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Abstract Robust and accurate detection of the pupil posi-
tion is a key building block for head-mounted eye tracking
and prerequisite for applications on top, such as gaze-based
human–computer interaction or attention analysis. Despite a
large body of work, detecting the pupil in images recorded
under real-world conditions is challenging given signifi-
cant variability in the eye appearance (e.g., illumination,
reflections, occlusions, etc.), individual differences in eye
physiology, as well as other sources of noise, such as contact
lenses ormake-up. In this paperwe review six state-of-the-art
pupil detectionmethods, namely ElSe (Fuhl et al. in Proceed-
ings of the ninth biennial ACM symposium on eye tracking
research&applications,ACM.NewYork,NY,USA, pp 123–
130, 2016), ExCuSe (Fuhl et al. in Computer analysis of
images and patterns. Springer, New York, pp 39–51, 2015),
Pupil Labs (Kassner et al. in Adjunct proceedings of the 2014
ACM international joint conference on pervasive and ubiq-
uitous computing (UbiComp), pp 1151–1160, 2014. doi:10.
1145/2638728.2641695), SET (Javadi et al. in Front Neu-
roeng 8, 2015), Starburst (Li et al. in Computer vision and
pattern recognition-workshops, 2005. IEEE Computer soci-
ety conference onCVPRworkshops. IEEE, pp 79–79, 2005),
and Świrski (Świrski et al. in Proceedings of the symposium
on eye tracking research and applications (ETRA). ACM, pp
173–176, 2012. doi:10.1145/2168556.2168585). We com-
pare their performance on a large-scale data set consisting
of 225,569 annotated eye images taken from four publicly
available data sets. Our experimental results show that the
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algorithm ElSe (Fuhl et al. 2016) outperforms other pupil
detection methods by a large margin, offering thus robust
and accurate pupil positions on challenging everyday eye
images.
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1 Introduction

Understanding processes underlying visual perception has
been a focus in various research fields including medicine,
psychology, advertisement, autonomous driving, or appli-
cation control. Recent developments in head-mounted eye
tracking have enabled researchers to study human visual
perception and attention allocation in natural environments.
Such systems generally fall into two categories, i.e., remote
tracking systems, where the subject is recorded with an
external camera, and head-mounted eye trackers. The main
challenges that have to be faced in remote eye tracking are the
robust detection of the subject’s face and eyes. Several tech-
niques have been proposed for the robust face (e.g., [9,10])
and eye recognition as well as hallucination (e.g., [11]) in
low resolution images.

The measurement of eye movements in head-mounted
eye trackers is based on one camera that records the viewed
scene and, however, at least one additional camera, which is
directed towards the subject’s eye to record the eye move-
ments (e.g., Dikablis Mobile eye tracker, Pupil Labs eye
tracker [15], SMI Glasses, Tobii Glasses). The gaze point
is then mapped to the viewed scene based on the center of
the pupil and a user-specific calibration routine. A crucial
prerequisite for a robust tracking is an accurate detection
of the pupil center in the eye images. While eye tracking
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can be accomplished successfully under laboratory condi-
tions, many studies report the occurrence of difficulties when
eye trackers are employed in natural environments, such as
driving [1,12,16,20], shopping [14,26], or simply walking
around [28].

The main source of error in such settings is a non-
robust pupil signal that is mainly related to challenges in
the image-based detection of the pupil. Schnipke and Todd
summarized in [25] a variety of difficulties occurring when
using eye trackers, such as changing illumination, motion
blur, recording errors, and eyelashes covering the pupil.
Rapidly changing illumination conditions arise primarily in
tasks where the subject is moving fast (e.g., while driving)
or rotates relative to unequally distributed light sources. Fur-
thermore, in case the subject is wearing eye glasses or contact
lenses, further reflections may occur (see Fig. 7, Data set III
and XVIII). A further issue arises due to the off-axial posi-
tion of eye camera in head-mounted eye trackers, e.g., when
the pupil is surrounded by a dark region (see Fig. 7, Data
set VII). Other difficulties are often posed by physiological
eye characteristics, which may interfere with detection algo-
rithms, such as additional dark spots on the iris. Therefore,
studies based on eye tracking in uncontrolled environments
constantly report low pupil detection rates [13,20,33]. As a
consequence, the data collected in such studies has to be
manually post-processed, which is a laborious and time-
consuming procedure. Furthermore, such post-processing is
impossible for real-time applications that rely on pupil mon-
itoring (e.g., driving assistance based on eye tracking input
[31], gaze-based interaction [22,27,34], eye-based activity
and context recognition [1–3] andmanymore). In light of the
above challenges, real-time and accurate pupil detection is an
essential prerequisite for pervasive video-based eye tracking.

