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Abstract This paper focuses on human action recognition
in video sequences. A method based on optical flow estima-
tion is presented, where critical points of this flow field are
extracted. Multi-scale trajectories are generated from those
points and are characterized in the frequency domain. Finally,
a sequence is described by fusing this frequency informa-
tion with motion orientation and shape information. This
method has been tested on video datasets with recognition
rates among the highest in the state of the art. Contrary to
recent dense sampling strategies, the proposed method only
requires critical points of motion flow field, thus permitting
a lower computational cost and a better sequence descrip-
tion. A cross-dataset generalization is performed to illustrate
the robustness of the method to recognition dataset biases.
Results, comparisons andprospects on complex action recog-
nition datasets are finally discussed.
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1 Introduction

1.1 Context

Recognizing human actions in video sequences has recently
gained increasing attention in computer vision. Its goal is
to discriminate different actions of one or several subjects
in a video sequence, using algorithmic methods trained on
labeled video sequences. The research domain is driven by a
growing number of applications in a large set of areas. Recent
video-surveillance systems integrate automatic intrusions
detection or potential acts of violence. Action recognition
is also present in classification of video database by auto-
matic annotation of human actions. For example, one can try
to retrieve in a database of soccer matches different video
sequences where a technical movement is performed by a
specific player. Action recognition is also found in human–
machine interaction applications, like programs which help
to prepare a recipe by recognizing actions executed by the
user. Motion crowd analysis, facial expression recognition
and many other applications illustrate the need for analyzing
and recognizing daily activities.

1.2 Recognition of human actions: an active research
topic

Action recognition is encouraged by a growing demand of
applications, bringing new challenges to tackle. This is the
reason why this domain is still an active research topic with
relevant problems in computer vision. In real world, video
sequence acquisition is generally unconstrained. It is com-
mon rule to find occlusions, changing viewpoints, untimely
fast illumination and camera motions. It is clear that visual
data resulting fromdifferent video sequences of a same action
would present huge variability.
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The action recognition task also suffers from semantic issues.
Indeed, actions like “open a door” and “open a bag”
can be considered as two different action classes, but they
illustrate the same concept of action. Moreover, spatial
context where actions are performed can be the most dis-
criminant feature for action recognition (“play piano”
and “play guitar” actions can completely be discrimi-
nated by visual information about the musical instrument).

Popularization ofmobile camera phone in recent years and
democratization of video as a media support has increased
dramatically the amount of video data. Thus, 30 % of inter-
net traffic is generated by video data. YouTube, for example,
receives 100 hours of video every single minute. Facing this
challenge, recent databases include a huge amount of infor-
mation (more than two million frames for UCF-101 [41])
and several action classes to discriminate. They are still chal-
lenging for some state-of-the-art methods, for instance when
involving corporal movements, behavior actions, or actions
of short duration with high visual context correlation (e.g.
the action “smoking”).

Current researches are, therefore, dedicated to build robust
and effective methods to deal with such actions. Improv-
ing computational complexity is also an issue to be able to
process an expanding amount of data.

For all these reasons, action recognition task in video
sequences has become one of the most active and challeng-
ing issues in computer vision, and numerous methods have
been developed recently.

1.3 State of the art on action recognition

Different models have been studied for action recognition,
and most methods are based on a global representation using
a single feature vector.

The local approach used in document or image retrieval
context has proven its efficiency compared to more global
approaches. It consists in detecting features for selecting
interest points or regions in video sequence being discrim-
inative of an action. Descriptors are then computed around
these interest points to characterize the video. The sequence
is then represented by a collection of local feature vectors. In
the final stage, a classification process trained on a labeled
database allows to recognize actions present in the video.

Themain differences between action recognitionmethods
are in the feature extraction phase, their descriptors and the
way they are used in the classification process.

The first approaches of feature extraction in video sequen-
ces are based on sparse representation methods from the
image retrieval and classification paradigm. They result from
temporal extension of 2D interest point detector. [22] was
the first to extract spatio-temporal points (STIP) by propos-
ing a temporal extension of the Harris–Laplace 2D detector
[10]. It detects points where the local neighborhood has a

significant variation in space (corner) and also in time (fast
displacement). STIP is still a usual method today, and the
framework proposed by Laptev has been applied in several
recent approaches. Harris 3D shows good results on con-
strained video datasets. However, its assumption of high
variation in time of spatial corners describes only a cer-
tain type of temporal variation in video sequences. It also
uses several parameters which have to be fit to maximize the
detection performance.Moreover, experiments show that it is
inefficient onmore complexmovements like behavior actions
[6].

In [6], Dollar et al. provide a method for analyzing actions
with the cuboid detector and descriptor. The cuboid detector
is obtained by applying a 2D gaussian in the spatial domain
and a pair of 1D Gabor wavelets in the temporal domain.
The response obtained by this detector is significant for peri-
odic movements and actions, like facial expressions. Authors
introduce the cuboid descriptor containing gradient and opti-
cal flow information around the interest points. This process
is fast to implement and improves results on certain datasets
[51]. It is still used in recent methods as an efficient sparse
approach to detect local perturbations in video sequences
[34]. Furthermore, this method is efficient for movements
with strong periodicity. It has been experimented on datasets
where periodical movements do not represent realistic situa-
tions (KTH [36]). The authors also make the assumption of
an acquisition with a fixed camera, which limits the perfor-
mance of the method on unconstrained video datasets.

In [55], Willem et al. extend the SURF 2D detector in the
temporal domain and detect saliency by using the determi-
nant of the 3D Hessian matrix. Its computational efficiency
results from the use of the so-called integral video.

