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Abstract The inspection of retinal fundus images allows
medical doctors to diagnose various pathologies. Computer-
aided diagnosis systems can be used to assist in this process.
As a first step, such systems delineate the vessel tree from
the background. We propose a method for the delineation of
blood vessels in retinal images that is effective for vessels
of different thickness. In the proposed method, we employ
a set of B-COSFIRE filters selective for vessels and vessel-
endings. Such a set is determined in an automatic selection
process and can adapt to different applications. We compare
the performance of different selection methods based upon
machine learning and information theory. The results that
we achieve by performing experiments on two public bench-
mark data sets, namely DRIVE and STARE, demonstrate the
effectiveness of the proposed approach.
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1 Introduction

Retinal fundus imaging is a noninvasive tool that is widely
employed by medical experts to diagnose various patholo-
gies such as glaucoma, age-related macular degeneration,
diabetic retinopathy and atherosclerosis. There is also evi-
dence that such images may contain signs of non-eye-related
pathologies, including cardiovascular [19] and systemic dis-
eases [32]. Figure 1 shows examples of two retinal fundus
images and their corresponding manually segmented vessel
trees. In the last years, particular attention by medical com-
munities has been given to early diagnosis and monitoring of
diabetic retinopathy, since it is one of the principal causes of
blindness in the world [1].

The manual inspection of retinal fundus images requires
highly skilled people, which results in an expensive and time-
consuming process. Thus, the mass screening of a population
is not feasible without the use of computer-aided diagno-
sis systems. Such systems could be used to refer to medical
experts only the patients with suspicious signs of diseases
[1,2]. In this way, the medical professionals could focus
on the most problematic cases and on the treatment of the
pathologies.

The automatic segmentation of the blood vessel trees in
retinal images is a basic step before further processing and
formulation of diagnostic hypothesis. This means that the
quality of vessel segmentation influences the reliability of
the subsequent diagnostic steps. It is, therefore, of utmost
importance to obtain accurate measurements about the geo-
metrical structure of the vessels. After segmenting the vessel
tree, it is common for many methodologies to detect candi-
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Fig. 1 Examples of fundus images ofahealthy andbunhealthy retinas,
together with the corresponding manually segmented vessels taken from
the STARE data set [15]

date lesions and then to classify them as healthy or not. The
better the segmentation, the less false candidate lesions will
be detected.

In the last years, this challenge has attracted wide inter-
est of many image processing and pattern recognition
researchers. Existing methods can be generally divided into
two groups: unsupervised methods are based on filtering,
vessel tracking techniques or modeling, while supervised
methods train binary classification models using pixel-wise
feature vectors.

In the unsupervised approaches, mathematical morphol-
ogy techniques are used in combination with a priori knowl-
edge about the vessels structure [24,36] or with curvature
analysis [11]. Vessel tracking-based methods start from an
automatically or manually chosen set of points and seg-
ment the vessels by following their centerline [7,10,20,39].
Methods based on matched filtering techniques, instead,
assume that the profile of vessels can be modeled with a
two-dimensional Gaussian kernel [3,8,15], also in combina-
tion with an orientation score [37]. In [22], information about
the size, orientation, and width of the vessels is exploited by
a region growing procedure. A model of the vessels based on
their concavity and built by using a differentiable concavity
measure was proposed in [18]. In previous works [6,35], we
introduced trainable filters selective for vessels and vessel-
endings. We demonstrated that by combining their responses
we could build an effective unsupervised delineation tech-
nique. A method for the construction of an orientation map
of the vessels was proposed in [13]. The information about
the topology of the vessels was used in a graph-based
approach [9].

On the other hand, supervised methods are based on com-
puting pixel-wise feature vectors and using them to train a
classification model that can distinguish between vessel and
non-vessel pixels. Different types of features have been stud-
ied in combination with various classification techniques. A
k-NN classifier was used in combination with the responses
of multi-scale Gaussian filters or ridge detectors in [26] and
[33], respectively. Multi-scale features, computed by means
of Gabor wavelets, were also used to train a Bayesian classi-
fier in [31]. A feature vector composed of the response of a
line operator, together with the information about the green
channel and the line width, was proposed in [28] and used
to train a support vector machine (SVM) classifier. In [21],
a multilayer neural network was applied to classify pixels
based on moment-invariant features. An ensemble of bagged
and boosted decision trees was employed in [12].

Generally, unsupervised approaches are very efficient, but
at the expense of lower effectiveness when compared to
their supervised counterparts. Supervised methods, although
well-performing, require a thorough feature-engineering step
based upon domain knowledge. The sets of features, indeed,
are built with the purpose to overcome specific problems
of retinal fundus images, such as the presence of red or
bright lesions, luminosity variations, among others. For
instance, multiscale Gabor filters can be used to eliminate
red lesions [31], while morphological transformations can
be used for reducing the effects of bright lesions in the seg-
mentation task [12]. Such methods, however, are suitable to
cope with the processing of specific kinds of images and can-
not be easily applied to delineate elongated structures in other
applications (e.g., rivers segmentation in aerial images [38]
or wall crack detection [25]).

