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Abstract Target detection using attention models has
recently become a major research topic in active vision. One
of the major problems in this area of research is how to
appropriately weight low-level features to get high quality
top-down saliency maps that highlight target objects. Learn-
ing of such weights has previously been done using example
images having similar feature distributions without consid-
ering contextual information. In this paper, we propose a
model that we refer to as the top-down contextual weight-
ing (TDCoW) that incorporates high-level knowledge of the
gist context of images to apply appropriate weights to the
features. The proposed model is tested on four challenging
datasets, two for cricket balls, one for bikes and one for per-
son detection. The obtained results show the effectiveness
of contextual information for modelling the TD saliency by
producing better featureweights than those producedwithout
contextual information.

Keywords Saliency · Detection · Top-down · Features ·
Contextual · Target

1 Introduction

Many promising human visual attention (HVA) inspired
models [16,18,23,43] have been proposed to solve real-
world vision problems because of the remarkable ability of
humans to perform complex visual tasks efficiently and with
high precision. Visual attention represents a a set of cognitive
operations that samples the visual field by selecting relevant
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information and processing them [27]. Two simultaneous
mechanisms take place in the HVA system [11]. The first is
a fast data-driven mechanism known as the bottom-up (BU)
influence which responds to small changes within a visual
scene. The BU mechanism directs attention towards those
areas that appear markedly different from their surround-
ings. These regions are called salient regions. The second
mechanism, known as top-down (TD), is a slow task-driven
mechanism that directs the attention towards targets relevant
to the task. The TD mechanism is very important as it is the
dominant factor in controlling the gaze and shifting it towards
the target/goal during a high-level task [43].

Bottom-up saliency detection or simply saliency detec-
tion deals with the detection of objects in an image having
salient attributes or features. Most of the literature in visual
attention falls into this category. However, BU saliency is
not suited for task-driven scenarios such as target detection
[11,43] because not every salient object will necessarily be
an object of interest.

The majority of the BU saliency techniques are either
purely computational-based techniques [1,2,10,15,33,35,
39] and several follow the HVA structure or are biologically
inspired [16,18]. For TD saliency,most researchwork is con-
fined to experimental studies [26,36,46,47]. Although some
TD saliency computational models have been proposed in
the past [4,13,17,28,30,34,45], no unified model describing
the TD behaviour exists.

The most successful and widely used approach to mod-
elling the TD saliency is by introducing weights to the
low-level BU features [4,13,28,30,34]. A main challenge
in feature weighting is how dynamically the weights are
assigned to the features. Previously, while different weight
learning approaches have been adopted, most of these
approaches suffer from being static. This means that the
learnt weights can only work in similar types of examples,
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in this case images, and fail when the examples/images are
different in terms of content (e.g., objects, background, etc.).

Image content (or context) is a broad term that describes
high-level information within an image such as background,
distractor, target, semantic and other prior knowledge. It has
been shown experimentally that the inclusion of contextual
information improves the efficiency and accuracy of dis-
criminating the target object from the background distractors
[36,38,41], though the context idea has not been applied in
TD saliency and feature weighting.

To dynamically model the TD saliency, this paper intro-
duces a mechanism that utilizes the contextual information
of an image to dynamically assign appropriate weights to
the BU features. The inclusion of contextual information for
BU feature weighting has not been considered in previous
works. Hence, such dynamic feature weighting constitutes
themain objective of this research work.We use target detec-
tion as an example application that allows demonstration of
our approach. Our results show the importance of the contex-
tual information for dynamic TD saliency feature weighting.

The remainder of the paper is organized as follows. After
the related work is given in Sects. 2, 3 introduces the
major components and the working of the proposed top-
downweighting technique.More details about the bottom-up
saliency features and the saliency generation itself will be
covered in Sect. 4. The contextual information extraction and
multiple weight generation will be covered in Sect. 5. A thor-
ough discussion on the results will be presented in Sect. 6.
Finally conclusions will be discussed in Sect. 7.

2 Related work

2.1 Bottom-up saliency models

For the last two decades, BU saliency techniques have been
intensively used for salient object detection [22,24,32,40,
44], segmentation [1,9,25] and recognition [12,28,37]. The
performance of these techniques is evaluated in terms of their
accuracy in detecting the salient/target objects [21,40] or in
terms of their efficiency in computing saliency maps [1,2].
Furthermore, based on the ability of these techniques to pre-
dict region of interests, they are classified into either being
used for fixation detection [14,20,35,39] or salient object
detection [9,21,22].

It would be impossible to discuss all the BU saliency and
fixation techniques in this paper; however, a detailed compar-
ison anddescription of themost recently proposed techniques
and models are given in [6,7]. Briefly, to highlight some of
the BU state-of-the-art existing saliency techniques, we split
these techniques into classical and recent ones.

In classical techniques, for instance in [1] the authors
developed a fast technique that works in the frequency

domain. This technique is well known for its segmenta-
tion performance as boundaries are retained in the generated
saliency maps. In [15], authors used a graph-based technique
to perform the normalization of the feature and conspicuity
maps acquired from Ittimodel. In [35] statistical spatial rarity
of image pixels is exploited to predict eye fixation regions.
On the other hand, analysing global and local regions in
an image greatly captured the interest of many for saliency
detection [10,39]. In [39], patches are extracted from the
original images and dissimilaritymeasures consisting of cen-
tre, spatial and colour distances are used to distinguish a
salient region from a non-salient one. Similarly in [33], the
authors proposed a surprise element called information diver-
gence measure IDM that computes the information variation
between image patches in a global sense. The IDM is com-
puted only over the principal component analysis (PCA)
colour contrast feature of the patches. Authors show that this
model outperforms most of the classical saliency detection
techniques on benchmark datasets.

In the last 3 years, saliency detection techniques have
become more efficient while attaining a very high accuracy
on benchmark saliency datasets. As few examples from the
recent development on saliency detection, in [32], a propaga-
tion method is proposed that exploits the intrinsic relevance
of similar cells or regions based on the information con-
tained in neighbour cells. The authors further proposed a
Bayesian framework for multiple saliency map integration.
In another similar work [24], the authors proposed a double
saliency propagation technique which is based on apply-
ing low-level boundary cues for background detection and
high-level objectness cue for foreground object detection.
The novelty of the technique is highlighted by the fact that
the most certain object and boundary superpixels are able
to propagate saliency knowledge to leverage their comple-
mentary influence. The use of high-level cues is a common
practice in most of the state-of-the-art saliency detection
techniques. For instance, the authors extracted three high-
level cues, namely, objectness, uniqueness and focusness and
fused them together to determine the saliency of regions [19].

Another set of methods concentrate on grouping fore-
ground or background pixels/superpixels having similar
attributes or features. For instance in [22], regularized ran-
dom walks are used to establish pixel-wised saliency maps
from the background and foreground superpixels whereas in
[44], a graph-based manifold ranking approach is adopted.

Some state-of-the-art techniques still follow the classi-
cal colour contrast approaches for saliency detection. This
is based on the human perception observation that salient
regions often have distinctive colours compared to the back-
ground. In [21], the authors show that salient regions can be
linearly separated from the background in high-dimensional
colour space. In another contrast approach [9], the authors
introduced an efficient histogram-based contrast method
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(HC) to measure saliency. Furthermore, they incorporated
spatial regional factors to HC method to produce a more
effective saliency measure called regional-based contrast
(RC).