2 State-of-the-art methods for pupil detection

Over the last years, there has been a large body of work on
pupil detection. However, most of the approaches address
pupil detection under laboratory conditions, e.g., in [7,17],
both employing a histogram-based threshold. Such algo-
rithms can be applied to eye images captured under infrared
light as in [19,21,24].Another threshold-based approachwas
presented in [38],where the pupil is detected based on the cal-
culation of the curvature of the threshold border.An isophotes
curvature-based approach is presented in [35], using the
maximum isocenter as pupil center estimation. Probably the
most popular algorithm in this realm is Starburst, introduced
by [18] in 2005. In 2012, Swirski et al. [30] proposed an algo-
rithm, which starts with a coarse positioning using Haar-like
features and then refines the pupil center position.

The open source head-mounted eye tracker from Pupil
Labs also comes with a pupil detection algorithm designed

for unconstrained everyday settings [15]. Wood et al. [37]
presented a model-based gaze estimation system for unmod-
ified tablet computers. Their gaze estimation pipeline also
includes a Haar-like feature based eye detector as well as
a RANSAC-based limbus ellipse fitting approach. Three
recent methods, SET [8], ExCuSe [5], and ElSe [6], explic-
itly address the aforementioned challenges associated with
pupil detection in natural environments. SET is based on
thresholding and ellipse fitting. ExCuSe [5] first analyses the
input imageswith regard to reflections based on intensity his-
tograms. Several processing steps based on edge detectors,
morphologic operations, and the Angular Integral Projection
Function are then applied to extract the pupil contour. Sim-
ilar to ExCuSe, ElSe is also based on edge filtering, ellipse
evaluation, and pupil contour validation [6].

The algorithms Starburst [18], Świrski [30], Pupil Labs
[15], SET [8], ExCuSe [5], ElSe [6] will be presented and
discussed in detail in the following subsections. We com-
pared these algorithms on a large corpus of hand-labeled eye
images (Sect. 3) and will present the results in Sect. 4.

2.1 Starburst

In the first step of Starburst [18], the image is denoised using
a Gaussian filter. The algorithm then uses adaptive thresh-
olding on a square region of interest in each video frame to
localize the corneal reflection. The location of the corneal
reflection is given by the geometric center of the largest
region in the image using the adaptively determined thresh-
old. Radial interpolation is further used to remove the corneal
reflection from the eye image. The central step of the algo-
rithm that also gave this method its name, is to estimate the
pupil contour by detecting edges along a limited number of
rays that extend from a central best guess of the pupil cen-
ter (see Fig. 1b, c, d). The rays are independently evaluated
pixel by pixel until a threshold is exceeded, indicating the
edge of the pupil. A feature point is defined at that loca-
tion as a contour edge candidate and the processing along
the ray is stopped. For each pupil candidate, another set of
rays is generated that creates a second set of pupil contour
candidates. This process is iterated until convergence. Model
fitting is finally performed following a Random Sample Con-
sensus (RANSAC) paradigm to find the best fitting ellipse
describing the pupil boundary. This result is further improved
through amodel-based optimization that does not rely on fea-
ture detection [7,18].

2.2 Świrski

The algorithm by Świrski et al. [30] works in three main
stages (see Fig. 2). To find the pupil, the Świrski detector first
calculates the integral image and convolves itwith aHaar-like
feature, similar to the features used in cascade classifiers [36].
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Fig. 1 Visualization of the Starburst [18] algorithm. First the input
image (a) is smoothed. Rays are sent out from a starting position, where
edge values excelling an edge threshold are selected as pupil contour
candidates (b). These points serve then as new starting points for rays

going in the opposite direction, providing thus new contour candidates
(c). The search process is repeated iteratively until convergence (d). The
pupil center is finally estimated using a RANSAC ellipse fit (e)

(a) (b) (c) (d) (e) (f)

Fig. 2 Visualization of the Świrski algorithm [30]. First, the eye image
is convolved with a Haar-like center surround feature and the location
of the maximal response (a) is used as the pupil region (b). The pupil
region is segmented using k-means clustering of its histogram (c) and

passed through a Canny edge detector (d). The algorithm finally uses
an image-aware Random Sample Consensus (RANSAC) ellipse fitting
(e) to detect the pupil (f)

The algorithm repeats this convolution for a set of possible
radii between a user-specified minimum and maximum.

The position of the strongest response is the estimated
center of the pupil, with the size of the region determined
by the corresponding radius. The initial region estimation
is unlikely to be accurately centered on the pupil. There-
fore, in the second step, the algorithm approximates the pupil
position within this region based on k-means clustering: The
image histogram is segmented in dark (pupil pixels) and light.
The algorithm then creates a segmented binary image of the
pupil region by thresholding any pixels above the maximum
intensity in the dark cluster. Afterward, connected compo-
nents in the segmented image are found and the largest among
these is selected to be the pupil.