We propose to address the problem of segmenting elon-
gated structures, such as blood vessels in retinal fundus
images, by using a set of B-COSFIRE filters of the type
proposed in [6], selective for vessels of various thickness.
The B-COSFIRE filter approach was originally proposed for
delineation of retinal vessels. Such filters were also employed
within a pipeline for the analysis of computed tomography
angiography (CTA) images [40]. This demonstrates their
suitability for various applications. In [6], two B-COSFIRE
filters, one specific for the detection of vessels and the other
for the detection of vessel-endings, were combined together
by simply summing up their responses. The parameters of the
vessel-ending filter were chosen in such a way to maximize
the performance of the two filters. This implies a dependence
of the configuration of the vessel-ending detector upon the
vessel detector. Moreover, the configuration parameters of
each filter were chosen in order to perform best on the most
common thickness of all vessels.

In this work, we propose to determine a subset of B-
COSFIRE filters, selective for vessels of different thickness,
by means of information theory and machine learning. We
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compare the performance achieved by the system with differ-
ent feature selection methods, including Generalized Matrix
Learning Vector Quantization (GMLVQ) [29], class entropy
and a genetic algorithm.

The rest of the paper is organized as follows. In Sect. 2,
we present the B-COSFIRE filters and the feature selection
procedure. In Sect. 3, we introduce the data sets and the tools
that we use for the experiments, while in Sect. 4 we report
the experimental results. After providing a comparison of the
achieved results with the ones of the existing methods and a
discussion in Sect. 5, we draw conclusions in Sect. 6.

2 Method

The main idea is to configure a bank of B-COSFIRE fil-
ters and to employ information theory and machine learning
techniques to determine a subset of filters that maximize
the performance in the segmentation task. We consider
approaches that take into account the contribution of each
feature individually and approaches that evaluate also their
combined contribution.

2.1 B-COSFIRE filters

B-COSFIRE filters are trainable and in [6] they were config-
ured to be selective for bar-like structures. Such a filter takes
as input the response of a Difference-of-Gaussians (DoG)
filter at certain positions with respect to the center of its area
of support. The term trainable refers to the ability of deter-
mining these positions in an automatic configuration process
by using a prototypical vessel or vessel-ending. Figure 2a
shows a synthetic horizontal bar, which we use as a proto-
typical vessel to configure a B-COSFIRE filter.

For the configuration, we first convolve (the convolution
is denoted by ∗) an input image I with a DoG function of a
given standard deviation1 σ :

cσ
def= |I ∗ DoGσ |+ (1)

where |·|+ denotes half-wave rectification.2 In Fig. 2b, we
show the response image of a DoG filter with σ = 2.5
applied to the prototype in Fig. 2a. We then consider the
DoG responses along concentric circles around a given point
of interest, and select from them the ones that have local
maximum values (Fig. 2c). We describe each point i by three
parameters: the standard deviation σi of the DoG filter, and
the polar coordinates (ρi , φi ) where we consider its response
with respect to the center. We form a set S = {(σi , ρi , φi )|i =
1, . . . , n} that defines a B-COSFIRE filter that has a selec-

1 The standard deviation of the inner Gaussian function is 0.5σ .
2 Half-wave rectification is an operation that suppresses (sets to 0) the
negative values.

Fig. 2 Example of the configuration of a B-COSFIRE filter using a a
horizontal synthetic prototype vessel. We compute b the corresponding
DoG filter response image and select c the local maxima DoG responses
along concentric circles around a point of interest (identified by the cross
marker in the center). d A sketch of the resulting filter: The sizes of the
blobs correspond to the standard deviations of the Gaussian blurring
functions

tivity preference for the given prototype. The value of n
represents the number of configured tuples.

For the application of the resulting filter, we first con-
volve an input image with a DoG function that has a standard
deviation specified in the tuples of the set S. Then, we blur
the DoG responses in order to allow for some tolerance in
the preferred positions of the concerned points. The blur-
ring operation takes the maximum DoG response in a local
neighourhood weighted by a Gaussian function Gσ ′(x ′, y′),
whose standard deviation σ ′ is a linear function of the dis-
tance ρi from the support center of the filter: σ ′ = σ ′

0 + αρi
(Fig. 2d). The values of σ ′

0 and α are constants, and we tune
them according to the application.

