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Abstract Markov random field (MRF), as one of special
undirected graphs, is widely used in modeling priors of nat-
ural images. Targeting to learn better prior models from a
given database, we explore the natural image statistics at
different scales and build normalized filter pool, a kind of
high-order MRF, for prior learning of nature images. The
main contribution of the proposed model is that we con-
struct a multi-scale MRF model through constraining the
norms of filters in kernel space and integrate all the filtering
responses in a unified framework. We formulate both learn-
ing and inference as constrained optimization problems and
solve them using augmented Lagrange method. The experi-
ment results demonstrate that the normalization of filters at
different scales helps to achieve fast convergence in learning
stage and obtain superior performance in image restoration,
e.g., image denoising and image inpainting.

Keywords High-orderMarkov random field ·Multi-scale ·
Normalized filter pool · Image denoising · Image inpainting

1 Introduction

Over the past decades, Markov random fields (MRFs) have
become a popular framework for natural image model-
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ing due to its effectiveness in describing image statistics
and successful applications, e.g., super-resolution [6,32],
optical flow [1,25], image restoration [7,9,12,37], recon-
struction [4,14,23] etc. The main issue ofMRFs is to choose
appropriate cliques and potentials to describe the knowl-
edge of neighboring interactions. The forms of cliques and
potentials can be designed or learned from the contextual
constraints in natural images [27].

The mainstream of MRFs image models is trying to fit
the heavy-tailed marginal distribution of natural images [31].
Historically, simple neighborhood structures (i.e., pairwise
MRFs) are broadly used in many low-level vision tasks [4,8]
because of their simplicity and low computational cost [16].
Numerous efforts have beenmade on consideringmore com-
plex statistical dependencies in natural images and building
high-order MRFs [12,37]. Roth and Black [27] compare the
performance under different number and shape settings of
maximum clique and validate the superior performance of
high-order cliques compared to the pairwise ones. Mean-
while, the potentials have also developed from Gaussian
function, which is used in early studies of MRFs [8], to com-
plex ones, e.g., generalized Laplacian [2,13,28], Gaussian
scale mixtures (GSMs) [31,35]. Schmidt et al. [31] evaluate
the quality of image priors captured by various potentials
and develop a flexible one by viewing MRFs in genera-
tive aspects. In sum, high-order, non-Gaussian types gain
momentum over pairwise, Gaussian ones. It is worth not-
ing that although the above approaches make great efforts on
image prior modeling, many intrinsic characteristics of nat-
ural images are not well covered; this motivates researchers
to address specific image characteristics in model building.

One consideration is that natural images exhibit spatial
variations in orientations, Some researchers propose to use
spatially adaptive potentials in MRFs, e.g., Lyu et al. [18] ,
Roth and Black [26] introduce predefined derivative tensors
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to steer the filters towards the orientations of local image
structures. In thisway, they could adaptively adjust the poten-
tials according to the structure of specific images, while at
the expense of largely increased complexity.

Another important property of natural images is the cross
scale variation, i.e., scaling an image would display different
structures [30,34] and a multi-scale scheme tends to extract
more information under a given training database. So far, few
previous work explores the multi-scale MRFs models of nat-
ural images except for some empirical studies on making use
of multi-scale information for specific tasks [3,22]. It should
be noted that although natural images ensure the similarity at
different scales, which is also known as scale invariance [30],
there still exist statistical divergences among filter responses
(see the 3rd column of Fig. 1); straightforward integration of
the nature image information at different scales into a unified
framework may not be an efficient way, which is demon-
strated in the experiment section of this paper. This paper
targets to explore the scheme to integrate the nature image
information at different scales into a unified framework for
performance boosting.

Our key idea to model the scale information of natural
images is to construct a multi-scale high-order MRFs with a
set of pyramid filters (i.e., different sizes of filters). Through
constraining the norms of filter’s response at different scales
in kernel space, we build a filter pool to integrate the multi-
scale nature image information.Different from the traditional
way which describes the multi-scale information by a set of
pyramid images, the proposed strategy would dramatically
reduce the training data and training time.We learn thewhole
parameters of the proposed filter pool simultaneously from a
given database. The learned multi-scale MRFs model can be
applied for various tasks andwe demonstrate its effectiveness
via image denoising and image inpainting. The illustration
of the proposed MRFs model is shown in Fig. 1.