The center of mass of this component approximates the
pupil position. The final stage of the algorithm refines the
pupil position estimate by fitting an ellipse to the bound-
ary between the pupil and the iris. To do this, the image
is preprocessed to create an edge image and to robustly fit
an ellipse to the edge points while ignoring any outliers.
To remove features such as eyelashes and glints, a morpho-
logical “open” operation is performed to close small bright
gaps in the otherwise dark-pupil region, without significantly
affecting the pupil’s contour. The algorithm then finds the
boundary between pupil and iris using a Canny edge detec-
tor. Finally, the algorithm fits an ellipse to the edge pixels
using RANSAC as well as an image-aware support function.
The support function ensures that the ellipse lies on a bound-

ary from dark pixels to light pixels, and that they lie along
strong image edges.

2.3 Pupil Labs

The Pupil Labs detector is integrated into the open source
head-mounted eye tracking platform Pupil [15]. Figure 3
visualizes the different processing steps of the algorithm. In
a first step, the eye image is converted to grayscale. The ini-
tial region estimation of the pupil is found via the strongest
response for a center-surround feature as proposed in [30].
The algorithm then uses a Canny filter to detect edges in
the eye image and filters these edges based on neighboring
pixel intensity. It then looks for darker areas (blue region)
while dark is specified using a user set offset of the lowest
peak in the histogram of pixel intensities in the eye image.
Remaining edges are filtered to exclude those stemming from
spectral reflections (yellow region) and extracted into con-
tours using connected components [29]. The contours are
simplified using the Ramer–Douglas–Peucker algorithm [4]
and then filtered and split into sub-contours based on cri-
teria of curvature continuity. Candidate pupil ellipses are
found using ellipse fitting onto a subset of the contours. Good
fits are defined in a least square sense, major radii within a
user-defined range and ellipse center in a “blue region” (see
Fig. 3d). An augmented combinatorial search looks for con-
tours that can be added as support to the candidate ellipses.
The results are evaluated based on the ellipse fit of the sup-
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(d)(c)(b)

(g)(f)(e)(a)

Fig. 3 Visualization of the Pupil Labs algorithm [15]. a Eye image,
user region of interest (white stroke rectangle), and initial estimation
of pupil region (white square and dashed line square). b Canny edge
detection (green lines). c Define “dark” region as offset from lowest
spike in histogram within eye image. d Filter edges to exclude spec-
tral reflections (yellow) and not inside “dark” areas (blue). e Remaining

edges extracted into contours using connected components and split
into sub-contours based on curvature continuity criteria (multi colored
lines). f Candidate pupil ellipses (blue) are formed using ellipse fitting.
g Final ellipse fit found through an augmented combinatorial search
(finally ellipse with center in red)—supporting edge pixels drawn in
white (color figure online)

Fig. 4 Visualization of the SET algorithm. a Input image and b result of binarization. c Image after applying a region size threshold to extract
pupil candidates. d Candidate pupil centers and e final result

porting edges and the ratio of supporting edge length and
ellipse circumference. If the ratio is above a threshold, the
algorithm uses the rawCanny edge pixels to refine the ellipse
fit and reports this final ellipse as the one defining the con-
tour of the pupil. Otherwise the algorithm reports that no
pupil was found.

2.4 SET

The SET approach consists of a combination of manual and
automatic step estimates the pupil center [8]. Prior to pupil
detection, two parameters, i.e., a threshold to convert the
input to a binary image (see Fig. 4b) and the size of the seg-
ments (see Fig. 4c) considered for pupil detection are set
manually [8]. The thresholded image is first segmented and
pixels are then grouped into maximal connected regions to
find pupil candidates [8]. For each segment larger than a
threshold value, the Convex Hull method is applied to com-
pute the segment border. In the last step, an ellipse is fitted
to each extracted segment (see Fig. 4d). The ellipse that is
closest to a circle is considered as the pupil (see Fig. 4e).