We then shift every blurred DoG response by a vector of
length ρi in the direction toward the center of the area of
support, which is the complimentary angle to φi . The con-
cerned shift vector is (�xi ,�yi ), where �xi = −ρi cos φi

and �yi = −ρi sin φi . We define the blurred and shifted
DoG response for the tuple (σi , ρi , φi ) as:

sσi ,ρi ,φi (x, y)

= max
x ′,y′ {cσi (x − �xi − x ′, y − �yi − y′)Gσ ′(x ′, y′)}

(2)

We denote by rS(x, y) the response of a B-COSFIRE
filter by combining the involved blurred and shifted DoG
responses by geometric mean:
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rS(x, y)
def=

⎛
⎝

|S|∏
i=1

(
sσi ,ρi ,φi (x, y)

)
⎞
⎠

1/|S|
(3)

The procedure described above configures a B-COSFIRE
filter that is selective for horizontally oriented vessels. In
order to achieve multi-orientation selectivity, one can con-
figure a number of B-COSFIRE filters by using prototype
patterns in different orientations. Alternatively, we manip-
ulate the parameter φ of each tuple and create a new set
Rψ(S) = {(σi , ρi , φi + ψ) | i = 1, . . . , n} that represents a
B-COSFIRE filter with an orientation preference of ψ radi-
ans offset from that of the original filter S. We achieve a
rotation-tolerant response in a location (x, y) by taking the
maximum response of a group of B-COSFIRE filters with
different orientation preferences:

r̂S(x, y)
def= max

ψ∈Ψ

{
rRψ(S)(x, y)

}
(4)

where Ψ = {0, π
12 , π

6 , . . . , 11π
12 }.

2.2 A bank of B-COSFIRE filters

The thickness of the vessels in retinal fundus images may
vary from 1 pixel to a number of pixels that depends on
the resolution of the input images. For this reason, we con-
figure a large bank of B-COSFIRE filters consisting of 21
vessel detectors {S1, . . . S21} and 21 vessel-ending detec-
tors {S22, . . . S42}, which are selective for vessels of different
thickness.

In Fig. 3, we show the response images of theB-COSFIRE
filters that are selective for (left column) vessels and (right
column) vessel-endings. In particular, we configure filters
selective for thin (second row), medium (third row) and thick
(forth row) vessels. It is noticeable how the large-scale filters
are selective for thick vessels (Fig. 3g, h) and are robust to
background noise but achieve low responses along thin ves-
sels. Conversely, the small-scale vessels (Fig. 3c, d) show
higher selectivity for thin vessels but are less robust to back-
ground noise. The combination of their responses promises to
achieve better delineation performance at various scales [34].

We construct a pixel-wise feature vector v(x, y) for every
image location (x, y) with the responses of the 42 B-
COSFIRE filters in the filterbank, plus the intensity value
g(x, y) of the green channel in the RGB retinal image:

v(x, y) = [
g(x, y), r̂1(x, y), . . . , r̂42(x, y)

]T
(5)

where r̂i (x, y) is the rotation-tolerant response of a B-
COSFIRE filter Si . The inclusion of the intensity value of the
green channel is suggested by many existing approaches [12,
28,31,33,34].

Fig. 3 Response images obtained byB-COSFIRE filters that are selec-
tive to (left column) vessels and (right column) vessel-endings of
different thickness. We consider filters selective for thin (c, d), medium
(e, f) and thick (g, h) vessels

2.3 Feature transformation and rescaling

Before classification, we apply the inverse hyperbolic sine
transformation function [17] to each element of the feature
vector. It reduces the skewness in the data and is defined as:

f (vi , θ) = sinh−1(θvi )

θ
(6)
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For large values of vi and θ > 0, the function behaves like
a log transformation.3 As θ → 0, f (vi , θ) → vi . We then
compute the Z -score to standardize each of the 43 features.
As suggested in [28], we apply the Z -score normalization
procedure separately to each image in order to compensate
for illumination variation between the images.

2.4 Automatic subset selection of B-COSFIRE filters

The filterbank that we designed in the previous section is
overcomplete and might have many redundant filters. We
investigate various feature selection approaches to determine
the smallest subset of features that maximize the performance
of the vessel tree delineation. We use as input the training data
that consists of a matrix of size N×43, where N corresponds
to the number of randomly selected pixels (half of them are
vessel pixels, and the other half are non-vessel pixels) from
the training images, and the number of columns corresponds
to the size of the filterbank plus the green channel.

2.4.1 Entropy score ranking

Entropy characterizes uncertainty about a source of infor-
mation. The rarer a response in a specific range is the
more information it provides when it occurs. We use a fil-
ter approach that computes the entropy E of each of the 43
features:

E =
n∑

i=1

c∑
j=1

P

(
yi = j | x = i

20

)

log P

(
yi = j | x = i

20

)
(7)

where y is the class label (vessel or non-vessel), c is the num-
ber of classes (in this case c = 2), x is a vector of quantized
features rounded up to the nearest 0.05 increment andn = 20.
Before computing the entropy, we first rescale and shift the
Z -scored values in the range [0, 1], such that the minimum
value becomes 0 and the maximum value becomes 1.