2 Preliminaries

2.1 Why multi-scale is beneficial in MRFs?

Zhu and Mumford [37] have described that natural images
exhibit information across a large entropy range, and an ideal
prior model for natural images is supposed to provide a full
description. Traditional MRFs are usually with single fixed-
sized filter and the model parameters are learned from a large
training database, which is composed of image patches at dif-
ferent entropy rates (as shown in Fig. 2a). In order to improve
the flexibility of MRFs, Roth and Black [27] proposed a typ-
ical MRF model, named Fields of Experts (FoE), to reflect
the key characteristics of natural images with a bank of fixed-
sized filters.
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Fig. 1 Framework of normalized filter pool and its applications

However, it is impossible to arrive at the true statistics
of natural images with fixed-sized filters (i.e., single scale)
under a limited database; this motivates us to improve MRFs
model alternatively. Following the scale space theory [34],
there exist perceptual transitions in image pyramids where
we can extract various information from different pyramid
levels or different cropped-sized sub-images. Fig. 2 gives an
intuitive example; comparing (a) and (b) one can see that the
different-sized patches cropped from the same image (with a
small entropy range) apparently reveal similar statistics with
those cropped frommultiple images at various entropy rates.
Inspired from above analysis and observations, we aim at
building a multi-scale MRF model to extract more informa-
tion than single-scale models.

In addition, studies on several applications using MRF
models (e.g., [3,17,22]) show that considering images in the
scale spacewould improve the performance. This reveals that
we may improve the MRFs by considering different scales
in modeling. In this paper, we use different sizes of filters to
build a high-orderMRF tomodel themulti-scale information
of nature images.

2.2 How to integrate multi-scale information?

Althoughmulti-scale scheme inMRFs tends to extract richer
prior knowledge, the integration is nontrivial since either
the filter or filter responses may exhibit large cross-scale
variances. In this section, we will explore the underlying
problems and solutions in multi-scale integration.

Denoting x as an image, f as a zero-mean filter and ∗ as
convolution, the variance of the filter response is
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Fig. 2 Motivation of multi-scale MRFs. a Traditional single-scale MRFs learn prior models from images at different entropy rates. b Proposed
multi-scale MRF extracts similar statistics as in a from a single image

σ 2
x∗ f = 1

n
(x ∗ f )2, (1)

where n is the number of pixels in x . Note that we assume
the mean of x ∗ f is zero because of the zero-mean filter and
the statistically similar color values in a small region. For
convenience, we regard convolution as the multiplication of
clique matrix Ax and column vector F , which are computed
from x and f respectively, and yield

σ 2
x∗ f = 1

n
(Ax F)T(Ax F). (2)

After performing a singular value decomposition to
1
n (AT

x Ax ) as 1
n (AT

x Ax ) = Q�QT, we get

σ 2
x∗ f = ‖� 1

2 QTF‖22. (3)

For simplicity, we define

B = �
1
2 QT. (4)

Here, B is just the scaled principal components of clique

matrix Ax , with the scaling factor being �
1
2 . Experiments

have shown that these principal components of small patches
are statistically stable across different natural images. In
implementation, we pursue B from a large training database
for prior learning.

Equation (3) tells us that the variance of filtering responses
with x by any filter B−1H (i.e., F = B−1H ) is ‖H‖22.
Since variance is the main factor affecting the shape of a
heavy-tailed distribution, we can obtain approximately simi-
lar responses via constraining the l2 norm of H . Note that the
constraint on filter norm has been used by Köster et al. [15],
but in different ways and for different purpose.

Besides, perhaps the most interesting result in Eq. (3) is
that we can control the shape of filtering responses by con-
straining the norm of H without considering the filter size.
Therefore, although there may exist large variances among
cross-scale filter size and filtering responses, we can con-

trol ‖H‖2 to ensure similar potentials at different scales and
integrate them in a unified framework.

3 Normalized filter pool

The purpose of image prior modeling is to dig out the statis-
tics (joint probabilities) in images. MRFs provide a concise
framework to build the joint probabilities, which describe
an image with graphical representations G = (V, E) with
V denoting the pixels and E representing the connections
between neighboring pixels. According to Harmmersley–
Clifford theorem, we could factorize the joint probability p
for all pixels in image x as follows:

p(x) = 1

Z

∏

c∈C
Vc(xc), (5)

where xc indicates a specific clique;Vc is the potential defined
over xc; C is the set of all cliques, and Z is a normalizing fac-
tor. For simplicity,MRF is usually homogenous, i.e., Vc is the
same for all cliques in graph G [26]. As a reminder, every Vc
needs to map the clique xc to a real positive number. There
are lots of work that define different mechanism of map-
ping. The common and influential one uses two neighboring
nodes or pixels and compute the potentials as Vi, j (|xi − x j |).
One particular work is the FRAME model proposed by Zhu
and Mumford [37]. The FRAME model utilizes the filters to
describe the clique information in graph, which facilitates the
parameters learning from database. The filters with the same
shape of cliques are designed to describe the contextual cor-
relation among the signal elements and the joint probability
of all pixels in x could be computed as

p(x;�) = 1

Z(�)