2.5 ExCuSe

ExCuSe is a recently introduced algorithm that builds on edge
detection and morphologic operations [5]. The algorithmic
work-flow is presented in Fig. 5. In the first step, the input
image is normalized and a histogram of the image is calcu-
lated. If a peak in the bright histogram area is found, the pupil
can be found based on edge analysis (first row in Fig. 5). To
achieve this, a Canny edge detector is applied to the input
image (see Fig. 5b). The resulting edges are then refined by
removing thin lines and thinning thick edges using a mor-
phologic operator. All remaining edges are smoothed and
orthogonal edges are removed using morphologic patterns
(see Fig. 5c). For each connected line, the mean position
is calculated. Based on this information, straight lines are
excluded from further processing. All remaining curved lines
are kept as shown in Fig. 5d and further processed. For each
remaining curve, the enclosed mean intensity value is cal-
culated and the curve with the lowest value is chosen as
pupil curve. Afterward, an ellipse is fitted to this curve (see
Fig. 5e).
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Fig. 5 The algorithmic work-flow in ExCuSe [5]. a Input image with
reflections and b Canny edge filtered image. c Refined edges using
morphologic operators. Remaining edges are analyzed regarding their
curvature (d). The best edge is fitted by an ellipse and its center is
reported as the pupil center (e). f Input image without reflections. g

Coarse pupil estimate based on the angular integral projection. h Pupil
position refinement based on the Canny edge image. i Rays are send
out of the optimized position to select edges representing the pupil bor-
der (white dots on line in 9 are ray hits). j Result of the pupil center
estimation

In case no bright peak in the intensity histogram is
detected, a threshold based on the standard deviation of the
image is calculated. These corresponding steps are visualized
in the second row of Fig. 5. First the algorithm determines
a coarse pupil position and then refines this stepwise to
approach the pupil center. The coarse pupil position is esti-
mated based on the Angular Integral Projection Function
(AIPF) [23] on the thresholded image. More specifically, the
input image is thresholded and pixels over the threshold are
summed along the rows. This summation is done four times
by rotating with an orientation angle of 45◦, Step 7 in Fig. 5.
Once a coarse pupil center estimation has been performed, a
refinement step based on features of the surrounding neigh-
borhood is performed, Step 8 inFig. 5. The assumption here is
that pixels belonging to the pupil are surrounded by brighter
or equally bright pixels. Finally, a thresholded image is used
in ExCuSe to improve the edge image and refine the pupil
edges. The result for the input image from Fig. 5f is shown
in Fig. 5j.

2.6 ElSe

Similar to ExCuSe, the ElSe algorithms operates on Canny
edge filtered eye images. The pupil center is found in a
decision-based approach as described in [6]. Based on the
edge filtered image, edge connections that could impair the
surrounding edge of the pupil are removed by means of mor-
phologic operators (see Fig. 6b). Afterward, connected edges
are collected and evaluated based on straightness, inner inten-
sity value, elliptic properties, the possibility to fit an ellipse
to it, and a pupil plausibility check (see Fig. 6c). If a valid
ellipse describing the pupil is found, it is returned as the result
(see Fig. 6d).

In case no ellipse is found (e.g., when the edge filtering
does not result in suitable edges), a second analysis is con-
ducted. More specifically, as in ExCuSe, ElSe first estimates
a likely location candidate and then refines this position.
Since a computationally demanding convolution operation
is required, the image is rescaled to keep run-time tractable.
This rescaling process contains a low-pass procedure to pre-
serve dark regions (see Fig. 6g) and to reduce the effect
of blurring or noise caused by eyelashes in the eye image.
Afterward, the image is convolved with two different filters
separately: (1) a surface difference filter to calculate the area
difference between an inner circle and a surrounding box and
(2) a mean filter. The results of both convolutions are mul-
tiplied (see Fig. 6h), and the maximum value is set as the
starting point of the refinement step. Since choosing a pixel
position in the downscaled image leads to a distance error of
the pupil center in the full scale image, the position has to
be optimized on the full scale image based on an analysis of
the surrounding pixels of the chosen position (see Fig. 6i).
The center of mass of the pixels under this threshold is used
as the new pupil position (see Fig. 6j). This position is eval-
uated regarding the possibility to be the pupil by analyzing
the surface difference result of a validity pattern.

3 Data sets

3.1 Świrski

The data set introduced by Świrski et al. [30] in 2012 provides
600manually labeled, high resolution (640×480 pixels) eye
images. The data was collected during in-door experiments
with 2 subjects and 4 different camera angles. Themain chal-
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Fig. 6 Algorithmic work-flow in ElSe [6]. a Input image, b Canny
edge image after morphologic operations. c Remaining edges after cur-
vature analysis, analysis of the enclosed intensity value, and shape. d
The curvature with themost enclosing low intensity values and themost
circular ellipse is chosen as the pupil boundary. e Pupil center result. If

ElSe [6] fails to select a valid ellipse, the input image (f) is downscaled
(g). h Image after convolution with a mean and a surface difference
filter. iA threshold for pupil region extraction is calculated and used for
pupil area estimation. j Pupil center result

Fig. 7 Exemplary eye images of each data set introduced together with
the pupil detection algorithms ExCuSe [5] and ElSe [6]. Data sets I–IX
and XVIII–XXII were collected during an on-road driving experiment

with different subjects. The Data sets X–XVII were recorded during
a supermarket search task. The remaining Data sets XXIII and XXIV
were recorded in a laboratory setting with two Asian subjects
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lenges in pupil detection arise due to highly off-axial camera
position and occlusion of the pupil by the eye lid.