Nevertheless, experiments show lack of performance of
sparse representation methods on recent databases. [51]
illustrate how dense sampling outperforms the sparse rep-
resentation strategy, especially for realistic videos.

Recent authors focus their researches on dense sampling
approaches chiefly with temporal motion models such as tra-
jectories.

In [51], Wang et al. use a dense sampling approach at dif-
ferent scales to obtain interest points. The dense approach
shows better results compared to state-of-the-art sparse
approaches. Laptev et al. [23] propose an improvement of
their previous framework by avoiding scale selection in the
optimization of the STIP detection. The goal is to compute
spatio-temporal points at different scales to maximize the
number of features and to bemore efficient on realistic human
actions from movies. The authors also present a method for
automatic action labeling and recognition based on movie
scripts.

Wang et al. [49] use dense sampling and add a temporal
extension by tracking points at regular time intervals. The
use of trajectories enables to capture more temporal infor-

123



An efficient and sparse approach for large scale human action recognition in videos 531

mation (2.6 % of gain compared to information contained
in a cuboid of same length) and this approach shows better
results on realistic videos. This method has been improved
using human person detection and cameramotion compensa-
tion by estimation of homography parameters between two
consecutive frames [52]. Since then, several methods have
retained this approach for the action recognition task in real-
istic video sequences. Raptis et al. [33] propose the tracklet
descriptor, which encodes descriptor features along trajec-
tories estimated by tracking salient points. Ullah et al. [47]
cluster trajectories coming from body part movements, esti-
mated on synthetic dataset, to retrieve actions on generic
video sequences. Vrigkas et al. [48] extract motion curves
with the optical flow field. Actions are represented by a
Gaussian mixture model by clustering the motion curves
of every video sequence. When using PCA on the motion
curves to force them tobeof equal length, thismethod reaches
among the highest recognition rates on well-known datasets
(KTH [36], UCF-11 [25]).

However, each exposed method based on dense fea-
tures suffers from the same drawback: the dense sampling
approach leads to huge computational time and massive
amount of data. The sustainability of dense sampling strate-
gies can be questioned by the increasing amount of data
included in the recent databases and the development of real-
time action recognition applications.

Some authors are addressing this problem by providing
methods to reduce the number of features used to characterize
a video sequence.

In [37], Raptis et al. show that using a fixed number of
features, selected in a dense set, achieves results close to
those obtained in recent publications. With a dense sampling
approach, features are randomly extracted every 160 frames.
A total of 10k features are kept. This allows to keep more
points on finer grid scales and to control their number. Results
obtained on HMDB51 [20] dataset give a gain of 1 % com-
pared to the state-of-the-art dense strategies, but it is still far
behind on other large datasets like UCF-50 [34].

Murthy et al. in [26] propose a method which selects few
dense trajectories to reduce the amount of data. Authors
match similar trajectories and merge them into a new
sequence of points, called ordered trajectories. With half less
trajectories and the same parameters, this method allows to
obtain on the UCF-50 dataset [34] a slightly better recogni-
tion rate than the classical dense trajectories approach (gain
of 0.5 %). However, the matching step also requires an
extraction of dense trajectories which does not reduce the
computation time nor avoids the dense trajectories storage.

Although methods of feature reduction provide improve-
ments on recognition rates, the number of features generated
is still high compared to some sparse approaches (10 or 20
times more than in average) and the computation time is
expensive. Though dense cuboid and dense trajectoriesmeth-

ods outperform sparse trajectories approaches (like the SIFT
trajectories method), the relative gain is not outstanding. In
fact, the temporal information of trajectories is not fully
exploited in most state-of-the-art methods. Indeed, informa-
tion extracted along trajectories or voxels is typically the
same [26,33,49]. While sparse representation methods pro-
vide a better computation time and less complexity, they
also cumulate substantial drawbacks, (i.e. a large number
of parameters to tune, and are not efficient enough to analyze
realistic video scenes). Similarly, dense strategies show effi-
ciency on generic video datasets but become too expensive in
storage and data processing, which is problematic for large
datasets and real-time applications.

The most recent approaches are tackling human action
recognition in large-scale dataset using deep convolutional
network. Deep learningmethods provide a significant impro-
vement for several computer vision problems such as object
recognition [19], facial recognition [7] or image classifi-
cation [38]. These methods have recently been applied for
human action recognition. Features from convolutional neu-
ronal network (CNN) allow to treat large dataset and reach
very good results on recent datasets of the literature. Recent
architecture proposed in the literature reflect the advances
made on this domain [11,27,39,53].

In the following work, we have made the choice to char-
acterize actions in video based on movement informations.
Optical flow is a common way to estimate the movement
in video sequences. The estimated motion field permits to
analyze with precision different spatial and temporal char-
acteristics at different motion scales. Information brought
by intrinsic motion allows to perform well on realistic and
unconstrained videos while lowering complexity and the
number of generated features.

1.4 Main contributions of the paper

In this paper, we attempt to answer this question: “how to get
a better exploitation of the movement in video sequences to
enhance the discrimination task while keeping a low amount
of data ?”

An approach based on the optical flow estimation is pre-
sented. It extracts robust interest features, such as critical
points of the flow field, without any additional parame-
ters. Trajectories are estimated from these critical points and
are described in the frequency domain using Fourier trans-
form coefficients. Frequency information of motion is not
often used for action recognition. However, its rigorous use
brings out different characteristics of movement, especially
actions with multiple frequency intervals. The complemen-
tary of motion frequency with shape and motion orientation
of movement in action analysis is also shown, all three com-
ponents being weakly correlated. We reach among the best
recognition rates of the literaturewhile keeping a low compu-
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tational time due to the analysis of only relevant points from
the optical flow. An efficient way to add a camera motion
compensation using the optical flow without extra computa-
tion process is presented.