Other methods include the use of supervised machine
learning and classifiers approaches directly on positive and
negative image samples to learn a strong boosting classifier
from a set of weak classifiers [40], the use of free energy
principles that computes the entropy between input image
a reconstructed copy of the same image [14], decomposing
images into abstract representation to remove unnecessary
image details to allow more effective saliency assignemnt to
salient pixels [8], and the incorporation of quantum mechan-
ics into graph-cut for accurate saliency region segmentation
[3].

Most of the state-of-the-art saliency techniques have
achieved very high accuracy performance in most bench-
mark saliency datasets. However, in some other challenging
datasets where saliency attributes are more challenging (e.g.,
out of focus, no centre-bias factor, complex background, low
contrast, etc.), the performance of these techniques degrades
[7]. Furthermore, the implementation of some of these tech-
niques for real-time applications is not suitable due to low
efficiency. Mostly this is due to the use of high-level features
and complex feature manipulation procedures.

2.2 Top-down saliency models

Perhaps one of themost prominentHVA-based saliencymod-
els is that of Itti et al. [18] based on the famous integration
theory of Treisman and Gelade [42]. The majority of the
extant TD featureweightingmechanisms use the Itti attention
model for feature extraction and integration. Our model also
follows the structure of the Itti model. As shown in Fig. 1, the
process of Itti model begins with the extraction of low-level
features from three channels, colour, intensity and orientation
at various scales. A centre-surroundmechanism is applied on
the features that uses theDifference ofGaussian filters to pro-
duce the feature maps (FM). The channel wise FMs are then
integrated and normalized at different scales to yield the con-
spicuity maps (CM). Finally, the CMs are combined linearly
to build the final saliency map. The saliency map generation
is followed by a Winner-Take-All (WTA) and Inhibition of
return (IOR) mechanisms for fixation and gaze shift, respec-
tively.

This model is used to generate the BU saliency maps for
salient object detection. However, a proper weighting of the
FMs and CMs as indicated by many authors results in gen-
eration of a so-called top-down saliency maps tuned for a
particular task [4,13,28,30,34].

The quality/accuracy of such weights depends on how
they are learnt or estimated. In [13,28], the authors proposed
a system called VOCUS that learns the most salient regions

Fig. 1 Itti attention model [18]

(MSR) using a classifier. The weights of individual features
are calculated as the ratio of the average saliency of the MSR
regions and rest of the background region.

In another work by Benicasa et al. [4], a recognition indi-
cator is used to find the likelihood of a segmented region
belonging to a salient object. This is achieved by appropri-
ately adjusting the weights through a feedback loop from a
high-level classifier.

In [20], the authors learned feature weights from human
observed fixation data through linear support vector machine
(SVM) classifier. The learned weights from the classifier are
used to weight various features to model and predict where
human usually look when performing a free viewing of nat-
ural scenes. They used BU Itti features, mid-level horizon
cues and high-level person and face detectors. The proposed
model accurately predicted fixation regions compared to the
groundtruth human observed fixations.

Probably the most prominent TD weighting model is the
one proposed by Navalpakkam and Itti [30]. The weight cal-
culation process is formulated as an optimization problem
by maximizing the signal to noise ratio (SNR) such that the
signal and noise represent the average saliency energy of the
target and that of the distracting background, respectively.
The weights are calculated within feature dimension indi-
cated by gi, j (i.e., sub-feature j of a feature channel i) and
across features g j (i.e., CMs) where j is the CM. These opti-
mized weights are given as

gi, j = SNRi j

1
n

∑n
k=1 SNRk j

g j = SNR j

1
N

∑N
k=1 SNRk

(1)
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where n is the number of sub-features within a feature chan-
nel and N is the number of CMs.

A common problem in all these approaches is that they do
not consider any high-level information when evaluating the
feature weights. Features that are learnt or evaluated in this
way are static and achieve good performance on similar types
of images/examples in terms of context (i.e., similar images
in both the training and testing phases) but perform poorly
when there is variation in image context. To make the fea-
ture weighting a dynamic process, we propose a model that
incorporates high-level contextual information of the images
to dynamically assign weights to the features and can be
applied on a variety of images with different context.

Themain objective of this paper is to use image contextual
information to assign dynamic and appropriate weights to the
BU features. To implement this concept, three sub-tasks are
performed. Furthermore, besides the collective contribution
of the sub-tasks in building the final model, each sub-task can
be considered to be a separate model. The sub-tasks and their
respective contributions towards building the final model are
as follows,

1. To have a set of good BU features and an effective saliency
map generation method
Task: To build the final TDmodel, the first step is to have a
set of good features to perform the weighting on. In addi-
tion, a good saliency map generation method from the
features plays an important role in building an effective
attentional-based vision model. In the past two decades,
several saliency detection techniques were proposed that
utilized different features and methods to produce qual-
ity saliencymaps. Our proposed saliencymap generation
method is inspired by Itti’s feature model and by the
centre-surround mechanism proposed in [33].
The reason for choosing Itti features is because they are
computationally efficient than other complex high-level
features utilized by other saliency models. In addition,
mid-level features are added to the basic ones. This is
done for two reasons, (1) To have a richer set of fea-
tures for a quality saliency map generation, and (2) To
have a larger set of features to work with to demonstrate
our proposed feature weighting mechanism. Similarly,
we used the information-based centre-surround mecha-
nism proposed in [33] as it is fast and achieved a very
good performance in saliency detection comparable to
state-of-the-art techniques.
Contribution: By performing this task, an effective and
efficient saliency detection technique is established. This
technique is used as a framework for the contextual-based
dynamic feature weighting model. In addition, the tech-
nique can be used solely for BU salient object detection
(i.e., without any feature weighting). Hence, as one of the
sub-contributions of this paper, an accurate BU saliency

detection technique is produced having comparable per-
formance to state-of-the-art BU salient object detection
techniques.

2. To calculate the feature weights using the Jensen–Shanon
Divergence (JSD)
Task: Weight calculation is an essential part of the fea-
ture weighting model. Previously the SNR approach was
used for weight calculation [30]. However, SNR calcu-
lation results are unbounded weight values. In addition,
SNR is calculated by finding the ratio between the mean
pixel intensity values of the target region and that of the
background region. This could lead to inverted weight
assignment to a feature map in situations when the target
region has lower intensity values than the background.
A better approach is to use the difference between the
distributions of both regions. For this reason, JSD which
is a bounded distribution-based measure is used instead.
Contribution: Upon performing this task, a more accu-
rate feature weight computation method is established.
This weight computation techniques is used when learn-
ing the feature weights by the contextual dynamic feature
weighting model. Hence, as another sub-contribution of
the paper, an accurate feature weight calculation proce-
dure is established.

3. To cluster images into groups based on their contextual
information during the training phase
Task: A contextual descriptor is generated for each image
and then similar contextual images are clustered during
the training phase. Distinct weights are computed for
each cluster using the previous mentioned weight com-
putation procedure.
Contribution:Uponperforming the task, a newcontextual-
based image clustering technique is produced. The con-
tribution of this part of the model is the generation of
multiple set of possible weights to be assigned to a new
test image depending on its context.