3.2 ExCuSe

This data setwas recently providedwith theExCuSe [5] algo-
rithm and includes 38,401 high-quality, manually
labeled eye images (384×288 pixels) from 17 different sub-
jects1 Exemplary images are shown in Fig. 7. The first nine
data sets in ExCuSe were recorded during an on-road driving
experiment [13] using a head-mounted Dikablis mobile eye
tracker. The remaining eight data sets were recorded during
a supermarket search task [26]. These data sets are highly
challenging, since illumination conditions change frequently.
Furthermore, reflections on eye glasses and contact lenses
often occur (Table 1). The experiments were not specifically
designed to pose challenges to pupil detection, but reflect
typical data collected out of the laboratory.

3.3 ElSe

The Data sets XVIII–XXIV (Table 1; Fig. 7) were recently
published with the ElSe algorithm in [6]. This data set con-
tains overall 55,712 eye images (384×288 pixels) collected
from seven subjects wearing a Dikablis eye tracker during
various tasks. The Data sets XVIII–XXII were derived from
eye tracking recordings during an on-road driving experi-
ment [13]. The remaining Data sets XXIII and XXIV were
recorded during indoor experiments with twoAsian subjects.
The challenge in pupil detection arises from eyelids and eye-
lashes occluding the pupil or casting shadows onto the pupil
(and, in one case, glasses reflections). Further challenges
associated with Data set XXIV are related to reflections on
eye glasses. The challenges in the eye images included in
the Data sets XVIII, XIX, XX, XXI, and XXII are related to
motion blur, reflections, and lowpupil contrast in comparison
with to the surrounding area.

3.4 Labeled pupils in the wild (LPW)

The recent Labeled Pupils in the Wild (LPW) data set [32]
contains 66 high-quality eye region videos thatwere recorded
from 22 participants using a dark-pupil head-mounted eye
tracker from Pupil Labs [15]. Each video in the data set con-
sists of about 2000 frames with a resolution of 640×480
pixels and was recorded at about 95 FPS, resulting in a
total of 130,856 video frames. The data set is one order
of magnitude larger than other data sets and covers a wide

1 https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?
\&L=1.

Table 1 Four publicly available data sets containing 225,569 ground-
truth eye images were employed for the evaluation of pupil detection
algorithms

Data set Eye images Description

Świrski [30] 600 Highly off-axis, pupil occluded by eye
lashes

ExCuSe [5]

I 6.554 Reflections

II 505 Reflections, changing illumination

III 9799 Reflections, recording errors, bad
illumination

IV 2655 Contact lenses, bad illumination

V 2135 Shifted contact lenses

VI 4400 Bad illumination, mascara

VII 4890 Bad illumination, mascara, eyeshadow

VIII 630 Bad illumination, pupil occluded by
eyelashes

IX 2831 Reflections, additional black dot on iris

X 840 Bad illumination, highly off-axis (pupil at
image boarder)

XI 655 Reflections, bad illumination, additional
black dot on iris

XII 524 Bad illumination

XIII 491 Bad illumination, eyelashes covering pupil

XIV 469 Bad illumination

XV 363 Shifted contact lenses

XVI 392 Mascara, eyelashes

XVII 268 Bad illumination, eyelashes covering pupil

ElSe [6]

XVIII 10,794 Reflections, changing illumination
conditions

XIX 13,474 Reflections

XX 10,344 Reflections, changing illumination
conditions

XXI 9133 Bad illumination, reflections

XXII 10,370 Reflections, changing illumination
conditions

XXIII 636 Asian subject

XXIV 961 Asian subject, reflections

LPW [32]

XXV 5999 Changing illumination conditions,
eyelashes covering pupil

XXVI 6000 Bad illumination

XXVII 6000 Reflections, changing illumination
conditions

XXVIII 6000 Bad illumination, off-axis, reflections,
pupil at border

XXIX 6000 Border of glasses covering pupil, blurred
images

XXX 5999 Eyelashes covering pupil, pupil at border

XXXI 6000 Reflections, small pupil, bad illumination,
pupil at border
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Table 1 continued