This paper is structured as follows: Sect. 2 describes the
estimation of critical points from the optical flow. It also
details multi-scale trajectories extraction and the camera
motion compensation approach. Sect. 3 presents the descrip-
tors used for these different features and details benefits
of Fourier coefficients to characterize multi-scale trajecto-
ries. It also describes the bag of features approach used to
combine all three components of movement as well as a
boostingmethod. In Sect. 4, experimental results on different
types of datasets are presented and a comparison with differ-
ent state-of-the-art methods is performed. The performance
brought by each features is also analyzed. The genericity of
the method is assessed with a cross dataset generalization
experiment.

2 Critical points and their trajectories

2.1 Critical points of a vector flow field

Optical flow estimation is used to characterize actions per-
formed in video sequences. Several optical flow estimation
methods exist [15,54]. We have focused on the optical flow
estimation provided by Sun et al. [44] which is based on the
Horn and Schunck approach. It has very good performance
on different datasets such as MiddleBury [1] and Sintel [56].
Figure 1 illustrates results obtained with this method (row c),
compared to other methods from the literature. The method
accuracy with respect to the ground truth can be observed
near motion borders.

For each frame of the sequence, the flow field is sep-
arated into two components, curl and divergence. Being
Ft = (ut , vt ) an optical flow field, with ut and vt being
the horizontal and vertical components, curl and divergence

Fig. 1 Optical flow comparison between three examples from the Sin-
tel dataset. aGround truth; bHorn and Schunk; c Sun et al.; dDeepFlow

Fig. 2 Critical points of typical flow fields : vortex, whirl, attractive
and repulsive point

are defined as follows:

Curl(Ft) = ∇ ∧ Ft = ∂vt

∂x
− ∂ut

∂y

Div(Ft) = ∇ · Ft = ∂ut
∂x

+ ∂vt

∂y

Curl and divergence of the flow are two characteristics
related to the evolution in time of the vector field:

– Curl gives information on how a fluid may rotate locally.
– Divergence represents to what extent a small volume
around a point is a source or a sink for the vector field.

Extrema of these components are correlated with certain
critical points of the flow (swirl points, attractive and repul-
sive points). These critical points correspond to local area
with high deformation of the flow field which are potentially
related to human movements (Fig. 2).

2.2 Extraction of multi-scale trajectories

2.2.1 Trajectories of critical points

To go beyond the STIP concept, trajectories of optical flow
critical points are computed using the dense trajectories
methods of [49]. This method shows high performance com-
pared to other methods. Given an optical flow field Ft =
(ut , vt ), position of a point Pt = (xt , yt ) at frame t is esti-
mated at t + 1 as follows:
Pt+1 = (xt+1, yt+1) such that
Pt+1 = (xt+1, yt+1) = (xt , yt ) + MedFt (V(xt ,yt ))

with MedFt , a spatial median filter applied on Ft at V(xt ,yt )

a neighborhood centered on Pt .
Trajectories due to irrelevant movements in the video

sequence are then removed and only trajectories of interest
points are kept.

2.2.2 Characterization of multi-scale trajectories

To analyze different frequencies of movement, a multi-scale
approach of our method is proposed. The goal is to esti-
mate critical points and their trajectories at different spatial
and temporal scales. A spatio-temporal dyadic subdivision
is performed on video sequences with a gaussian kernel, to
suppress high frequencies in space and time. Optical flow is
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Fig. 3 Example of extracted multi-scale trajectories

estimated on each sub-sequencewhich corresponds to a scale
of the pyramid. Thisway, critical points corresponding to dif-
ferent scales are extracted. Because of the dyadic subdivision
in time, trajectories have the same length and characterize,
at each scale, different frequencies of movement. Fast move-
ments with high frequencies in the first scale, slower motions
with lower frequencies as the scale increases.

With this approach, trajectories are computed in a larger
interval of frequency of movement. A better analysis and a
better characterization of movements contained in video is
obtained. Figure 3 illustrates such multi-scale trajectories.

2.3 Camera motion compensation

Keeping low error estimation of the trajectory position in
time is the main difficulty of the trajectorie estimation step.
In unconstrained video, this problem can be more complex,
due to multiple camera motion that may impact trajectories
estimation process.

The emergence of datasets which contain video sequences
without acquisition constraints enhances the importance of
camera motion compensation for action recognition. Among
the existing strategies to address this problem, Wang et al.
[52] assume that two consecutive frames are related by a
homography. The estimation of the homography parameters
between two consecutive frames is performed using SURF
features for matching these frames, as they are robust to
motion blur. This process gives a 2.6 % gain on the UCF-
50 dataset with a recognition rate of 91.2 % (Table 2). In
return, this approach adds a significant complexity using an
ad hoc human detection process and a RANSAC method for
estimating the homography.

Jain et al. in [13] suppose that movement can be separated
in two parts, the dominant motion due to camera motion and
the residualmotion related to actions.Thedominantmotion is
extracted by estimating the 2D affine motion model between

two consecutive frames. The compensation is obtained by
subtracting the estimation of affinemotion flow from the esti-
mation of optical flow. This method shows good results on
recent human action datasets. However, it implies the compu-
tation of two flow fields, the optical flow field and the affine
flow, related to camera motion information.

The method presented here allows a compensation for the
dominant motion but avoids the computation of an additional
flow field.