Upon completing the above-mentioned tasks, the follow-
ing contributions are made from this paper,

1. Main contribution 1: A TD model is developed that uti-
lizes contextual information of an image for dynamic
assignment ofweights to theBU featureswhichwas lack-
ing in previous saliency models.

2. Main contribution 2: We show that contextual-based TD
weighting outperforms both TD weighting without con-
text and pure bottom-up (unified weighting) approaches.

3. Main contribution 3: We demonstrate that the proposed
contextual-based model has better or comparable accu-
racy performance than various state-of-the-art saliency
detection techniques for target object detection in four
challenging datasets.

4. Sub-contribution 1: A new developed BU saliency tech-
nique based on low-level features and information diver-
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Fig. 2 The proposed TDCoW model: a training phase, b Testing phase

gence mechanism for salient object detection that has
good detection performance compared to state-of-the-art
BU saliency techniques.

5. Sub-contribution 2: A new feature weight computational
technique based on JSD is developedwhich ismore effec-
tive than the previously proposed SNR mechanism.

3 The proposed model: top-down contextual
weighting (TDCoW)

In the proposed model the contextual information represents
only the gist of the image. Hence, throughout this paper,

gist and context are used interchangeably. The proposed
model, which we refer to as top-down contextual weighting
(TDCoW), is divided into two phases, the training and test-
ing phases. As shown in Fig. 2a, the first step of the training
phase involves feature extraction and the generation of the
FM, CM and BU saliency map (SM) using a centre-surround
mechanism called information-divergence measure (IDM).
This is done for each of the Q training images.

In the second step, the computation of the feature weights
for each training image takes place. The weights are calcu-
lated by finding the Jensen–Shanon divergence (JSD) of the
target object with respect to the background. The weights are
calculated for each FM and CM separately.
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The third step in the training phase involves contex-
tual information extraction. This is performed by initially
masking the target from the background using the ground
truth images, so that the context is only extracted from the
background region. This is followed by the creation of the
feature descriptor from the masked region. The descriptor
acts as a context identifier for the image which can later be
used for contextual matching. Hence, each training image is
associated with FM weights, CM weights and a contextual
descriptor as shown in Fig. 2a.

In the fourth step of the training phase, grouping of the
training images into R clusters is performed. The grouping is
done according to the contextual similarity amongst images
using unsupervised k-mean clustering. For each cluster, a
contextual descriptor is calculated as the average of the indi-
vidual contextual descriptors of the images belonging to that
cluster. Similarly, the weights of the individual images in a
cluster are averaged to yield consolidated weights for that
cluster.

The secondphaseof themodel is the testingphase inwhich
a target object is detected. As shown in Fig. 2b, the process
begins by creating a contextual descriptor for the test image
as in the training phase. However, now the context must be
calculated over the whole image without any target masking
due to unavailability of the ground truth. There will be some
perturbation in the contextual descriptor but we anticipate
this to be minor as the ratio of target region to the back-
ground is small. This contextual descriptor is compared with
the centroid descriptor of each learned cluster using an appro-
priate an information theoretic distance metric. The cluster
with the lowest distance corresponds to the best match for
the test image. Accordingly, the matched cluster’s weights
are selected to be used as the TD weights for the test image.
In this way, appropriate weights are assigned to the FMs and
CMs of the test image.

Note that multiple set of weights and contexts is learnt
during the training phase, one for each cluster. The test phase
acts as context template matching process that results in a
best possible weight assignment to the FMs and CMs of the
test image. The dynamic nature of the model comes from the
fact that different weights can be assigned to the test image
according to its context as well as that of the learned clusters.
A more detailed description of each step in the training and
testing phase is described next.

4 Bottom-up feature extraction

The initial step in generating the saliency maps is feature
extraction. Eight features are extracted as shown in Fig. 3.
These features are colour (C), intensity (I ), orientation (O),
contrast (Co), centre-bias (Cb), principal component analy-
sis features (PCA), edges (Ed) and frequency-based features

(MSS) with each feature category having sub-features. The
features range from low-level such as colour and intensity
to higher level features such as edges and PCA features.
There are two reasons to have many extracted features. First
some high-level features such PCA, edges and frequency are
assumed to give insight to valuable information about the
structure and behaviour of the image. Such information can
be very useful for better saliency estimation and and target
detection. Secondly, some targets may require additional fea-
tures or different subsets of features in order to detect them.
Itti’s basic features might not be sufficient for target detec-
tion. On the other hand, there is no specific number or type
of features that are assumed to be sufficient for a general
target detection. As a reasonable set of features for target
detection, the above-mentioned features are used which is a
combination of low, high and efficiently computed features.

The colour feature has four sub-features; red (r), green
(g), blue (b) and the quantized colour feature (q). The quan-
tization is performed as follows [9]: assuming an input colour
RGB image Im is of size H × W × 3 with 8 bits colour
depth, the first step is to quantize the colour range by select-
ing 12 uniformly distributed levels for each colour channel.
This will yield 1728 different possible colours. Furthermore,
only 5 % of the most occurring colours in natural images are
retained. This is done by observing the most frequent colours
froma large database of natural images. The images are quan-
tized with these levels yielding a palette of 85 colours. The
quantization is done to reduce the histogram space from 2563

to only 85 for the subsequent IDM calculation.
The intensity feature has a single sub-feature denoted as I

and the orientation features are extracted at 0◦, 45◦, 90◦ using
Gabor filters. Contrast sub-features are also computed as they
have goodperformance in saliency detection [9,10,39]which
includes the Red-Green (rg), Blue-Yellow (by) and Hue (h).
These sub-features are given as

rg = r − g

max(r, g, b)

by = b − min(r, g)

max(r, g, b)

h = 180

π
arctan

( √
3(g − b)

2r − g − b

)

(2)

It is worth mentioning here that the colour features are
object level features and more suited for object detection
whereas colour contrast is more effective for saliency detec-
tion. This is the reason for including both types of features.

The next feature is the PCA-based features. PCA is
a statistical approach that transforms a set of correlated
observations/features into orthogonal uncorrelated segments
called principal components (PCs). Irrelevant details and
noise are neglected while finding these PCs. The obtained
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Fig. 3 Feature extraction and saliency map generation procedure

PCs are assumed to describe important features contained
in the data, in this case images. Previously, PCA was used
for extracting useful features for salient object detection
[10,33,45]. One way to implement PCA on the input image
is to consider square patches of the input image and then to
extract the PCs of the patches separately [33]. However, in
this work and for better efficiency, PCA is applied colour
wise rather than patch wise as the number of patches L � 3.
We only have three colour channels in the latter to apply PCA
on, making this approach more efficient.

The input colour image ‘Im’ of size H ×W ×3 is reshaped
in such a manner that each colour layer is transformed into a
single dimension column vector of length H × W denoted as
xi . After concatenating the three layers column wise, we get
a reshaped layer matrix X representation of the image such
that X = [x1, x2, x3].

The mean value of each column in X is subtracted from
the corresponding column. This is followed by the computa-

tion of the covariance matrix of X and then the eigenvectors.
Each eigenvector represents one of the PCs of a total of three
PCs denoted as d1, d2 and d3. These components are ordered
according to the magnitude of their eigenvalues such that
d1 is associated with the highest eigenvalue. In our exper-
iments, it has been observed empirically that only the first
two components prove useful.