We rank the 43 features using the reciprocal of their cor-
responding entropy values and select the highest k ranked
features that contribute to the maximum accuracy on the
training set.

2.4.2 Genetic algorithm

The nature-inspired genetic algorithms are a family of search
heuristics that can be used to solve optimization prob-
lems [14,23]. We use a genetic algorithm to search for the best

3 The value of θ has been experimentally determined on a training set
(40,000 feature vectors) and set to 1000 for both the DRIVE and STARE
data sets.

performing subset of features among the enormous possible
combinations. We initialize a population of 400 chromo-
somes each with 43 random bits. The positions of the one
bits indicate the columns (i.e., the green channel and the 42
B-COSFIRE filters) to be considered in the given matrix.

The fitness function computes the average accuracy in a
tenfold cross-validation on the training data with the selected
columns. In each fold, we configure an SVM classifier with
a linear kernel by using 90 % of the training set and apply it
to the remaining 10 %. After every epoch, we sort the chro-
mosomes in descending order of their fitness scores and keep
only the top 40 (i.e., 10 %) of the population. We use this elite
group of chromosomes to generate 360 offspring chromo-
somes by a crossover operation to randomly selected pairs of
elite chromosomes. Every bit of the newly generated chromo-
somes has a probability of 10 % to be mutated (i.e., changing
the bit from 1 to 0 or from 0 to 1). We run these iterative steps
until the elite group of chromosomes stops changing.

Finally, we choose the filters that correspond to the posi-
tions of the one bits in the chromosome with the highest
fitness score and with the minimum number of one bits.

2.4.3 GMLVQ

The Generalized Matrix Learning Vector Quantization
(GMLVQ) [29,30] computes the pairwise relevances of all
features with respect to the classification problem. It gener-
ates a full matrix Λ of relevances that describe the importance
of the individual features and pairs of features in the classi-
fication task.

We consider the diagonal elements Λi i as the ranking (rel-
evant) scores of each feature. The higher the score, the more
relevant the corresponding feature is in comparison with the
others. In Fig. 4, we show the feature relevances obtained
from the training images of the DRIVE data set. In the fol-
lowing, we investigate the selection of the subset of relevant
features in two different ways.
Relevance peaksWe select only the features that achieve rele-
vance peaks. For instance, from the feature relevances shown

0
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0.006

0.008

0.01

g r̂1 r̂42. . .

R
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Features

Fig. 4 A bar plot of the relevances of the features on the DRIVE data
set
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in Fig. 4 we select the feature
[
r̂3, r̂8, r̂10, r̂17, r̂21, r̂24, r̂27,

r̂31, r̂33, r̂36, r̂38, r̂42
]
. It is worth noting that this approach

can be used when the feature vector elements are in a system-
atic order and thus can be compared with their neighboring
elements. In our case, the feature vector is constructed by the
responses of B-COSFIRE filters whose thickness preference
increases systematically, plus the green channel.
Relevance ranking We sort the 43 features in descending
order of their relevance scores and select features with the top
k relevances. We then determine the value of k that maximizes
the accuracy on the training set.

2.5 Classification

We use the selected features to train a SVM classifier with
a linear kernel. The SVM classifier is particularly suited for
binary classification problems, since it finds an optimal sep-
aration hyperplane that maximizes the margin between the
classes [16].

2.6 Application phase

In Fig. 5, we depict the architectural scheme of the application
phase of the proposed method. First, we preprocess a given
retinal fundus image (Fig. 5a, b). We discuss the preprocess-

ing procedure in Sect. 4.1. For each pixel, we construct a
feature vector by considering the features selected during
the training phase (i.e., possibly the green channel and the
responses of a subset of k B-COSFIRE filters) (Fig. 5c, d).
Then, we transform and rescale the features and use a SVM
classifier to determine the vesselness of each pixel in the input
image (Fig. 5e, f). Finally, we compute the binary vessel map
by thresholding the output score of the SVM (Fig. 5g, h).

3 Materials

3.1 Data sets

We performed experiments on two data sets of retinal fundus
images that are publicly available for benchmarking purpose:
DRIVE [33] and STARE [15].

The DRIVE data set is composed of 40 images (of size
565 × 584 pixels), divided into a training and a test set of 20
images each. The images in the training set were manually
labeled by one human observer, while the images in the test
set were labeled by two different observers. For each image
in the data set, a binary mask of the field of view (FOV) of
the retina is also provided.