2.3.1 Global motion estimation by a pyramidal approach

Tominimize the effect of cameramotionwhile keeping a low
computation time and avoiding ad hoc methods, we exploit
the optical flow already estimated in Sect. 2.1. More pre-
cisely, we will use a pyramidal estimation of the optical flow
to compensate the globalmotion of the camera. The displace-
ment field at time t between two scales I L and I L+1 of the
pyramid is such that

FL
t = E2

(
FL+1
t

)
+ f

([
I Lt + E2(F

L+1
t )

]
, I Lt+1

)
,

0 ≤ L < 4, being a level of the pyramid, E2 an upsampling
operator of factor 2, and f the estimated optical flow between
two consecutive frames.

At maximal scale L , the estimated vector flow field corre-
sponds to the largest movements in the video sequence due to
the camera movements. Small movements are not generally
included in this flow. This “global motion” flow is used in
the same way as the dominant flow of [13]. Finally we obtain

F0
comp = F0

original − FL
original

with F0
original the original optical flow estimation of the

sequence, FL
original the original optical flow at the last level

L of the pyramid, which represents global camera motion.
F0

comp is the optical flow estimation of the sequence with
camera movement compensation.

Figure 4 illustrates the result of this method on a video
sequence from UCF-11. From the second to the fourth col-
umn, the color represents themotion orientation between two
consecutive frames. The second column corresponds to the
F0

original vector flow field which contains a large amount
of pixels with the same angular displacement, related to a
camera translation. The third column shows the computa-
tion of FL

original , which only keeps the dominant motion
present in the sequence and does not take into account the
player movements. The fourth column illustrates the F0

comp

flow field which permits to retrieve the original motion ori-
entation and intensity of the players by compensating camera
movements. Table 2 shows the improvement of the trajectory
descriptor.
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Fig. 4 First column four consecutive frames with a lateral camera
movement on the first three frames; second column optical flow esti-
mation F0

original ; third column global flow estimation FN
original ; fourth

column camera movement compensation F0
comp

The estimation of the global motion of the camera is car-
ried out directly during the estimation of the optical flow.
This method thus allows motion compensation without any
additional computational time.

3 Descriptors computed from critical points and
their trajectories

3.1 Trajectories descriptors based on Fourier transform
coefficients

3.1.1 Frequency analysis of trajectories

A robust action recognition method should extract descrip-
tors with low intra-class variability by ensuring invariance to
different kinds of transformations. Here,multi-scale trajecto-
ries obtained are described by Fourier transform coefficients.

The choice of Fourier coefficients is motivated by invari-
ances to certain geometric transformations (translation, rota-
tion and scaling), which are natural in the frequency domain.
Figure 5 illustrates these invariances.

3.1.2 Invariance of the proposed descriptor

Given a trajectory TN with N sequential points
TN = [P1, P2, . . . , Pt , . . . , PN ]
Pt being a point of the trajectory at position (xt , yt ).

The Fourier transform of trajectory TN is
T F[TN ] = [X0, X1, . . . , Xk, . . . , XN−1] with:
Xk =

N−1∑
n=0

e
−i2πkn

N · Pn , k ∈ �0, N − 1�

Fig. 5 Different geometric transformations applied on the original tra-
jectory. The same values are obtained for the FCD descriptor

To obtain translation invariance, the mean point value on
this trajectory TN is subtracted to each point (xn, yn).

x̃n = xn −
N∑
t=1

xt
N

et ỹn = yn −
N∑
t=1

yt
N

To obtain rotation invariance, trajectories TN are consid-
ered as complex number vectors:

TiN = [Pi1, Pi2, . . . , Pit , . . . , PiN ]

with Pit = x̃t +i ỹt being the complex representation of point
Pt . For a trajectory Tθ i N which represents a rotation by θ of
the initial trajectory TiN , the modulus of the Fourier trans-
form of Tθ i N and TiN are equal, giving rotation invariance.

Scale invariance is insured by normalizing the Fourier
transform with the first non-zero frequency component:

X̃k = Xk

|X0| , k ∈ �0, N − 1�

Finally, descriptors based on the Fourier coefficients (FCD)
are
FCD[TiN ] = [|X̃0|, |X̃1|, . . . , |X̃k |, . . . , | ˜XN−1|],
k ∈ �0; N − 1� with

Xk =
N−1∑
n=0

e
−i2πkn

N · Pin, k ∈ �0, N − 1�
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As all trajectories have the same size N , the FCD descriptor
is also of fixed size.
Trajectories are finally smoothed by removing Fourier coef-
ficients corresponding to high frequencies, which are assim-
ilated to noise or tracking drift. This process improves
robustness with respect to small motion perturbations.

3.2 Critical points descriptor based on shape variation
and orientation of movement

To characterize critical points, we use HOG and HOF
descriptors [23].HOGdescriptor (histogramof 2Dgradients)
is based on the 2D gradient around critical points and char-
acterizes the shape information of local movements present
in the video sequence.
HOF descriptor (histogram of orientation of optical flow)
encodes the local optical flow field orientation around criti-
cal points. This descriptor has proven its performance in the
action recognition task.
Both characteristics, associated with frequency information
brought by the FCD descriptor, are highly relevant informa-
tion and have the benefit of sharing weak correlation.
HOGis basedon the spatial gradient of the image,HOFcorre-
sponds to the optical flow estimation and FCD characterizes
the different frequencies of movement along the sequence.
To take advantage of their low correlation, these features are
combined with a late fusion approach in the classification
task, which is detailed thereafter.

4 Evaluation of the method

To evaluate the method, we use four datasets from the
literature: two with video captured in constrained condi-
tions (static camera, homogeneous background,. . .) and two
composed of realistic movie-clip, from YouTube or movie
films.

