

N
Cyp =D ap(l). @®
=0
1 when [, C I,
ap(ly) = " ©)
0  otherwise.

The dispersion index D is calculated as

B
1
Mc = — ;0 Co, (10)

_ 20(Ch — Mc)?
Mc :

D

(1)

The lower the value of D, the more sparse are the fea-
tures in the image. Spacial-frequency energy is usually
not evenly distributed within an image, and this happens
more commonly in natural images. When features clus-
ter in certain regions of an image, it can be understood
that locality is not successfully achieved. That is, more
features tend to be detected in regions with more spacial-
frequency energy; this could be the result of normalisation
or thresholding processes, and as a consequence, features
in regions with less energy are lost. Therefore, small val-
ues of the dispersion index indicate that features are detected
independently from the spacial-frequency energy distribu-
tion.

5 Discussion

LOCKY and LOCKY-S provide a good alternative for fast
feature detection, and timing results show that the presented
algorithm is amongst the fastest feature detectors available
and provides a trade-off between run-time and performance.
On average, the LOCKY approach can deliver good perfor-
mance: it is not dependent on initialisation and competes
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Fig. 7 The repeatability test presented in [21]. Figures on the left col-
umn present the results of the repeatability test with no affine-covariance
(features are circles); the right column shows the figures with the results
using affine-covariance (features are ellipses). LOCKY-1 uses 1 x 10°
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rectangles of size ranging from 23 to 2° and a threshold of 24 %;
LOCKY-2 uses 1 x 109 rectangles of the same characteristics. a Bark
sequence. b Bikes sequence. ¢ Boat sequence. d Graffiti sequence. e
Leuven sequence. f Trees sequence. g UBC sequence. h Wall sequence

@ Springer



1194 J. Lomeli-R., M. S. Nixon

100 100
90 - - 90 - 4
80| 1 80| 4
700 1 701 4
B ®
> 600 4 zeop 1
3 e S 3
% 501 T T + B % 50 1 q
@ (9]
& 40l 1 &l 1
300 1 30| 4
—*%-STAR —*-Harris Affine
20 H--SURF B 20 H-g-Hessian Affine q
-8-BRISK ~5-MSER
10 ||——LOCKY-1 il 10 ||—LOCKY-1 il
—LOCKY-2 ——LOCKY-2
LOCKY-§ LOCKY-S
0 | | | | | 0 T | L | |
2 3 4 5 6 2 3 4 5 6
index (e) index
100 100
90 - - 90 - 4
80| 1 80| 4
700 1 701 4
B ®?
> 601 B > 60| 8
3 3
% 501 B % 50 1 q
[} (o]
& 40l 1 &l 1
300 1 301 4
—*%-STAR —*-Harris Affine
20 H--SURF B 20 H-g-Hessian Affine q
-8-BRISK ~5-MSER
10 ||——LOCKY-1 il 10 ||—LOCKY-1 il
——LOCKY-2 ——LOCKY-2
LOCKY-§ LOCKY-S
0 1 | 1 | 1 0 T | 1 1 I
2 3 4 5 6 2 3 4 5 6
index ( f) index
100 100
901 1 90| 4
801 1 80| 4
70 - 4 L 4
60 - 4 L 4
o
L s0p 4 L 4
2 E=
3
o 40 - L 4
30 - - 301 =2 4
—%-STAR —%-Harris Affine
20 1l SURF . 20 H--Hessian Affine B
-8-BRISK ~&-MSER
10 ||—LOCKY-1 i 10 ||—LOCKY-1 i
~——LOCKY-2 ——LOCKY-2
LOCKY-§ LOCKY-§
0 I I 1 I 1 0 T 1 1 1 |
1 2 3 4 5 6 2 3 4 5 6
index ( g) index
100 100
901 1 90| 4
80 - - 80| 4
701 - 701 4
e ®
2> 601 - 2> 60 4
3 3
L 501 ] L 50 4
3 8
Q Q
o 4of 4 o4 1
30 - - 301 4
—%-STAR —-Harris Affine 5
20 [l --SURF . 20 H Affine B
-8-BRISK ~&-MSER
10|/ —LOCKY-1 i 10 || —LOCKY-1 i
——LOCKY-2 ——LOCKY-2
LOCKY-S LOCKY-S
0 I I I L I 0 T I I L I
10 20 30 60 70 10 20 30 50 60 70

40 40
viewpoint angle viewpoint angle
P! 9 P I¢]

Fig. 7 continued

@ Springer



An extension to the brightness clustering transform and locally contrasting keypoints

1195

Table 1 The average factor of time for a set of 127 images

Detector Tim Typ Affine Disp.
SUREF [7] 4.53 Blobs X 12.95
BRISK [17] 0.98 Corners X 10.42
STAR [8] 0.72 Blobs X 12.57
LOCKY-1 1 Blobs v 1.26
LOCKY-2 4.79 Blobs v 1.65
LOCKY-S 1.05 Blobs v 1.04
MSER [10] 3.26 Regions v 8.67
Hessian-Affine [9] 6.04 Blobs v 19.03
Harris-Affine [9] 8.53 Corners v 16.16

The images were converted to grayscale with 1024 x 768 pixels. The
dispersion index measures sparseness of the features on the image (cal-
culated with Eq. 11 averaged over the same set of 127 images, the lower
the index the more evenly distributed)

with those techniques already available and with its own
advantages, namely speed and sparseness. LOCKY detec-
tor might appear better on rectilinear structures (the wall)
than on objects (the boat), and this can be investigated fur-
ther.

Features detected using the BCT-S tend to be more con-
gruent with what we recognise as individual objects, while
the ones detected with the regular BCT are smaller (see the
image of oranges in Fig. 4). Timings and sparseness results
indicate that LOCKY is a good alternative for several appli-
cations including landmark selection and image matching.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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