SVM
Classifier

transform and
rescaling

g

r̂1

r̂k

B-COSFIRE
filterbank

... ...

(a)

preprocessing

(b)

thresholding

(d)(c)

(e)(f)(g)(h)

...

Fig. 5 Sketch of the application phase of the proposed method. The a
input retinal image is first b preprocessed. Then, c the responses of the
bank of selected B-COSFIRE filters and, possibly, the green channel
are used to form a d feature vector. After e transforming and rescaling

the features, f a SVM classifier is then used to classify every pixel in
the input image and obtain g a response map. h The binary output is
obtained by thresholding the SVM probability scores
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The STARE data set consists of 20 retinal fundus images
(of size 700 × 605 pixels), 10 of which contain signs of
pathology. Each image in the data set was manually labeled
by two different human observers.

For both data sets, we consider the manual segmentation
provided by the first observer as gold standard and use it as
the reference ground truth for the performance evaluation of
the algorithms. We use the second set of manually labeled
images to compute the performance of the second human
observer with respect to the gold standard.

3.2 B-COSFIRE implementation

We used the existing implementation of the B-COSFIRE
filtering4 to compute the responses of the involved vessel-
selective and vessel-ending-selective filters. Moreover, we
provide a new set of MATLAB scripts5 of the proposed super-
vised delineation technique, including the automatic feature
selection.

4 Experiments

4.1 Preprocessing

In our experiments, we considered only the green channel of
the RGB retinal images, since it shows the highest contrast
between vessels and background [24,26,33]. The blue chan-
nel has a small dynamic range, while the red channel has low
contrast.

We preprocessed the retinal images in the DRIVE and
STARE data sets in order to avoid false detection of vessels
around the FOV and to further enhance the contrast in the
green channel. Due to the high contrast on the border of the
FOV of the retina, the B-COSFIRE filters might detect false
vessels. We applied the preprocessing step proposed in [31],
which aims at dilating the FOV by iteratively enlarging the
radius of the region of interest by one pixel at a time. In each
iteration, we selected the pixels in the outer border of the FOV
and replaced them with the average value of the intensities of
the 8-neighbor pixels contained inside the FOV. We iterated
this procedure 50 times, as it was sufficient to avoid false
detection of lines around the border of the FOV of the retina.

Finally, we applied the contrast-limited adaptive his-
togram equalization (CLAHE) algorithm [27] in order to
enhance the contrast between vessels and background. The
CLAHE algorithm improves the local contrast and avoids the
over-amplification of the noise in homogeneous regions.

4 http://www.mathworks.com/matlabcentral/fileexchange/49172.
5 The new package of MATLAB scripts can be downloaded from http://
matlabserver.cs.rug.nl.

4.2 Evaluation

For the DRIVE data set, we construct the training set by
selecting 1000 vessel and 1000 non-vessel pixels from each
image of the training set, which correspond to a total of
40,000 feature vectors. The STARE data set does not have
separate training and test sets. Thus, we construct the train-
ing set by randomly choosing 40,000 pixels from all the 20
images in the data set (1000 vessel pixels and 1000 non-vessel
pixels from each image). As suggested in [12,28], since the
size of the selected training set is very small (<0.5 % of the
entire data set), we evaluate the performance on the whole
set of images.

The output of SVM classifier is continuous (in the range
[0, 1]) and indicates the degree of vesselness of each pixel
in a given image. The higher this value, the more likely a
pixel is part of a vessel. We thresholded the output of the
classifier in order to obtain the binary segmented image. The
threshold operation separates the pixels into two categories:
vessels and non-vessels.

When comparing the segmented image with the ground
truth image, each pixel contributes to the calculation of one
of the following measures: A vessel pixel in the segmented
image is a true positive (TP) if it is also a vessel pixel in the
ground truth, while it is a false positive (FP) if it is a back-
ground pixel in the ground truth; a background pixel in the
segmented image that is part of the background also in the
ground truth image is a true negative (TN); otherwise, it is a
false negative (FN). In order to evaluate the performance of
the proposed method and compare it with the ones of exist-
ing methods, we computed the sensitivity (Se), specificity
(Sp), accuracy (Acc) and the Matthews correlation coeffi-
cient (MCC), which are defined as follows:

Acc = TP + TN

N
, Se = TP

TP + FN
, Sp = TN

TN + FP

and

MCC = TP/N − S × P√
P × S × (1 − S) × (1 − P)

,

where N = TN + TP + FN + FP, S = (TP + FN)/N and
P = (TP + FP)/N .