4.1 Database used

4.1.1 The KTH dataset

The KTH dataset [36] consists of six human action classes:
Walking, Jogging, Running, Boxing, Waving and
Handclapping. Each action is performed several times by
25 subjects with four different scenarios. All sequences were
shot with homogeneous backgrounds and a static camera.

4.1.2 Weizmann dataset

The Weizmann dataset [9] is a collection of 90 video
sequences captured with the same constraints and with no

camera motion. There are ten different actions, some being
similar like Jack, Run, Skip, Side.

4.1.3 UCF-11 dataset

The UCF-11 dataset [25] contains unconstrained realis-
tic videos from YouTube. It is a challenging dataset due
to large variations in camera motion, object appearance
and pose, object scale, viewpoint, cluttered background,
illumination conditions, etc. There are 11 action cate-
gories: Basketball shooting, Biking/cycling,
Diving, Golf swinging, Horse back riding,
Soccer juggling,Swinging,Tennis swinging,
Jumping, Spiking and Walking with a dog.

4.1.4 Olympic sport dataset

The Olympic sports dataset [28] contains videos of athletes
practicing different sports. It contains 16 actions class per-
formed in realistic condition of acquisition. This dataset is
one of the most challenging sport dataset in the literature.

4.1.5 UCF-50 dataset

The UCF-50 dataset [34] is an extension of UCF-11 with 50
action categories, consisting of realistic videos taken from
YouTube.

4.1.6 HMDB-51 dataset

The HMDB-51 dataset [20] is a large and recent dataset of
videos fromvarious sources (movies, archives,YouTube,. . .).
It contains 6849 clips divided into 51 actions categories. This
dataset is one of the most challenging for action recognition.

4.2 Experiments

4.2.1 Vector quantization

An important step after feature extraction is vector quantiza-
tion. We have used two methods (bag of features and Fisher
vector) to perform quantization and test them in the classifi-
cation process.

Bag of Features approach

The first method used for feature quantization is the bag of
features (BoF) approach [24]. This approach was used ini-
tially for the document retrieval task. It is now commonly
used for image classification and for action recognition in
videos. It assumes that a video can be describedwith a dictio-
nary of “visual words”. This dictionary is built by clustering
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Fig. 6 Example of channels (from [23]). The 1x1t1 grid refers to the
standard BoF representation. 1x1t2 corresponds to a temporal subdivi-
sion in two cells, while h3x1t1 corresponds to a horizontal subdivision
in three cells and o2x2t1 a horizontal and vertical subdivisions over-
lapping in the center

the set of features computed on the database, generally by a
k-means algorithm.
The obtained centroids constitute the “visual words” of the
dictionary. A feature vector is then represented by its clos-
est word (in the Euclidean distance sense). Finally, a video
sequence is represented by an occurrence histogram of visual
words of the dictionary.
In addition to the traditional approach, we have integrated the
multi-channel method. Introduced by [23], it allows a more
localized approach by computing a spatio-temporal bag of
features. The video is subdivided following a particular grid
structure. The bag of features approach is computed on each
cell. Finally, the histogram of the video sequence, associated
with the grid structure, is the concatenation of all histograms
of its cells.
Each grid structure is called a channel. Figure 6 illustrates
different channels with their cells highlighted with different
colors.
The spatio-temporal bag of features approach uses different
channels to combine more local information.

Fisher vectors approach

The other method used for feature quantization is the Fisher
vectors approach (FV). It takes into account a wider set
of information compared to the BoF approach. The Fisher
vectors method encodes first- and second-order statistics
between video features and a Gaussian mixture model
(GMM). This approach is one of the state-of-the-art features
encoding method for image classification and human action
recognition.
In our experiments, we have used this quantization on the
HMDB-51 dataset to be able to fairly compare with other
state-of-the-art methods.We have used the same set of Fisher
vectors parameters as Wang et al. [52]: the number of Gaus-
sians in the GMM is set to K = 256, a subset of 200,000
features from the training set is used and L2-normalization
is applied to the Fisher vectors as in [30].
The Fisher vectors are computed on each descriptor (FCD,
HOG and HOF). Finally, a video is represented as the con-
catenation of the Fisher vectors obtained on each associated
feature.

4.2.2 SVM classification

A supervised SVM classification [5] is finally performed on
the obtained quantized features. We use a multi-dimensional
gaussian kernel to establish a distance between video
sequences represented by several histograms from different
channels [57]. This kernel is the RBF kernel, defined as fol-
lows:

KRBF (xi , x j ) = exp

(
−

∑
c∈C

1

Ac
D(Hc

i , Hc
j )

)
, (1)

where Hc
i and Hc

j are, respectively, the histograms of videos
xi and x j and correspond to a channel c. D(Hc

i , Hc
j ) is the

χ2 distance and Ac is a normalizing coefficient. The classi-
fier is trained on each descriptor. We then use the fusion of
estimated probabilities obtained by the SVM classification
from each descriptor by the multi-class Adaboost algorithm
[12]. It allows an efficient exploitation of the complemen-
tarity between the characteristics. Recent researches have
shown the efficiency of this late fusion in the action recogni-
tion task [29].

For action recognition datasets with high amounts of
action classes andvideo sequences such asUCF-11 andUCF-
50 a linear kernel is used in the SVM to reduce computation
time [8]:

KLinear (xi , x j ) = (HC
i )T HC

j , (2)

where HC
i and HC

j are the concatenation of all histogram
channels in the setC . TheBoF approach ensures a sparse rep-
resentation of the video sequence. Linear kernel is efficient
for sparse data with high-dimensional features. The compu-
tation time is then lower than a non linear kernel. Another
advantage is that a linear kernel allows to compute BoF with
larger codebook size.