Data set Eye images Description

XXXII 6000 Reflections, small pupil, bad illumination,
pupil at border

XXXIII 6000 Eyelashes covering pupil, pupil at border

XXXIV 6000 Highly off-axis, bad illumination, pupil at
border

XXXV 6000 Eyelashes covering pupil, pupil at border

XXXVI 6000 Bad illumination, pupil at border

XXXVII 5127 Reflections, bad illumination, eyelashes
covering pupil

XXXVIII 6000 Highly off-axis, eyelashes covering pupil

XXXIX 6000 Reflections

XXXX 5731 Reflections, bad illumination

XXXXI 6000 Highly off-axis, eyelashes covering pupil,
bad illumination

XXXXII 6000 Reflections, bad illumination

XXXXIII 6000 Highly off-axis, pupil at border, upside
down, reflections

XXXXIV 6000 Bad illumination, pupil at border

XXXXV 6000 Pupil at image border

XXXXVI 6000 Mascara, pupil at border

Explicit challenges associated with each data set are mentioned shortly

range of realistic indoor and outdoor illumination condi-
tions, includes participantswearing glasses and eyemake-up,
as well as different ethnicities with variable skin tones,
eye colors, and face shapes (see Fig. 8). All videos were
manually ground-truth annotated with accurate pupil center
positions.

4 Experimental results

We compared the algorithms Starburst2 [18], SET3 [8],
Świrski et al.4 [30], Pupil Labs5 [15], ExCuSe6 [5], and
ElSe6 [6] on the above data sets from Table 1. All algo-
rithms were employed with their default parameter setting.
We report the performance of the above algorithms in terms
of the detection rate for different pixel errors, where the pixel
error represents the Euclidean distance between the manu-
ally labeled center of the pupil and the pupil center reported
by the algorithm. Note that we do not report performance
measures related to the gaze position on the scene, since this

2 http://thirtysixthspan.com/openEyes/software.html.
3 https://sites.google.com/site/eyegoeyetracker/.
4 https://www.cl.cam.ac.uk/research/rainbow/projects/pupiltracking/.
5 https://github.com/pupil-labs/pupil.
6 https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?
\&L=1.

Fig. 8 Example images of the labeled pupils in the wild (LPW) Data
set. The top row shows different eye appearances. The second row shows
particularly difficult cases, such as strong shadows, occlusions from eye
lids, reflections on glasses, andmake-up. The third row shows close-ups
to illustrate the effect of reflections, self occlusions, strong sunlight and
shadow, as well as occlusions by glasses

also depends on the calibration. We focus on the pupil center
position on the eye images, where the first source of noise
occurs.

Table 2 summarizes theperformanceof the evaluated algo-
rithms on each data set. On 42 out of 47 data sets, ElSe [6]
clearly outperformed the other state-of-the-art algorithms,
being thus the most promising approach toward robust pupil
detection in heavily noisy eye images. The average detec-
tion rates of the evaluated algorithms on the whole image
corpus (i.e., 225,569 ground-truth eye images from Table 1)
are presented in Fig. 9. Note that the results are weighted
by the number of images on each data set. As shown in the
Figure, ElSe shows superior performance, reaching an aver-
age detection rate of more than 60% at a pixel distance error
of 5.

A detailed performance analyses on each data set is visu-
alized in Fig. 10. The highest detection rates are achieved
on the Świrski et al. [30] data set. Since this data set was
collected in a laboratory setting, it is the least challenging,
although most of the contained eye images are highly off-
axial. For this data set, the algorithms ExCuSe, ElSe, and
Swirksi reach a detection rate far beyond 70% at a pixel dis-
tance of 5.With a detection rate of 86.17% (Table 2), ExCuSe
is the best performing algorithm among the state of the
art.

The data sets ExCuSe, ElSe, and LPW provide a large
corpus of eye images collected in outdoor scenarios and rep-
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Table 2 Performance
comparison of SET, Starburst,
Świrski, ExCuSe and ElSe in
terms of detection rate up to an
error of five pixels

Data set SET (%) Starburst (%) Świrski (%) ExCuSe (%) ElSe (%) Pupil Labs (%)

Świrski [30] 23.33 19.33 77.17 86.17 80.83 55.00

ExCuSe [5]

I 10.27 5.48 5.11 70.95 85.41 3.01

II 0.00 4.16 26.34 34.26 64.55 1.98

III 3.34 1.71 6.81 39.44 63.57 11.63

IV 4.03 4.44 34.54 81.58 84.03 3.31

V 7.73 14.66 77.85 77.28 84.07 1.83

VI 10.30 19.14 19.34 53.18 77.00 7.18

VII 1.70 2.41 39.35 46.91 59.08 0.29

VIII 7.62 9.52 41.90 56.83 66.19 9.21

IX 5.93 13.88 24.09 74.60 86.47 6.36

X 22.98 51.07 29.88 79.76 82.38 64.05

XI 14.66 27.79 20.31 56.49 75.27 17.40

XII 26.72 64.50 71.37 79.20 79.39 74.24

XIII 33.40 46.64 61.51 70.26 73.52 32.18

XIV 0.21 22.81 53.30 57.57 84.22 76.76

XV 26.17 7.71 60.88 52.34 57.58 44.35

XVI 26.02 8.93 17.86 49.49 68.11 45.66

XVII 0.00 0.75 70.90 77.99 89.93 85.07

ElSe [6]