The next feature is the edge map which is extracted in ver-
tical, horizontal and diagonal directions. Although there are
four sub-features for the edge feature, these are considered as
a single sub-feature denoted as ‘Ed’ for a reason mentioned
later in this section.

Acentre-bias factor is added as an additional featurewhich
is represented by a 2-D Gaussian function centred at ( W

2 , H
2 )

and controlled by the standard deviation value of the function.
The centre-bias behaviour models human prior knowledge
that the centre of photographs tends to be more salient or
contain the target. However, in the test examples, such factor
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exhibits low weight value which suggests that the target in
most of the test images is positioned randomly in an image
and not in the centre of the image as it is the case in most
of the saliency datasets. The inclusion of this factor is only
to show that the datasets chosen for testing our model are
competitive for target detection.

The final feature denoted as MSS highlights the fre-
quency distribution of the pixels. This frequency-based
feature extraction method is proposed by Achanta [1] for
salient object detection and has good performance in salient
object segmentation. It exploits all the low frequency com-
ponents and majority of the high frequencies and considers
the position and scale of the objects.

Once the features are extracted, the FMs are generated
by calculating the IDM of various patches of the image
as proposed in [33]. Information-divergence measure is a
centre-surround mechanism that exploits the element of
surprise by finding the divergence of information between
various regions of the image. Hence, it is responsible for
generating the FMs that highlight the possible salient regions
within a feature.

This procedure is the same for all the sub-features
except for the edge and the centre-bias. Briefly, the process
starts by dividing a feature image into smaller regions
by uniformly segmenting it into square non-overlapping
patches of size n × n. The total number of complete
patches is L = �H/n� × �W/n�. For instance, if an
image has the dimension of 12 × 12, and if the patch
size is 5 × 5, then we will have only L = 4 complete
patches which are indexed as i = 1, 2, 3, 4. We denote
these patches by p j

i (k) where i = 1, 2, . . . , L represent
the patch index, k is the feature notation for which the
FM is to be generated and j is the sub-feature notation
for the respective feature. For instance pr

1(C) is the first
patch for the sub-feature red belonging to the colour fea-
ture.

The IDM is calculated for each patch by finding the diver-
genceof the distributions between twopatches for a particular
sub-feature. Thefirst patch (centre patch) is oneof the patches
from p j

i (k) where as the second patch (surround patch) is
the collection of the remainder of the patches as illustrated in
Fig. 4. If G and S represent the kernel density estimated
(KDE) distributions for the centre and surround regions,
respectively, a patch saliency is found by

IDM(i, j, k) =
∑

G j
i (k) log

(
G j

i (k)

S j
i (k)

)

(3)

For the centre-bias, the FM is the feature image itself and
there is no need to evaluate the IDM. In addition, for the
edges, the IDM is calculated in the same way but not directly
on the sub-feature edges images. Initially a histogram of

Fig. 4 Global centre-surroundpatches.Thepatchwithin the red square
represents an active centre patch selected amongst the green squares.
The collective surround patch is highlighted by the blue region

edge orientation is evaluated for each patch from the four
sub-feature binary edge images. This is followed by IDM
calculation but now on discrete edge histograms.

The CMs are generated by summing the weighted sub-
features within a feature. Finally the weighted CMs are
combined by multiplying them together to yield the final
saliency map. Multiplication of CM is better than adding
themwhen combining different types of features as the maps
tend to have different spatial distributions and thus we want
to have common regions of interest from each map. Map
integration procedure can be summarized by the following
equation

SM = N
⎛

⎝
8∏

k=1

Wu(k)

⎛

⎝
v(k)∑

j=1

w
u(k)
j

(
FMu(k)

j

)
⎞

⎠

⎞

⎠

u = (C, I, O,Co,PCA,Cb,Ed,MSS)

v = (4, 1, 4, 3, 2, 1, 1, 1) (4)

wherew
u(k)
j is the weight associated with each FM and Wu(k)

is the CM weight. The tuples u and v represent the feature
symbol tuple and thenumber of sub-feature tuple correspond-
ing to each feature, respectively. Note that N indicates a
normalization step before acquiring the final saliency map to
promote very strong peaks and suppress the rest. This step is
essential to obtain a saliency map with only the most domi-
nant salient region being highlighted.

5 Contextual feature representation and feature
weighting

This sectiondescribes howcontextual information is extracted
and then used to assign dynamic weights to the low-level fea-
tures. In addition, an effective weight calculation procedure
is explained that depends on the JSD between a target and
rest of the image.
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Fig. 5 An example of contextual descriptor construction. From left to
right: input image, extracted features, masking regions (green region
is excluded and the blue region is the gist region for which a descrip-

tor is created), distributions of the gist regions, concatenation of the
distributions and the final contextual descriptor vector

5.1 Contextual descriptors

A large contextual descriptor of distributions for an image is
created using colour, intensity, orientation, contrast and PCA
features. Such image descriptors are sometimes called bag
of features and are commonly used in classification prob-
lems [5,48]. The distribution is estimated as before using
KDE for a fixed number of sample points. Hence, the size
of the descriptor depends on the KDE number of estimation
points. Large number of sample points corresponds to large
descriptors that will impose high computational demands
for contextual matching. At the same time, we want to
avoid under-sampling which can produce inaccurate results.
Empirically we set the number of sample points to 1000.
Figure 5 shows the complete procedure for generating the
contextual gist descriptor.

5.2 Feature weighting

Previously in [30], weights were evaluated by calculating
the signal (the target) to noise (distractors) ratio from the
FMs. In this paper, a more effective weighting calculation
procedure is proposed. There are two shortcomings of the
SNRweighting mechanism. First, the weighting information
is extracted from the sub-features directly and not from the
FMs. The value of the weight is highly dependent on how
the FMs are generated. For instance for a particular sub-

feature, if the corresponding FM is generated incorrectly (the
target region is less highlighted than the background region),
then according to the SNR Eq. (1), such an FM will receive
a low weight whereas it should be assigned a high value.
Hence, a poor FM generation algorithm could result in a
wrong weight assignment to the feature when SNR approach
is used.

Secondly, SNR is calculated by finding the ratio between
the mean pixel intensity values of the target region and
that of the background region. Again this could lead to an
inverted weight assignment to a CM in situations when the
target region has lower intensity values than the background
within the CM. This is because the ratio/difference is taken
between two single values (i.e., the mean values of the two
regions).

To overcome the problems associatedwith the SNR-based
approach, a distribution-basedweight calculation approach is
adopted using JSD. Jensen–Shanon Divergence is a bounded
dual version of the IDM. The divergence between the target
region having a distribution hT and the background region
with distribution hB is calculated directly from the sub-
features rather than the FM to avoid the involvement of the
FM generation algorithm. The weight is calculated as fol-
lows

JSD (T ||B) = 1

2
(ZIDM (T ||M) + ZIDM (B||M))
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Fig. 6 JSD-based top-down weight calculation example for three sub-
features, red, blue/yellow and red/green as can be seen left to the blue
arrows. Distributions of target (T ), background (B) and the intermediate
region (M) for the respective sub-features are shownon the right column.
According to the variation in distribution, a weight value is calculated
using (5) as 0.163, 0.066 and 0.642, respectively, for the three sub-
features. The images on the left of the red arrow show the impact of
the weights on the FMs. For this example, the best map in terms of
detecting the target red ball is the red/green feature which is assigned
the highest weight value compared to the other sub-features

hM = 1

2
(hT + hB)

ZIDM (T ||M) = hT log2

(
hT

hM

)

ZIDM (B||M) = hB log2

(
hB

hM

)

(5)

where hM is the histogram of the intermediate region M .
The terms ZIDM (T ||M) and ZIDM (B||M) are the tar-
get/intermediate and the background/intermediate regions’
IDMs, respectively.