4.3 Results

Results of the method on the different datasets previously
introduced are exposed in Table 1.

4.3.1 Parameters of the method

The method uses very few parameters. They are

– Cp, the number of critical points.
– N , the size of trajectory.
– C , the channel structure
– s, the number of spatio-temporal scales for the multi-
scale trajectories approach.
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Table 1 Summary of different
recognition rates obtained on
various datasets (in %)

KTH Weizman UCF-11 UCF-50 Olympic sport HMDB51

FCD 85.47 90.12 66.42 53.58 51.15 6.76

HOG 91.98 92.59 86.98 84.88 65.85 41.14

HOF 91.98 95.06 74.43 73.80 60.86 32.46

Combined 95.32 100 89.99 88.30 65.98 49.60

Table 2 Summary of
recognition rates with the
multi-scale parameter s and the
camera compensation on
UCF-11 dataset (in %)

UCF 11 s = 1 s = 3 Camera compensation + s = 1 Camera compensation + s = 3

FCD 53.50 57.42 64.05 66.42

HOG 80.34 84.53 83.34 86.98

HOF 70.06 74.34 74.06 74.43

Combined 82.07 86.98 87.89 89.99

N has been fixed to 16 frames for each database. The
influenceof the variationof parameter s on the databaseUCF-
11 has been studied and detailed in Table 2.

4.3.2 Discussion of the results

The recognition rates of our approach are presented in Table
1 for each dataset. The gain obtained with the late fusion
Adaboost illustrates the complementarity of the chosen char-
acteristics (3.88 % of mean gain on all datasets).

Experiments show that among these parameters, C and
Cp are the main parameters impacting recognition rate. The
number of spatio-temporal scales for trajectories helps to
improve the recognition rate on realistic videos datasets,
where the frequency information is much richer than on con-
strained videos. For the FCD descriptor, the increase from
one to three spatio-temporal scales improves the results by
3.92 %. The HOG descriptor shows good results on generic
video datasets (UCF-11,UCF-50). The spatial context is very
relevant for some actions that are performed in awell-defined
framework, especially for objet-interaction actions or sport
actions.

The influence of the camera motion compensation stage
is presented in Table 2. Motion compensation has been com-
puted for two cases: s = 1 and s = 3. On the UCF-11
dataset which contains video sequences with camera motion,
the gain for the FCD is 10.55 % with s = 1 and 8.83 %
with s = 3. This result shows the importance of camera
motion compensation in the trajectory estimation stage. The
increased performance of the method when using compensa-
tion before computing HOG and HOF descriptor shows that
the estimated optical flow of the video sequence is more reli-
able. Critical points related to movements are better located
and the information encoded by HOF descriptor is less dis-
turbed and more relevant. With the best setting, the global
gain with cameramotion compensation is 2.1% for theUCF-

Table 3 Mean features per frame ratio for UCF-50 dataset

Method Wang et al. Shi et al. Our approach

Features/frame 230 65.3 70.6

% 91.2 83.3 88.3

11 dataset. We reach a recognition rate of 89.99 %, one of
the best in the literature for this dataset (Table 4).

4.3.3 Comparison with the state of the art

For the different datasets used, the approach proposed is com-
pared with other methods of the literature in Tables 4 and 5.
Table 3 shows the number of features per frame generated by
our method on the UCF-50 dataset compared to method of
[50] and [37]. It gives an indication of the number of features
to generate to achieve a given recognition rate.

Shi et al. [37] propose a random selection of 10k features
from a dense sampling strategy. Wang et al. [50] have one of
the best recognition rates in the literature but generate a very
high number of features. Moreover, it uses 8 spatial scales of
trajectories and 30 channels of bag of features. 15 % of the
execution time in this method is dedicated to data storage.
Murthy et al. [26] compare the number of features per frame
generated by the proposed method to the one of [50] after
the step of ordered trajectories. When using one channel and
trajectories of 15 frames, it uses 1.85 time less trajectories
(11,657 versus 21,647 features). Referring to the features per
frame rate of [50], it would give an average of 124.32 for [26]
on the UCF-50 dataset with a recognition rate of 87.3%. For
the UCF-50 dataset, our method uses 1200 critical points per
scale and per channel, which gives a total of 10,800 points
per video sequence and a features/frame of 70.6. The slight
improvement obtained by the best methods compared to our
approach (see Tables 4 and 5) has to be put into perspective
with the significant increased complexity.
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Table 4 Summary of different recognition rates obtained on various datasets (in %)

KTH Weizmann UCF-11 UCF-50 Olympic sport

Dollar et al. 89.1 [6] Gorelick et al. 97.8 [9] J. Liu et al. 71.2 [14] Murthy et al. 87.3 [32] Laptev et al. 62.0 [28]

Laptev et al. 92.1 [23] Blank et al. 99.6 [3] Wang et al. 85.4 [49] Wang et al. 91.2 [52] Tang et al. 66.8 [45]

Wang et al. 94.2 [49] Vrigkas et al. 100 [48] Reddy et al. 87.1 [34] Bilinski et al. 92.1 [2] Niebles et al. 72.1 [28]

Vrigkas et al. 98.3 [48] Wang et al. 100 [52] Vrigkas et al. 95.1 [48] Lan et al. 94.4 [21] Li et al. 78.2 [53]

Our approach 95.3 Our approach 100 Our approach 89.9 Our approach 88.3 Our approach 65.9

Table 5 Summary of different recognition rates obtained onHMDB-51
(in %)