For a binary classification problem, as in our case, the
computation of the accuracy is influenced by the cardinality
of the two classes. In the problem at hand, the number of non-
vessel pixels is roughly seven times more than the number of
vessel pixels. Therefore, the accuracy is biased by the num-
ber of true negative pixels. For this reason, we computed the
MCC, which quantifies the quality of a binary classifier even
when the two classes are imbalanced. It achieves a value of 1
for a perfect classification and a value of −1 for a completely
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Table 1 Comparison of results with different B-COSFIRE approaches on the DRIVE data set

Method Results on DRIVE data set

Se Sp AUC Acc MCC # Features Processing time (s)

Unsupervised B-COSFIRE [6] 0.7655 0.9706 0.9614 0.9442 0.7475 2 10

Supervised

No feature selection 0.7901 0.9675 0.9602 0.9437 0.7492 43 200

Genetic algorithm 0.7754 0.9704 0.9594 0.9453 0.7517 17 110s

GMLVQ-relevance peaks 0.7777 0.9702 0.957 0.9454 0.7525 12 75

GMLVQ-relevance ranking 0.7857 0.9673 0.9602 0.9439 0.7487 11 70

Class entropy ranking 0.7731 0.9708 0.9593 0.9453 0.7513 16 90

The highest value for each performance metric is reported in bold font

Table 2 Comparison of results with different B-COSFIRE approaches on the STARE data set

Method STARE data set

Se Sp AUC Acc MCC # Features Processing time (s)

Unsupervised B-COSFIRE [6] 0.7716 0.9701 0.9563 0.9497 0.7335 2 10

Supervised

No feature selection 0.7449 0.9810 0.9639 0.9561 0.7537 43 210

Genetic algorithm 0.7928 0.9734 0.9638 0.9542 0.7548 7 60

GMLVQ-relevance peaks 0.8046 0.9710 0.9638 0.9534 0.7536 10 80

GMLVQ-relevance ranking 0.7737 0.9716 0.9590 0.9507 0.7384 11 85

Class entropy ranking 0.7668 0.9711 0.9577 0.9495 0.7280 19 150

The highest value for each performance metric is reported in bold font

wrong classification. The value 0 indicates a random guess
classifier.

Besides the above-mentioned measurements, we also gen-
erated a receiver operating characteristics (ROC) curve and
computed its underlying area (AUC). The ROC curve is a plot
that shows the trade-off between the rate of false positives
and the rate of true positives as the classification threshold
varies. The higher the AUC the better the performance of the
classification system.

4.3 Results

For a given test image and a threshold value t we com-
puted the MCC. Then, we computed the average MCC across
all test images and obtained a single performance measure
MCC for every threshold t . We vary the threshold from 0 to
1 in steps of 0.01. Finally, we choose the threshold t∗ for a
given data set that provides the maximum value of MCC .

In Tables 1 and 2 we report the results that we achieved
with the proposed supervised approach on the DRIVE and
STARE data sets, respectively. In order to evaluate the effects
of the different feature selection methods, we used as baseline
the results (MCC = 0.7492 for the DRIVE data set and
MCC = 0.7537 for the STARE data set) that we obtained
by a linear SVM classifier trained with the responses of the
bank of 42 B-COSFIRE filters plus the intensity value in

the green channel. This naïve supervised approach achieved
better performance than the unsupervised B-COSFIRE filter
approach [6], whose results are also reported in the two tables.
The use of machine learning or information theory techniques
that compute a score of the importance of each feature gives
the possibility to select the best performing group of features
and, at the same time, to reduce the overall processing time.

For the methods based on feature ranking, namely GMLVQ
and class entropy, we report the results achieved when con-
sidering a set of the most k top-scored features. We chose
the value of k which provided the highest accuracy on the
training set. With this method, we selected 11 features for
both DRIVE and STARE data sets by using GMLVQ with
relevance ranking. On the other hand, when we ranked the
features on the basis of their class entropy score we selected
16 features for DRIVE and 19 for STARE. In Fig. 6a, b, we
show how the MCC, on the DRIVE and STARE data sets, is
sensitive to an increasing number of features involved in the
classification process. We only show the most discriminant
19 features since the performance improvement achieved by
further features is negligible. Moreover, the required process-
ing time becomes too high and comparable to the one required
to compute the full set of features. We performed experiments
on a machine equipped with a 1.8 GHz Intel i7 processor with
4GB of RAM. In Fig. 7, we show the ROC curves obtained
by the GMLVQ with relevance peaks (solid line) and by the
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Fig. 6 The plots in a and b show the MCC as a function of the top performing features for the DRIVE and STARE data sets, respectively
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Fig. 7 ROC curves achieved on a the DRIVE and b the STARE data sets by the selection methods based upon GMLVQ relevance peaks (solid
line) and a genetic algorithm (dashed line), and by the unsupervised B-COSFIRE filters (dotted line)

genetic algorithm (dashed line) features selection methods in
comparison with the one of the unsupervisedB-COSFIRE fil-
ters (dotted line). A substantial improvement of performance
is evident for the STARE data set.