It is worth mentioning here that a statistically high JSD
value for a particular sub-feature suggests that the target
region is highly different from other regions of the image.
This indicates the importance of that sub-feature for the tar-
get detection and should be assigned a high weight value. As
an example, Fig. 6 shows how the weights vary due to the
statistical information difference of the target and the back-
ground for some sub-features and this can be reflected in
the corresponding weighted FMs. For instance, the distribu-
tions of the target, background and the intermediate region
M for the red/green sub-feature have high variation. Hence,
the assigned weight to this sub-feature is relatively high (i.e.,
0.64). This can be observed by the corresponding FM which
highlights the target red ball better than the other two sub-
features.

5.3 Clustering and contextual matching

The main objective of TDCoW is to allocate the test image
appropriate weights according to the similarity of its contex-
tual contents with that of the training images. This is done by
matching the contextual descriptor of the test image with the
training images. However, increasing the number of train-
ing images increases the processing time for matching. As a
result, a reasonable choice would be to cluster similar images
together to reduce the search space for matching according
to the contextual similarity.

The clustering approach is similar to the classical k-
mean clustering except for the distance measure calculation.
The clustering is done on the contextual descriptor of the
training images over several iterations. After every itera-
tion, clusters are created by measuring the JSD between
descriptors. The reason for using JSD and not the tradi-
tional Euclidean distance is that we are measuring distance
between distributions. Furthermore, once clusters are cre-
ated after a single iteration, a mean descriptor for that cluster
(called a centroid descriptor) is re-calculated from the indi-
vidual contextual descriptors of the images belonging to
their respective clusters. This is achieved by considering the
joint distribution of the individual descriptors of the clus-
ter.

After the final iteration, the centroid of each cluster rep-
resents the final contextual descriptor for the corresponding
cluster. Furthermore, the learned weights of the individual
images of a cluster are averaged to yield a single set of
weights for that cluster. Hence, at the end of the clustering
process, R number of descriptors and weights are produced,
one for each cluster.

When a test image is given, the ultimate objective is to
assign appropriate weights to the features which are learned
from the training phase to produce the final TD saliencymap.
The following steps are followed,

1. Creating a contextual descriptor for the test image by
following the same procedure applied to a training image
which is explained in Sect. 5.1.

2. The contextual descriptor of a test image is matched with
the contextual descriptor of each of the clusters being cre-
ated in the training phase. The distance computation to
perform the matching is accomplished using JSD. Note
that JSD here is used for another purpose. Previously
in the training phase we have used JSD to calculate the
weight of FM and CM based on finding the target and
background distributions. However, here JSD is used
to see the information distance between the contextual
descriptor of the test image and that of each cluster. Note
that the same JSD Eq. (5) is used. The only difference is
that the target distribution is replaced by the contextual
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Fig. 7 Contextual-based image clustering illustration. 43 images are
clustered into 9 groups using the proposed k-mean contextual clustering
technique. The similarity of images within a cluster in terms of the used
contextual features can be seen in some clusters e.g. cluster 4 and 5.
An input test image is contextually matched to these clusters using JSD
with cluster 3 being the best match [lowest JSD value (see the bottom
plot)]

distribution of the test image and the background distrib-
ution is replaced by the contextual distribution of one of
the clusters for which the matching is taking place.

3. The cluster having the lowest JSD value corresponds to
the best match to the input image.

4. The precomputed weights of the FM and CM of the best
match cluster are assigned to the input image.

5. The final TD saliency map using the selected weights
is computed to produce the final result by following the
saliency map generation procedure described in Sect. 4.

Following these steps, a dynamicweightingofBUfeatures
is achieved based on the contextual content of the image.

Figure 7 shows a sample of 43 training images being
grouped into nine clusters by the above method. Further-
more, a sample test image is matched with the centroids of
each cluster using JSD.

6 Results and analysis

The experiments are divided into three parts. In the first part,
we show the effectiveness of the proposed features and the

global IDM centre-surround mechanism over the traditional
features and centre-surround mechanism proposed in the Itti
model. This evaluation is further extended for salient object
detection i.e., BU saliency and compared with some state-
of-the-art techniques in saliency detection. The second part
of the experiment deals with the nature and effectiveness of
the weighting calculation method. The experiment will show
the effectiveness of the proposed JSD weighting over the
previously proposed SNR mechanism. The last experiment
shows the effectiveness of our proposed TDCoW and the
importance of context in BU feature weighting for target
detection.

6.1 Experiment 1: bottom-up saliency performance

To see the effectiveness of the BU features used along with
the global IDMapproach of ourmodel for saliency detection,
two benchmark saliency datasets were used. The first dataset
called ASD or MSR-1000 is the leading benchmark datasets
for saliency used by most researchers in this area [2]. It con-
sists of 1000 images, each containing one salient object. The
second dataset of 300 images is the SOD dataset, which is a
collection of salient object based on Berkeley Segmentation
Dataset (BSD) [29]. According to the saliency survey paper
[6], this is one of the most difficult and challenging datasets
for salient object detection.

The precision-recall curve is used to evaluate the perfor-
mance at different threshold values. The proposed method
that utilizes different features and an IDM-based centre-
surround mechanism called IDM (multi-features) or simply
IDM (Multi) is compared with 12 state-of-the-art fixation
and saliency detection techniques as well as 7 classical tech-
niques. The baseline technique to compare with is the Itti
model. We are also comparing the proposed method with
one of our previously proposedmodels for saliency detection
called IDM-PCA [33] that utilizes the PCA for dimension-
ality reduction. The rest of the techniques are abbreviated as
follows:

• Classical: MSS [1], CA [39], Rare [35], SWD [10] and
GBVS [15].

• State of the art: BSL [40], CAU [32], RRWR [22], UFO
[19], SIA(GC) [8], RC and HC [9], QCUT [3], IILP [24],
HDCT [21], GMR [44] and FET [14].

Figure 8 shows the precision-recall curves for both the
datasets. The curves show that IDM (Multi) outperforms all
classical techniques in termsof saliencydetection. IDM-PCA
has a good performance on both the datasets; however, it
uses a single colour feature with dimensionality reduction
as opposed to IDM (Multi) which uses various effective and
efficient features. In addition, the results also suggest the
effectiveness of the features and the proposed IDM-based
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Fig. 8 Precision-recall performance comparison of various classical and state-of-the-art BU techniques with the proposed IDM (Multi-features)
model for bottom-up saliency detection on ASD and SOD datasets. (The figure is best viewed in colour)

centre-surround mechanism over those being used by Itti’s
model.