XVIII 1.32 1.92 12.39 22.24 49.76 2.16

XIX 2.68 5.25 9.03 26.45 32.50 5.29

XX 2.18 3.73 17.93 52.37 67.65 0.94

XXI 0.54 2.41 8.09 43.54 42.61 0.01

XXII 0.64 5.91 1.98 27.93 48.66 0.21

XXIII 55.43 8.03 96.54 93.86 93.55 15.88

XXIV 0.94 1.88 44.43 45.21 52.97 1.04

LPW [32]

XXV 56.86 39.79 84.48 63.53 87.95 65.58

XXVI 48.68 19.70 41.58 29.90 69.87 24.72

XXVII 27.55 6.75 31.43 34.83 57.50 21.82

XXVIII 7.70 9.27 16.87 25.38 37.42 14.53

XXIX 6.75 0.00 8.38 19.08 22.95 13.15

XXX 11.10 13.30 63.48 53.44 84.10 38.72

XXXI 43.55 7.65 66.17 66.48 73.60 68.43

XXXII 42.17 34.32 77.68 75.32 81.00 64.22

XXXIII 35.65 30.90 56.40 60.42 61.97 45.20

XXXIV 10.42 3.65 71.23 59.00 72.65 41.62

XXXV 31.07 18.10 31.58 49.52 71.48 9.45

XXXVI 54.92 24.10 71.82 72.58 89.73 49.58

XXXVII 14.75 16.52 27.03 45.04 51.51 16.68

XXXVIII 30.25 23.50 76.07 58.60 70.50 57.52

XXXIX 27.17 8.15 37.80 44.83 53.95 43.78

XXXX 23.24 17.24 74.11 72.73 82.13 82.01

XXXXI 20.90 2.42 68.88 42.10 72.97 47.52

XXXXII 50.67 33.48 61.18 66.25 78.57 48.73

XXXXIII 11.97 3.45 24.87 21.88 54.05 2.60

XXXXIV 19.83 16.58 41.40 11.72 83.35 0.98
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Table 2 continued
Data set SET (%) Starburst (%) Świrski (%) ExCuSe (%) ElSe (%) Pupil Labs (%)

XXXXV 30.43 25.63 55.90 47.45 88.92 28.18

XXXXVI 41.60 11.85 6.48 31.23 70.00 0.83

The best performance on each data set is shown in bold

Fig. 9 Average detection rates
at different pixel distances for
all data sets. The result for each
data set is weighted by the
number of images in the
corresponding data set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

D
et

ec
tio

n 
R

at
e

Pixel Error

ELSE
EXCUSE

SET
PUPILLABS

SWIRSKI
STARBURST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

D
et

ec
tio

n 
R

at
e

Pixel Error

ELSE
EXCUSE

SET
PUPILLABS

SWIRSKI
STARBURST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

D
et

ec
tio

n 
R

at
e

Pixel Error

ELSE
EXCUSE

SET
PUPILLABS

SWIRSKI
STARBURST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

D
et

ec
tio

n 
R

at
e

Pixel Error

ELSE
EXCUSE

SET
PUPILLABS

SWIRSKI
STARBURST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

D
et

ec
tio

n 
R

at
e

Pixel Error

ELSE
EXCUSE

SET
PUPILLABS

SWIRSKI
STARBURST

(a) (b)

(c) (d)

Fig. 10 Detection rates of the algorithms ElSe, ExCuSe, Pupil Labs, SET, Starburst, and Świrski for each of the data sets described in Table 1. a
Performance on the Świrski data set. b Performance on the ExCuSe data set. c Performance on the ElSe data set. d Performance on the LPW data
set
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Fig. 11 Limitations of the state-of-the-art algorithms. a Data set XIX. b Data set XXI. c Data set XXVIII. d Data set XXIX

resent the various challenges that have to be faced when
head-mounted eye trackers are employed in such settings.
Figure 10b shows the evaluation results on the ExCuSe data
set. For this data set, ElSe is the best performing algorithm
with a detection rate of 70% at a pixel error of 5. The ExCuSe
algorithm achieves also good detection rates of about 55%,
whereas the remaining algorithms showdetection rates below
30%.

Due to the many sources of noise summarized in Table 1,
the ElSe data set contains the most challenging eye images.
The best detection rates (for a pixel error of 5) are achieved
by the algorithms ElSe (50%) and ExCuSe (35%), while the
remaining algorithms show detection rates of at most 10%.