4.4 Statistical analysis

We used the right-tailed paired t − test statistic to quan-
tify the performance improvement that we achieved with the
proposed supervised method with respect to the usupervised
B-COSFIRE approach. For each data set and for each method

we used, the MCC values computed from all test images as
explained in Sect. 4.3.

A significant improvement of the results is confirmed for
the feature selection method based on GMLVQ with rele-
vance peaks (DRIVE: t (19) = 1.33, p < 0.1; STARE:
t (19) = 2.589, p < 0.01) and for the approach based on
a genetic algorithm (DRIVE: t (19) = 1.13, p < 0.15;
STARE: t (19) = 2.589, p < 0.01). On the contrary, the
feature selection methods based on ranking the features by
their relevance or their class entropy score do not significantly
improve the performance results.
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Table 3 Comparison of the performance results achieved by the proposed approach with the ones achieved by other existing methods

Performance comparison

Method DRIVE STARE

Se Sp AUC Acc Se Sp AUC Acc

Unsupervised

B-COSFIRE [6] 0.7655 0.9704 0.9614 0.9442 0.7716 0.9701 0.9563 0.9497

Hoover et al. [15] – – – – 0.6747 0.9565 0.7590 0.9275

Mendonca and Campilho. [24] 0.7344 0.9764 – 0.9463 0.6996 0.9730 – 0.9479

Martinez-Perez et al. [22] 0.7246 0.9655 – 0.9344 0.7506 0.6569 – 0.9410

Al-Rawi et al. [3] – – 0.9435 0.9535 – – 0.9467 0.9090

Ricci and Perfetti [28] – – 0.9558 0.9563 – – 0.9602 0.9584

Lam et al. [18] – – 0.9614 0.9472 – – 0.9739 0.9567

Supervised

Staal et al. [33] – – 0.9520 0.9441 – – 0.9614 0.9516

Soares et al. [31] 0.7332 0.9782 0.9614 0.9466 0.7207 0.9747 0.9671 0.9480

Ricci and Perfetti [28] – – 0.9633 0.9595 – – 0.9680 0.9646

Marin et al. [21] 0.7067 0.9801 0.9588 0.9452 0.6944 0.9819 0.9769 0.9526

Fraz et al. [12] 0.7406 0.9807 0.9747 0.9480 0.7548 0.9763 0.9768 0.9534

Proposed method 0.7777 0.9702 0.9597 0.9454 0.8046 0.9710 0.9638 0.9534

For both data sets, the GMLVQ with relevance peaks and
the genetic algorithm provide the best performance results. In
fact, there is no statistical difference between the two meth-
ods.

4.5 Comparison with existing methods

With the proposed approach we achieve better results than
many existing methods, which we report in Table 3. The
direct evaluation of the results from Table 3 is not trivial.
Thus, for comparison purposes, we move along the ROC
curves in Fig. 7 and for the same specificity values achieved
by other methods, we compare sensitivity values that we
achieve to theirs. We refer to the performance achieved by
the GMLVQ with relevance peaks feature selection. For the
DRIVE data set and for the same specificity reported in [31]
(Sp = 0.9782) and in [21] (Sp = 0.9801), we achieve bet-
ter sensitivity: 0.7425 and 0.7183, respectively. For the same
specificity reported in [12] (Sp = 9807), we achieve a lower
value of the sensitivity (Se = 0.7181). Similarly, for the
STARE data set and for the same specificity values reported
in [31], [21] and [12] (Sp = 0.9747, Sp = 0.9819 and
Sp = 0.9763) we achieve better sensitivity: 0.7806, 0.7316
and 07697, respectively.

5 Discussion

The main contribution of this work is a supervised method
for vessels delineation based on the automatic selection of a

subset of B-COSFIRE filters selective for vessels of different
thickness. We applied various feature selection techniques
to a bank of B-COSFIRE filters and compared their perfor-
mance. The versatility of the B-COSFIRE filters together
with the use of a features selection procedure showed high
flexibility and robustness in the task of delineating elongated
structures in retinal images. The proposed method can be
applied to other applications, such as the quantification of
length and width of cracks in walls [25] for earthquake dam-
age estimation or for monitoring the flow of rivers in order
to prevent flooding disasters [38].