Now comparing our BU model with state-of-the-art tech-
niques, it is obvious that ourmethod has a very high precision
value (higher than all other techniques) at low recall val-
ues (approximately below 0.4 which corresponds to low
threshold) on the ASD dataset. The precision after this point
degrades considerably. There are two reasons for this degra-
dation in performance; first it is observed that mostly the
saliency maps generated by the proposed method partially
highlight the salient object particularly when the size of the
salient region is large (a typical characteristic of the salient
objects contained in this dataset). Secondly, most of the
regions which are highlighted by the proposed technique
exhibit low intensity values compared to other techniques.
For this reason, when the threshold increases, the precision
becomes low as the true positive value is small.

In the more difficult SOD dataset, it can be observed that
the proposed technique outperforms all other state-of-the-art
techniques considerably for low recall values (approximately
0.5 and below). For high recall values, the degradation in
performance is less obvious compared to the degradation
occurring on the ASD dataset.

To visualize the maps generated by the proposed BU tech-
nique and other state-of-the-art techniques, Fig. 9 shows 8
sample images from ASD and SOD datasets. The saliency
maps generated by the all the techniques except for FET,
HC and RC exhibit very high precision and low false nega-
tives. Hence on this dataset, and from its sample images we
can see that almost all the techniques including the proposed
IDM (Multi-features) were able to detect the salient object
accurately when compared to the groundtruths (see second
row of the figure). On the other hand, from the SOD dataset,
we selected four challenging images in which they contain
either more than one salient region to be detected (e.g., the
last two images in this dataset) or the background and the
salient region exhibit similar visual features (e.g., the first
and the last image in this dataset).

ASD SOD

ID
M

(M
ul

ti)
R

R
W

R
U

FO
R

C
Q

C
U

T
IIL

P
H

D
C

T
H

C
G

M
R

FE
T

C
A

U
B

SL
G

T
So

ur
ce

Fig. 9 Qualitative comparison of the bottom-up saliency maps gen-
erated by various state-of-the-art techniques and the proposed IDM
(Multi-features) on ASD and SOD datasets.

In the first image from this dataset, according to the
groundtruth, the salient region is the ladder in front of the
rocky mountain. Note that the visual attribute of the back-
ground (mountain) and the salient region (ladder) are highly
correlated. As a result, the pixel association and propagation-
based models such as CAU, GMR, IILP and RRWR assign
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Fig. 10 Segmentation evaluation of various models and the proposed model in terms of precision, recall and F-measure values on ASD (the
first column) and SOD (the second column) datasets. The first row represents the comparison with classical techniques and the second row for
state-of-the-art techniques

same pixels association values to the background and the
salient region. Contrast-based methods such as RC and
HC also fail to produce satisfactory results as the contrast
attributes between the two regions are similar. Even high-
level features such as objectness in UFO were not able to
separate the two regions. The best effort on this image was
delivered by our proposed model (see the last row of the fig-
ure). Using an information theoretic approach on various low
and mid-level features, the model was able to highlight the
salient region which deems to have certain irregularities or
element of surprise from these features which are captured
by the model. Similar visual analysis is applicable on rest of
the images from this dataset.

The proposed BU saliency model although highlights part
of the salient object andmostlywith low intensity, however, it
retains the contour or the over all structure of the object. This
is because one of the features it uses is the MSS frequency
content based on the method proposed in [1]. As mentioned
earlier, MSS technique has a very good segmentation per-
formance on benchmark datasets [6]. Hence, to demonstrate
the segmentation capability of our proposed BU model, we
appliedmean shift adaptive segmentation approach proposed
in [2] on the generated saliency maps to produce segmented
binary saliency maps. The precision, recall and F-measure
are calculated from each saliency map on a particular dataset
and averaged over all the images in the dataset. F-measure
is another accuracy of detection measure which combines

recall and precision metrics and it is given as

Fβ =
(
1 + β2

)
· precision · recall
(
β2 · precision) + recall

(6)

whereβ is an importance factor forweighting either precision
or recall. A common value for β is 0.3 [2].

From Fig. 10, we can clearly see that in both datasets,
our proposed model has low recall values compared to other
classical and state-of-the-art techniques. On the contrary, our
model exhibits high precision and in turn F-measure val-
ues because precision is weighted more (i.e., assigned more
importance) than recall in Eq. (6). In ASD dataset, the pre-
cision and F-measure values are comparable to most of the
state-of-the-art techniques. In SOD dataset, our model has
second largest precision and F-measure values after QCUT
technique. Low recall values suggest that there are two many
false positive regions within the segmented saliency map.
As discussed earlier, this behaviour is obvious as the salient
regions detected by the proposed BU model are highlighted
with low saliency values. This could be due to simple feature
map normalization and integration which is implemented by
our model. However, the potential strength of the model lies
with its ability to detect the salient object/s with high preci-
sion.

Since our BU model has a good performance for BU
saliency detection, it is expected to perform well as a plat-
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form for TD saliency as the weights are assigned directly to
these features.

6.2 Experiment 2: JSD weighting performance

In this experiment, the proposed JSD weighting calculation
method is compared with the previously proposed SNR for
TD feature weighting. For this experiment, we have used
the same setup being followed by the authors in [30] (i.e.,
same features and centre-surroundmechanism based on Itti’s
model) to avoid any additional processing biasness. The
objective of this experiment is to show that JSD is a better
option for feature weight calculation than SNR.

The TD weights are calculated with the two approaches
once with the proposed JSD method and with the SNR
method. For the testing, we have created our own challeng-
ing dataset of cricket ball as the target object. The dataset
consists of 400 images which are taken indoors and outdoors
with variation in size, illumination, distracting objects and
background. In addition, some internet images containing
the cricket ball are taken to construct the dataset. The rea-
son for including internet images is because we wanted to
have some natural images containing target cricket ball (e.g.
in well-known cricket grounds, with players, from different
matches, etc.). The created dataset is split into two groups
of 200 images each, where the first set contains images in
which the target object is salient and the second in which the
target is non-salient and distracted by other objects. We refer
to them as salient and distractor datasets, respectively.

For this experiment, we have randomly selected 100
images (50 from each set) in total from both sets to con-
struct a test to train instance ratio of 1:4 (a common ratio
followed in machine learning techniques). The experiment is
repeated 10 times to have a random train/test images selec-
tion at each run. An average result is obtained in the form of
precision-recall curves. It is important to mention here that
the weights are calculated for the training images separately
in the same way as explained in Sect. 5.2. These weights are
averaged to obtain a final single set of feature weights which
are in turn universally applied on the testing images as there
is no contextual or clustering involved in this experiment. As
mentioned earlier, the objective of this experiment is only to
show that JSD has is a better choice than SNR for weight
calculation.

Figure 11 shows the average precision-recall curve for
both the JSD and SNR-based TD weighting along with the
BU (i.e., no weighting) option. As expected, the highest pre-
cision value for the BU approach is very poor (approximately
30 %). This is due to the fact that 50 % of the test images are
those in which the target is non-salient, and hence poorly
detected by the BU approach. As it is evident, the SNR
based TD weighting has improved the detection but only by
approximately 10% of the maximum precision value. On the
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Fig. 11 Comparison between JSD and SNR-based weight calculation
methods. The right column shows an example of a test image (top image)
and the saliencymap generatedwhen applying SNR (middle image) and
JSD (bottom image) as feature weight calculation procedure

other hand, the JSD approach has amaximumprecision value
of 58 % and clearly outperforms the SNR-based approach.
Note that the precision is still low due to the absence of
contextual information when generating the feature weights.
For visual quality, the figure also displays a single image
and the obtained TD saliency maps from SNR and JSD,
respectively, from top to bottom. As it is evident, the JSD
version has fewer false positive regions compared to the SNR
one.