HMDB-51

Simonyan et al. [39] 59.4

Wang et al. [52] 57.2

Jain it et al. [13] 52.1

Our approach 49.6

Wang et al. [49] 46.6

Srivastava et al. [42] 44.1

Jiang et al. [14] 40.7

Can et al. [4] 39.0

Kliper-Gross et al. [18] 29.2

Solmaz et al. [40] 29.2

Sadanand et al. [35] 26.9

Kuehne et al. [20] 23.0

Kuehne et al. [20] 20.0

For the HMDB51 dataset, the global recognition rate
obtained is 49.6 %. As can be seen in Table 5, the proposed
approach performs reasonably well compared to other meth-
ods1. Specifically, it outperforms well-known approaches
based on local features such as [14,49], or on global fea-
tures such as GIST [40] and action Bank [35]. As a matter
of fact, it provides one of the best classification results
among handcrafted features based methods in this dataset.
Only very recent approaches based on convolutional neu-
ronal network [39] surpass it by a vast margin. However,
some observations could be done to explain the weakness
of the proposed method relatively to such approaches and
to provide a guideline to significantly increase classification
rates. One explanation is that FCD descriptors do not per-
form well on this dataset mainly because of the great number
of shot transitions in many of the videos of the HMDB-51
database. This introduces perturbations in the optical flow
estimation process and makes trajectories estimates all along
the sequences difficult. A temporal segmentation of videos
by some cut detection algorithm would certainly be rele-
vant as a preprocessing stage before applying our algorithm.

1 See also: http://serre-lab.clps.brown.edu/resource/hmdb-a-large-
human-motion-database/.

Second, it can be observed that, in this dataset, a high propor-
tion of actions does require few temporal information to be
recognized. This observation was also made on large video
datasets such as Sports-1MDataset [16]. Authors have found
thatmotion information provided by a convolutional network
leads to a gain of only 1.6 % compared to a single-frame
model. They suggest that in large-scale dataset, methods
using static information descriptors such as HOG can reach
a good recognition rate without the need of temporal and
motion descriptors. It can be observed that in the case of
the proposed method, HOG remains the best descriptor in
terms of recognition rate. As a consequence, classification
rate could be improved if more static, single frame based
descriptors were used in the process.

4.3.4 Computation time

Results presented in our method have been computed using
Matlab running on a workstation with 2 Quadcore CPU at
3.1 GHZ and 24 GB RAM. It takes 2.03 s/frame to compute
the optical flow and 1.71 s/video to process the features. We
have performed in Fig. 7 an analysis of the computation time
for each step of the method.

We are using an optical flow estimation method based on
the Horn and Schunk model proposed by Sun et al. [44].
Most of the computation time is spent for the optical flow
computation, and improving this step by implementing it on
GPU is part of our future work. The feature extraction and
description steps, which constitute the main innovative parts
of our work, are the fastest steps.

4.3.5 Cross-dataset generalization

In this section, an original way to evaluate the genericity
of our method is introduced. Our experiments are based on
recent studies of Efros et al. [46]. The initial goal of this
work is to highlight the visual bias contained in some state-
of-the-art recognition datasets. This issue is very important
in pattern recognition but largely neglected in the literature.
Datasets are collected for representing an information as var-
ied and rich as possible to mimic the real world. But in
practice, they appear to contain representation biases due
to the way that they are built. Authors point out different
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Fig. 7 Proportions of computation time for each step of the method

causes of these visual biases: selection bias (data sources),
capture bias (constraints of acquisition, habits of capture),
negative set bias (the representation of the rest of the real
world).

Authors in [46] try to answer this question: how a classi-
fier trained on one dataset generalizes when tested on other
datasets, compared to its performances on the “native” test
set?

In the context of action recognition, this methodology is
used to evaluate the genericity of the presented approach.
The purpose is to see how it characterizes and generalizes
human actions while being robust to visual biases contained
in each datasets. For this experiment we have picked up four
popular databases; the KTH and Weizmann datasets (videos
with acquisition constraints), UCF-11 andHDMB51datasets
(generic videos). We consider the walk and wave action
classes, which are common to all chosen datasets (note that
for UCF-11, wave action is represented by golf action
class which is the closest action for representing a hand
wave).

The experimental protocol is based on Efros et al. [46].
The method is trained with 200 positive and 200 negative
examples for each dataset (oversampling has been performed
on datasets which contain a too small amount of data). The
test was performedwith 100 positive and 100 negative exam-
ples from the other datasets. This proportion was chosen by

considering the one ofEfros et al.which uses a smaller test set
than the train set.We also take into account the fact that video
dataset contains much less examples than image datasets.
The goal of this work was to observe the difference in per-
formance between train and test datasets.

Tables 6 and 8 expose the obtained results. Table 8 exposes
the obtained results. Rows correspond to training on one
dataset and testing on all the others. Columns correspond
to the performance obtained when testing on one dataset and
training on all the others. As observed in [46], the best results
are obtained when training and testing on the same dataset
(94.7 % in average for walk and 95.1 % for wave).

Weizmann and UCF-11 are the less efficient datasets in
generalization (respectively 39.75 and 35.35 percent drop in
average for the two actions). Strong acquisition constraints
and the few examples in the Weizmann dataset can explain
the difficulty to reach a good generalization rate with this
database. Kuehne et al. [20] point out the fact that videos
from YouTube contain low-level biases due to some amateur
director habits. It can explain the lack of generalization of
UCF-11 (42 % percent drop for walk action class) com-
pared to HDMB51 which contains different video sources
like YouTube, Google videos, movies or archives (15 % per-
cent drop for the walk action class).