The versatility of the B-COSFIRE filters lies in their train-
able character and thus in being domain independent. They
can be automatically configured to be selective for various
prototype patterns of interest. In this work, we configured fil-
ters on some vessel-like prototype patterns. This avoids the
need of manually creating a feature set to describe the pixels
in the retinal images, which is an operation that requires skills
and knowledge of the specific problem. This is in contrast to
other methods that use hand-crafted features and thus domain
knowledge. For instance, the features proposed in [12] are
specifically designed to deal with particular issues of the
retinal fundus images, such as bright and dark lesions or non-
uniform illumination of the FOV. A specific B-COSFIRE
filter is configured to detect patterns that are equivalent or
similar to the prototype pattern used for its configuration.
In our case, it detects blood vessels of specific thickness.
One may also, however, configure B-COSFIRE filters selec-
tive for other kinds of patterns such as bifurcations and
crossovers [4,5] and add them to the filterbank.
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Although the difference of the performance achieved by
the genetic algorithm and by the GMLVQ with relevance
peaks is not statistically significant, the latter method seems
more stable as it selects a comparable number of features
in the both data set. In fact, it selects a comparable number
of features in both data sets. Furthermore, the reduced bank
of features allows to improve the classification performance
together with a reduction in the required processing time. As
a matter of fact, the GMLVQ approach selected a subset of
12 features for the DRIVE data set and 10 features for the
STARE data set. The technique based on a genetic algorithm
selected a set of 17 features for the DRIVE data set and 7
features for the STARE data set.

For the DRIVE data set, we selected five vessel and seven
vessel-ending B-COSFIRE filters.6 The value of the green
channel was not relevant for this data set. For the STARE
data set, instead, we found that the value of the green channel
is important. Thus, we constructed the feature vectors with
the intensity value of the green channel plus the responses of
four vessel- and three vessel-ending B-COSFIRE filters.7

The output of a genetic algorithm is crisp as the selected
features have the same weighting. In contrast, the GMLVQ
approach shows higher flexibility since it provides a measure
of the relevance (in the range [0, 1]) that each filter has in the
classification task. The genetic algorithm, however, evalu-
ates the combined contribution of many features, exploring a
larger space of solutions, while the GMLVQ considers only
the contribution of two features at a time.

Although the two approaches based on GMLVQ and the
one based on a genetic algorithm construct different sets
of B-COSFIRE filters, we achieve a statistically signifi-
cant improvement of the performance results with respect
to the unsupervised method. This demonstrates that the pro-
posedB-COSFIRE filterbank is robust to the feature selection
approach used. The flexibility and generalization capabilities
of the B-COSFIRE filters, together with a feature selection
procedure, allow the construction of a system that can adapt
to any delineation problem.

The method based on the computation of the class entropy
score of each feature and the selection of the k top-ranked
features does not improve the performance substantially. In
fact, in this approach the features are assumed to be statisti-

6 The selected scales for the DRIVE data set are σ1 = 1.6, σ2 =
2.1, σ3 = 2.3, σ4 = 3 and σ5 = 3.4 for the vessel-selective filters
and σ6 = 1.1, σ7 = 1.4, σ8 = 1.8, σ9 = 2, σ10 = 2.3, σ11 = 2.5 and
σ12 = 2.9 for the vessel-ending-selective filters. We set σ0 = 3 and
α = 0.7 for the vessel-selective filters and σ0 = 2 and α = 0.1 for the
vessel-ending-selective filters.
7 The selected scales for the STARE data set are σ1 = 1.8, σ2 = 2.2,
σ3 = 3 and σ4 = 3.7 for the vessel-selective filters and σ5 = 1.7, σ6 =
1., σ7 = 2.2, σ8 = 2.5 and σ9 = 3.2 for the vessel-ending-selective
filters. We set σ0 = 1 and α = 0.5 for the vessel-selective filters and
σ0 = 1 and α = 0.1 for the vessel-ending-selective filters.

cally independent and their contribution to the classification
task is evaluated singularly. This reduces the effectiveness of
the selection procedure since it does not take into account
eventual mutual contributions of pairs or groups of features
to the classification task.

The application of a single B-COSFIRE filter is very
efficient [6]. It takes from 3 to 5 s (on a 1.8 GHz Intel i7
processor with 4GB of RAM) to process an image from the
DRIVE and the STARE data sets. The responses of a bank of
B-COSFIRE filters are computed independently from each
other. Therefore, the computation of such responses can be
implemented in a parallel way so as to further optimize the
required processing time.

6 Conclusions

The supervised method that we propose for the segmenta-
tion of blood vessels in retinal images is versatile and highly
effective. The results that we achieve on two public bench-
mark data sets (DRIVE: Se = 0.7777, Sp = 0.9702 and
MCC = 0.7525; STARE: Se = 0.8046, Sp = 0.9710 and
MCC = 0.7536) are higher than many existing methods. The
proposed approach couples the generalization capabilities of
theB-COSFIRE filter with an automatic procedure (GMLVQ
with relevance peaks) that selects the best performing ones.
The delineation method that we propose can be employed in
any application in which the delineation of elongated struc-
tures is required.
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