From the two experiments mentioned above, we conclude
the effectiveness of our proposed features along with the
global centre-surroundmechanismand the JSDweight calcu-
lation procedure for both saliency and target detection. Next
with the help of these two results, we demonstrate how fea-
ture weighting can improved by incorporating the contextual
information.

6.3 Experiment 3: TDCoW for target detection

In this experiment we explore the efficacy of our proposed
TDCoW and the importance of the contextual-based clus-
tering. We test our model on four datasets for target object
detection. The first two are the salient and distractor datasets
discussed earlier for cricket ball target detection. The other
two are selected from the Graz-02 dataset which is com-
monly used for object classification or recognition [31]. The
dataset contains images with objects of high complexity
and a high intra-class variability on highly cluttered back-
grounds. There are three classes in this dataset, however,
only two are considered for target detection i.e., bikes and
persons as they are more difficult to be classified than the car
class.

The images from each of the four datasets were split into
equal halves, one for training and the other for testing. In
addition, different cluster sizes were used. Figure 12 shows
the average area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) Analysis achieved when varying
the number of clusters in each dataset. It is clear from Fig. 12
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Fig. 12 Cluster size variation affect on the accuracy of the proposed
model

that as we increase the number of clusters, we achieve better
AUC performance. The drawback of increasing the number
of clusters is higher computational load in matching the con-
textual descriptor of the test image with that of the centroid
contextual descriptors of the clusters. To be within a reason-
able limit, empirically we have chosen the number of clusters
to be 30 for the salient and distractor datasets and 45 for the
bike and person datasets.

6.3.1 Quantitative analysis

We test our model by generating the TD saliency maps and
finding the accuracy of detection in terms of both precision-
recall and F-measure curves.

The comparison is conducted between TDCoW and TD
weighting without the contextual information or cluster-
ing. Figure 13 shows the obtained results for the salient,
distractor, bikes and persons dataset from left to right
columns, respectively, where the top row is the precision-
recall result and the bottom row is for the F-measure. The
proposed TDCoW has a better performance both in terms of
precision-recall and F-measure curves in all four datasets.
However, some observations and patterns need more elabo-
ration.

Starting with the salient dataset, as we can observe, the
BU [i.e., IDM (Multi-features) with flat weighting on the
features] has a reasonable performance in the accuracy of
detecting the target (see the first column of Fig. 13). This is
expected as we have seen the capability of the IDM (Multi-
features) in Sect. 6.1 in detecting the salient objects, and this
dataset has the target cricket ball being themost salient object
in the image. However, when applying the weights without
the use of context, the improvement was not that dramatic.
This might be due to the fact that averaging the weights over
the examples in this dataset yields a nearly uniform distrib-
ution of weights. The small improvement may suggest that
there is some similarity in structure and context of the images
in this dataset. On the other hand, for the proposed TDCoW,
we can see a very high improvement in the performance for
most of threshold values (see the precision-recall curve in the
first rowof Fig. 13). This shows the effectiveness of including
the context when finding the weights of the features.
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Fig. 13 Precision-Recall and F-measure performance evaluation of TDCoW for the salient, distractor, bikes and persons dataset from left to right,
respectively. The comparison is conducted with the BU model and the TD weighting without context. The top row is for Precision-Recall and the
bottom one is for F-measure
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Fig. 14 Precision-recall and F-measure comparison between TDCoW and other state-of-the-art-techniques for the salient, distractor, bikes and
persons dataset from left to right, respectively. The top row is for precision-recall and the bottom one is for F-measure. (The figure is best viewed
in colour)

For the distractor dataset (see the second column of
Fig. 13), very poor performance both for the BU and TD
without context can be observed. This is expected as now
the target object is not salient and being distracted by other
objects and background variation. Again, the inclusion of
context leads to considerable improvement in performance.

The next dataset is the Graz-02 (bike) dataset. Note that
there is almost no difference in performance between the BU
and the TD without context. In fact, for some high thresh-
old values, the F-measure values are higher for the BU than
the TD without context. This suggests that with the absence
of context for this dataset in particular, the averaging over
the examples is merely a random procedure, and since the
images in this dataset have a very high inner-class variability
in terms of context, the averaging procedure results in a poor
performance due to incorrect weighting of the features. This
in turn leads to a degradation in performance, as can be seen
strikingly in the F-measure graph in third column of Fig. 13.

The TDCoW on this dataset has a prominent performance
improvement on small recall or high threshold values. There
is a steep drop in the performance as the threshold values
increase. This is because the TD maps generated for this
dataset exhibit high variation of intensity values when the
target object (in this case a bike) is detected. This might
be due to the variation in features of the region of interest
containing the bike.

For the last dataset i.e., Graz-02 (persons), again the
TDCoW outperforms both BU and TD weighting without
context. Due to the difficulty of this dataset, both preci-

sion and F-measure are lower than in the other datasets.
The TD maps generated by the proposed model have more
false positive regions than those observed in the previous
three datasets. This gives an indication that the current
low-level features being used in TDCoW might not be suf-
ficient to describe such targets. However, the contribution of
incorporating context into the weightingmechanism remains
prominent in this dataset.

Now to compare the proposed TDCoWmodel with exist-
ing state-of-the-art saliency techniques, we again plot the PR
and F-measure curves to evaluate the performance of our
proposed model. We also compare our model with the model
proposed by Judd et al. (LPH). This model is the closest to
ours as it learns weights of various features from eye fix-
ation data through SVM classifier. Since the four datasets
used in our experiments have segmentation groundtruth, it is
not possible to train the weights over these datasets due to
lack of availability of eye fixation information. Instead, from
the segmented groundtruth region, we performed a random
sampling of points to form an ideal eye fixation data so that
the model parameters are learnt from the training examples.

The precision-recall and F-measure curves are replotted
in Fig. 14 from Fig. 13 for TDCoW to demonstrate the com-
parison with other state-of-the-art techniques. As before, the
first row of Fig. 14 shows the precision-recall performance,
whereas F-measure values are plotted in the second row
of the figure for all four datasets. On the first dataset (i.e.,
salient), it is evident that TDCoW has the best performance
than rest of the state-of-the-art techniques. Although in this
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Fig. 15 Qualitative sample images of the proposed TDCoW and other state-of-the-art models. (The figure is best viewed in colour)

dataset, the target object to be detected (i.e., the cricket ball)
itself is salient, the BU state-of-the-art techniques could not
perform as good as our proposed model. The best notice-
able performance of TDCoW can be seen for the distractor
dataset. A huge performance difference between TDCoW
and rest of the state-of-the-art techniques on this dataset con-
firms the capability of our proposed model in detecting the
target object when it is not salient (see the top and bottom
rows of column two in Fig. 14). Since the distractor dataset
contains distracting object which is mostly salient, the poor
performance of these techniques is reflected due to the fact
that they falsely detected the most salient region rather than
the target object in majority of the examples on this dataset.