According to the evaluation results on the LPW data set
(Fig. 10d), ElSe proves to be the most robust algorithmwhen
employed in outdoor scenarios. At a pixel error of 5, ElSe
shows a detection rate of 70%. Good detection rates (50%)
are also achieved by the algorithms ExCuSe and Swirksi,
whereas the remaining approaches have detection rates below
40%.

Figure 11 shows evaluation results for the most challeng-
ing data sets. Data set XIX in Fig. 11a is characterized by
scattered reflections, which lead to edges on the pupil but not
at its boundary. Since most of the state-of-the-art approaches

are based on the edge filtering, they are very likely to fail in
detecting the pupil boundary. In consequence, the detection
rates achieved here are quite poor.

Data set XXI (Fig. 11b) poses challenges related to poor
illumination conditions, leading thus to an iriswith low inten-
sity values. This makes it very difficult to separate the pupil
from the iris (e.g., in the Canny edge detection the responses
are discarded because they are too low). Additionally, this
data set contains reflections, which have a negative impact
on the edge lter response. While the algorithms ElSe and
ExCuSe achieve detection rates of approximately 45%, the
remaining approaches can detect the pupil center in only 10%
of the eye images. Figure 12 presents examples of success-
fully found pupils in eye images from Data set XXI. The top
row shows two input images, the middle row presents the
filtered edges, and the bottom row shows the pupils detected
by the ElSe algorithm. Among the evaluated algorithms,
only ElSe [6] and ExCuSe [5] find the pupil in these eye
images. The remaining algorithms fail due to the low con-
trast in the pupil area. More specifically, SET [8] fails, since
in the thresholding step large parts of the iris are extracted
and identified as pupil area. Świrski et al. [30] fails in the
coarse positioning step, while Starburst fails while selecting
the correct edge candidates that represent the pupil border.
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Fig. 12 Successfully found pupils by the ElSe algorithm in eye images
from Data set XXI

Fig. 13 Failure cases of ElSe on eye images from Data sets XIX and
XXVIII

The eye images contained in Data set XXVIII (Fig. 11c)
are recorded from a highly off-axial camera position. In addi-
tion, poor illumination makes it difficult to separate the pupil
from the dark regions at the eyelid areas. Both conditions
lead to overall poor detection rates. Figure 13 shows fail-
ure cases of ElSe [6] on eye images from Data sets XIX
and XXVIII. To demonstrate the challenges associated with
automated pupil detection in these images we have chosen
ElSe because it was the best performing algorithm. The left
column presents the input images to the algorithms, the sec-
ond column shows the filtered edges, the third column are
the blob responses, and the last column the results. The first
two rows contain images from Data set XIX and show the
high impact of scattered reflections (first row) and induced

Fig. 14 Failure cases of ElSe on eye images from Data sets XXI and
XXIX

curved edges by reflections (second row). In the second row,
the third image is not present since ElSe [6] did not use blob
detection. The last row shows an input image from Data set
XXVIII, where the wrong blob response is due to eyelashes.
Since the image is recorded highly off-axis, the pupil is only
marginally available.

The last challengingData setXXIX (Fig. 11d) is also char-
acterized by highly off-axial images. In addition, the frame of
the subjects’ glasses covers the pupil and most of the images
are heavily blurred. This leads to unsatisfactory responses
from the Canny edge detector. In consequence, the detection
rates are very poor, e.g., ElSe (the best performing algorithm)
can detect the pupil in only 25% of the eye images. Figure 14
shows failure cases of ElSe [6] on eye images from Data sets
XXI and XXIX. The left column presents the input images,
the second column shows the filtered edges, the third column
is the blob responses, and the last column the results obtained
with the ElSe algorithm. The blob response of ElSe [6] in the
top row is distracted by the high surface difference of the light
shadow at the lower eyelid and the bright skin below it. For
Data set XXIX, the main pupil recognition problems arise
due to the bright eyeglasses frame, which distracts the blob
response. In the above failure cases, further improvements in
automated pupil detection could come from explicitly con-
sidering additional eye-related features such as eyelids and
eye corners.

5 Conclusions

Wepresented a reviewof state-of-the art pupil detection algo-
rithms for application in outdoor settings. The focus was
primarily on the robustness of these algorithms with respect
to frequently and rapidly changing illumination conditions,
off-axial camera position, and other sources of noise. Six
state-of-the-art approaches were evaluated on over 200,000
ground-truth annotated images collected with different eye
tracking devices in a range of different everyday settings.
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Our extensive evaluation shows that despite good average
performance of these algorithms on these challenging data
sets, there are still problems in obtaining robust pupil centers
in case of reflections or poor illumination conditions.
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