∏

c∈C
φ((x ∗ f )c;α). (6)

Here,� is the collection of all parameters; Z(�) is a normal-
izing factor. Note that we could use a heavy-tailed function
φ(·;α) (e.g., φ(x) = e−|x |α ) instead of delta function to
penalize large variations within a local region. Inspired by
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the PoE model [10], Roth and Black [27] propose the FoE
model which integrates K aforementioned models and can
capture the statistics of natural images more reliably. Thus,
Eq. (5) can be extended as follows:

p(x;�) = 1

Z(�)

∏

c∈C

K∏

i=1

φ((x ∗ fi )c;αi ). (7)

In this paper, we extend the above ideas further, i.e., learn-
ing statistics of natural images across different scales. Since
the shape of filtering response distribution is decided by the l2
norm of the filters multiplied by B−1 (cf. Sect. 2.2), we con-
strain the filter norms to ensure similar responses at different
scales, and then the factoring rule in traditional MRFs can be
extended across scales to construct a multi-scale integrated
high-order MRF prior model.

The statistical characteristics of natural images [11,29]
reveal that the filtering responses of natural images display
similar responses, so we constrain the l2 norm of filters in
space B within a range. (We will discuss the parameter set-
tings in the experimentation section.)

Considering S different scales, we denote the number of
filters at scale s ∈ S as Ks , f si as the i th filter, and Fs

i as its
corresponding column vector. Eq. (5) can be further refined
in an integrated manner (see Fig. 3):

p(x;�) = 1

Z(�)

∏

s∈S

∏

c∈Cs

Ks∏

i=1

φ((x ∗ f si )c;αs
i )

s.t.Fs
i
T1 = 0, d1 ≤ ‖Bs Fs

i ‖2 ≤ d2. (8)

Here, φ(·;αs
i ) is a heavy-tailed function (we use student-T

as in [27]); � is a collection of the parameters { f si , αs
i |i =

1, 2, ..., Ks; s ∈ S}; Cs is clique set at scale s; Z(�) is
a normalizing factor; Bs is a transform matrix at scale
s; 1 is an all-one vector to ensure the zero-mean proper-
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Fig. 3 The flow chart of proposed NFP.We use S different sized filters
to convolve with image x , map all the filtering results with φ(·), and
multiply them together to construct the joint probability

ties of filters as in [11,28]; [d1, d2] is the range for filter
norms.

Since we normalize the filter norms for building a multi-
scale MRF, we name the prior model defined in Eq. (8) as
normalized filter pool (NFP), whose energy is

E(x;�) = −
∑

s∈S

∑

c∈Cs

Ks∑

i=1

logφ((x ∗ f si )c;αs
i ). (9)

4 Learning and inference

In this section, we will explain the learning and inference
algorithms respectively.

4.1 Constrained parameters learning

Wedenote the training data set as X , which includsM images
x1, x2, . . . , xM . Because NFP is a model with constraints on
parameter set �, we adopt the augmented Lagrange method
and change the log-likelihood function as the following equa-
tion:

L(X;�)=
M∑

i=1

log p(xi ;�)+
J∑

j=1

λ j c j (�)+
J∑

j=1

1

2μ j
c2j (�).

(10)

Here, c j (·) is j th constraint, which can be an equality con-
straint or inequality constraint [21]; J is the number of
constraints (J = 3 in this paper); λ and μ are Lagrange
multipliers and penalty parameters, respectively.

We search for the parameter � that maximizes the
above objective function over the training data set. In
initialization stage, we use linear transformation (multi-
plied by B−1) and normalization to the samples from
Gaussian distribution, as described in Step (3) and (4) of
Algorithm 1.