In the bike dataset, we can see similar performance by
TDCoW to the one acheived on SOD dataset. Most of the
images in this dataset contain the target object (i.e., bike)
which are salient. As before, TDCoW has the best perfor-
mance on low threshold values than other techniques but
degrades by increasing threshold. Similarly the target object
in the person dataset is also salient in most of the images.
TDCoWhas amoderate performance in this dataset, whereas

the best performance is acheived by LPH as the model uses
high-level face and pedestrian detectors as features.

6.3.2 Visual analysis

Figure 15 shows representative examples of the saliency
maps (shown by heatmaps) generated by various mod-
els including our proposed TDCoW model. The last three
columns show the maps produced when using BU [i.e.,
our proposed BU IDM (Multi-features)], TD weighting but
without context (TD (NC)), and finally our TD proposed
model TDCoW. Three sample images are selected from each
dataset. As an example from the salient training image, the
ball in the second image although being salient exhibits low
contrast and partially occluded by the grass. TDCoW was
able to detect the target with high accuracy with a compara-
ble result to HDCT and BSL. Rest of the techniques failed to
detect the target precisely. In the distractor sample images,
we can see that our model outperforms rest of the techniques
in not only detecting the target, but also in producing small
false alarm regions.
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From the bike dataset, it can be observed that TDCoWwas
able to detect parts of the bikes and not as a whole object, a
point which has been made earlier regarding the detection of
the bike dataset. Despite partial detection, the visual results
compared to other techniques showvery high target detection
precision. As an example, in the third image, only our model
was able to detect the targetwithminimal false alarms.On the
other hand, rest of the techniques detected the yellow object
as it is more salient than the bike. In the person dataset, we
can see a reasonable detection performance by the proposed
model. For instance, in the last image, the object was detected
but with far more false negative regions compared to more
accurate results by other techniques.

When comparing our model with the BU version (i.e., no
weighting) and the TD weighting without context, we can
clearly mark the visual improvement in locating the target
object when using context (i.e., by TDCoW model) over the
other two approaches (see the last three columns of Fig. 15).
In majority of these sample images, we clearly see that pure
BU has poor performance in detecting the target, particu-
larly in the distracting and bike dataset. Little improvement
is acheived when performing TD weighting of features over
all the training examples but without the inclusion of con-
text.Ultimately, upon incorporating the context, the detection
performance improvement is obvious. In some situations,
for instance (the second and third image of the distraction
and persons datasets, respectively), the incorporation of con-
text does not have a significant improvement over the TD
weighting without context. In other occasions, a noticeable
improvement is acheived when using the context to modify
the TDweighting either by increasing the precision in detect-
ing the target (e.g., the first image in the bikes dataset) or by
reducing the number of false positive regions (e.g., the first
image in the distractor dataset).

6.3.3 Feature weight analysis

Some feature weight statistics are extracted for the proposed
model. For the salient and distractor datasets, Fig. 16 shows
the ranking of the learned weights. The ranking represents
the percentage of examples in a dataset for which a feature
weight is positioned at a particular rank. Since there are 17
sub-features in total, the rank is ranged from 1 to 17 indicated
by the x axis.

As an example, the Principal component FM-1 has the
highest rank in terms of weight value (i.e., rank 1) in approx-
imately 30 % of the 100 test images in the salient dataset.
This suggests that the PCA FM-1 feature is the most impor-
tant feature in this dataset for detecting the target.

Now to analyse the weight distribution profile, it can be
easily observed that the contrast (particularly red/green and
hue channels), both the PCA features and the frequencyMSS
have the highest weight values particularly in the first four

ranking positions in the salient dataset. This result is con-
sistent with some previous work in feature importance for
salient object detection. For instance, it has been indicated
by many authors the importance of contrast features for BU
saliency detection [10,18,39]. Similarly, it has been shown
that PCA features play an important role in extracting salient
regions [33,45]. The colour, orientation and intensity have no
significant contribution as the weights are almost distributed
uniformly over these features. This is true as the attention
towards a salient object is more concerned with the contrast
of the object rather than its colour.

For the centre-bias feature, its importance is not that sig-
nificant. This might be due to the fact that when the dataset
was generated, most of the images that were taken of the
target cricket ball did not consider positioning the object in
the centre of the image, as usually is the case in most of the
saliency datasets.

For the distractor dataset, similar profile of weight ranking
can be seen. However, more importance now is on the PCA
and contrast features in particular. In addition, colour, edge
and orientation have slightly higher weighting than in salient
dataset.

6.3.4 Results summary

From the qualitative, quantitative andweight statistics results
we conclude that modelling TD saliency by incorporating
contextual information plays amajor role in performing high-
level vision tasks particularly target object detection. Our
proposed model TDCoW not only highlights the benefit of
using contextual information for target object detection but
also demonstrates the superiority of the model over existing
state-of-the-art techniques in salient and target object detec-
tion.

6.4 Limitations of TDCoW

There are two limitations of the proposed model which need
to be explored in future works. The first is whether TD mod-
elling of this kind is sufficient for generic target detection.
Although the model utilizes the image context for better fea-
ture weight assignment, the knowledge of the target features
remains an important factor for more accurate weighting of
features.

The second limitation is the processing speed both in the
training and testing phases. Generation of a single saliency
map for an image size of 400 × 300 pixels requires around
3.5 s. Similarly, weight calculation for all features and CM
for a single image takes around 44 s. For 100 training images
of an average size of 400×300 and with 10 clusters, the CPU
time required to perform all the steps in the training phase
which includes weight calculation, saliency generation, clus-
tering and contextual descriptor generation is around 4.5 h.
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Fig. 16 Feature weight ranking distribution of TDCoWmodel. The left half is the ranking for each feature weight from the salient dataset and the
right one is for the distractor dataset

In the testing phase, the process involves TD saliency map
generation, context generation, context matching and weight
selection and takes around 1.5 min to generate the final TD
saliency map of an image of size 400 × 300.

Hence, the TDCoW model might not be suitable for real-
time target detection applications but could be considered for
off-line target detection. Furthermore, to improve the effi-

ciency of the model in the testing phase, the key factor is
in the contextual matching. The contextual matching is per-
formed over a large descriptor of distributions which makes
the matching process slow. A possible solution could be to
reduce the dimensionality of the descriptor for more efficient
matching process.
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7 Conclusions

Modelling top-down saliency by appropriately weighting
the bottom-up features for target detection is a non-trivial
research topic in active vision. The major challenge in this
research is how to dynamically assignweights to the features.
Most of the existing techniques do not consider high-level
information within an image when weighting the features.
As a result, such learned weights from example images only
work when the test images are contextually to the training
images.

To overcome this problem, our proposed Top-down Con-
textual Weighting (TDCoW) model learns contextual struc-
tures from the training images and applies them on the
test images to dynamically assign weights to the features.
Hence, the major contribution of this paper is to highlight the
importance of contextual information for top-down saliency
modelling by feature weighting for target detection.

The proposed model is tested on four challenging datasets
including two self-created datasets of cricket balls and
two object classes (bikes and persons) as targets from the
Graz-02 dataset. In all datasets, the results show a consid-
erable target detection performance improvement in terms
of precision-recall and F-measure values when applying
contextual information for feature weighting over feature
weighting without context.
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