Lack of comparison with other approaches does not allow
us to conclude totally on the robustness of the method with
respect to dataset bias. Nevertheless, one can observe a fairly
good generalization behavior when training on one dataset
and testing on all the others (64.2 % in average). One can
think that the walk and wave action classes have been glob-
ally well generalized with the presented approach.

Selected datasets represent different aspects of the walk
andwave action classes. KTHandWeizmann contain videos
performedbypeople acting and represent those action classes
in a canonical way. InUCF andHMDB, action classes are not
acted and are represented in different situations and contexts.
It brings visual variabilities and noise (movement which
do not correspond to the observed action). They provide a
representation of a walk and wave action classes “in the
wild”. Both, acted and generic dataset contains complemen-
tary information about an action. In can be observed in Tables
6 and 8 that KTH and HDMB, respectively a constrained
(acted) and a generic video dataset, perform well in general-
ization.

We explore the representation generalization of human
actions by enhancing the previous process using a weighted
mixture of datasets in the training phase. We use the percent
drop of each dataset as a weight to build a new dataset giving
more importance to videos from datasets with good gener-
alization. This new dataset contains 200 positive and 200
negative examples from each dataset drawn proportionally
to their weight obtained by normalizing the percent drop.
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Table 6 Cross-dataset generalization for the “walk” action class when training on one dataset (rows) and testing on another (columns)

Action Train/test KTH (%) Weizmann (%) UCF-11 (%) HMDB51 (%) Self (%) Mean others (%) % drop

Walk KTH 97 96 56 62 97 71.3 26.4

Weizmann 66 100 51 55 100 57.3 42.7

UCF-11 54 50 95 61.5 95 55.1 42

HMDB51 79 79.5 62.5 87 87 73.6 15

Mean others 66.3 75.1 56.5 59.5 94.7 64.3 32.1

Bold value emphasizes the results obtained by our method

Table 7 Cross-dataset generalization for the “walk” action class when training on the “mixture dataset” and testing on another (columns)

Action Train/test Mixture
dataset (%)

KTH (%) Weizmann (%) UCF-11 (%) HMDB51 (%) Self (%) Mean others
(%)

% drop

Walk Mixture dataset 90 85 93 74.5 82 90 83.6 7.1

Bold value emphasizes the results obtained by our method

Table 8 Cross-dataset generalization for the “wave” action class when training on one dataset (rows) and testing on another (columns)

Action Train/test KTH (%) Weizmann (%) UCF-11 (%) HMDB51 (%) Self (%) Mean others (%) % drop

Wave KTH 99.5 73.5 60 50 99.5 61.1 38.5

Weizmann 65 100 73.5 51 100 63.1 36.8

UCF-11 58.5 85.5 94.5 58 94.5 67.3 28.7

HMDB51 50.5 75 69.5 86.5 86.5 65 24

Mean others 58 78 67.6 53 95.1 64.1 32

Bold value emphasizes the results obtained by our method

Table 9 Cross-dataset generalization for the “wave” action class when training on the “mixture dataset” and testing on another (columns)

Action Train/test Mixture
dataset (%)

KTH (%) Weizmann (%) UCF-11 (%) HMDB51 (%) Self (%) Mean others
(%)

% drop

Wave Mixture dataset 89.5 81 93.5 88 71 89.5 83.3 6.8

Bold value emphasizes the results obtained by our method

Tables 7 and 9 show results obtained with this “mixture”
dataset. The average ratewhen testing on all the other is fairly
high compared to rates obtained in Table 8 (83.6% for walk
and 83.3 % for wave).

The percent drop is just 6.9 % in average, which is half of
the percent drop of HMDB51 which is the best in generaliza-
tion among the other datasets (15 % for walk and 24 % for
wave). This new dataset, which is a mix of previous datasets
drawn proportionally to their generalization rates, provides a
robust representation of the walk and wave action classes.

This dataset bias is new and not addressed in the literature,
and only few papers point out this issue and cross dataset
generalization ([17,43]).

Building mixed dataset from different datasets accord-
ing to their generalization capacity is a preliminary work,
but it brings some guidelines for a robust representation
of human actions, especially in concrete applications where
action recognition methods are used.

5 Conclusion

This paper presents a novel approach of human actions recog-
nition in video sequences. Video sequences are characterized
by critical points estimated from the optical flow field and
trajectories of critical points at different spatial and temporal
scales.

The characterization in the frequency domain of themove-
ment trajectories combined with motion orientation and
shape information enable to reach among the best rate of
recognition of the literature. Only the movement of criti-
cal points is characterized, which represents a significant
advantage in terms of complexity. Indeed, obtained recog-
nition rates are close to dense strategy approaches but with
the computation of fewer features. Critical points are well
reflecting movements present in the tested video sequences,
and the fusion process shows efficiency in the action recog-
nition task.
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Recognition rates on different datasets illustrate the per-
formance of the proposed method for different cases: recog-
nition of actions with constrained acquisition conditions
(KTH) or in realistic videos (UCF-11); discrimination of
different actions with strong visual similarities (Weizmann);
discrimination of a large number of action classes (UCF-
50).

The introduction of cross-dataset generalization provides
a good robustness for describing elementary actions. It illus-
trates the ability of the approach to robustly characterize an
action despite dataset bias.

The obtained results open the way for future studies. A
current prospect is to test our method for recognizing com-
plex actions or activities by representing them as a sequence
of elementary actions. Another application field can also be
the analysis and the recognition of dynamic textures [31].
We believe that the use of critical points and frequency infor-
mation may be particularly relevant for periodic motions of
fluids.
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