After the initialization, we adopt the gradient descent
method to optimize the objective function. The gradient of
Eq. (10) with respect to � is computed as

∇�L(X,�) =
M∑

i=1

∇� log p(xi ;�)

+
J∑

j=1

(
λ j − c j (�)

μ j

)
∇�c j (�). (11)
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Algorithm 1 Parameters learning of NFP

Input:
X : training data;
S: number of scales;
Ks : number of filter f si in scale s;
φ(·; α): form of potential function;

Output:
< f si , αs

i >: i = 1, 2, ..., ns; s = 1, 2, ..., S;

1. Compute clique matrix As with database X ;
2. Compute matrix (Bs)−1 as shown in Eq. (4);
3. Generate Ks random f̃ si , which are i.i.d. fromGaussian distribution
with zero mean and given variance;
4. Initialize the filters as f si = (Bs)−1 f̃ si ;
5. Repeat the following steps until ‖∇�L(X; �)‖2 < ε;

5.1. Update λ j and μ j , j = 1, 2, 3;
5.2. Sample a new clique matrix As with CD;
5.3. Compute ∇ f si

L(X; �), and update f si ;
5.4. Compute ∇αs

i
L(X; �), and update αs

i ;

The first term of Eq. (11) is computed as [33]

M∑

i=1

∇� log p(xi ;�) = M · [−〈∇�E(x;�)〉X
+〈∇�E(x;�)〉p]. (12)

Here 〈·〉X and 〈·〉p are the expectations with respect to empir-
ical distribution of X and model distribution p, respectively.
It is very efficient to adoptContrastiveDivergence (CD) algo-
rithm [33] to compute Eq. (12).

The second term computes the gradient of constraints
c j (�). Taking derivatives of Eq. (8), we have

∇ f si
c1 = 1,

∇ f si
c2,3 = (Bs)TBs Fs

i . (13)

The Lagrange parameters λ j and penalty parameters μ j

can be updated according to the following equalities [21]:

λ
(k+1)
j = λ

(k)
j − c j (�

(k))/u(k)
j ,

μ
(k+1)
j = ημ

(k)
j . (14)

where k indexes the iterations and η denotes an adaptive
learning rate, 0 < η ≤ 1.

For clarity, we summarize the steps of parameter learning
in Algorithm 1.

4.2 Constrained inference using priors

For more flexible usage, we formulate the inference as a con-
strained optimization instead of the widely used Maximum

a Posterior (MAP) method:

x∗ = argmax
x

log p(x)

s.t. d j (x) = 0, j = 1, 2, . . . J. (15)

Here, d j (·) is the j th constraint function w.r.t. x and J is the
number of constraints.

Removing the constraints via augmented Lagrange
method, Eq. (15) can be rewritten as follows:

F(x) = log p(x) +
J∑

j=1

λ j d j (x) +
J∑

j=1

1

2μ j
d2j (x). (16)

We also utilize gradient ascent method to find the optimal
x . The gradient of F(x) w.r.t. x is computed as

∇x F(x) = ∇x log p(x)+
J∑

j=1

(
λ j − d j (x)

μ j

)
∇xd j (x). (17)

Similar to [37], we compute the first term of Eq. (17) as

∇x log p(x) =
S∑

s=1

n∑

i=1

f̄ si ∗ ψ( f si ∗ x;αs
i ), (18)

where ψ(·) is the gradient of logφ(·) w.r.t. its parameter; f̄ si
is mirrored by f si .

The second term in Eq. (17) depends on specific inference
tasks. For example, in image denoisingwith noise being zero-
mean and variance being σ 2, d(x) takes the following form:

d1(x) : x − x∗ = 0, (19)

d2(x) : 1

n

√
tr((x − x∗)T(x − x∗)) = σ 2. (20)

In inpainting, d(x) is null, we only compute the pixels in
unknown regions via optimization.

The Lagrange multipliers and penalty parameters are
updated similar as Eq. (14).

For clarity, we summarize the algorithm of inference in
Algorithm 2.

5 Experiments

5.1 Model analysis

The central issue of the proposed NFP is the normaliza-
tion to multi-scale filters and the corresponding constrained
optimization algorithm. In this section, we design experi-
ments to analyze the subsequent advantages quantitatively.
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Algorithm 2 Inference with the learned priors

Input:
x0: input data;
f si : learned filters;
φ(·; αs

i ): potential function;

Output:
x : Result;

1. Initialize the result: x = x0;
2. Initialize the Lagrange multipliers and penalty factors: λ = 1,μ =
1;
3. Repeat the following steps until ‖∇x F(x)‖2 < ε;

3.1. Update λ j and μ j ;
3.2. Compute ∇x F(x) according to Eq. (17);
3.3. Update x ;

Taking image denoising as an example, we use Peak Signal-
to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM)
as performance criteria, and compare the performance of
our algorithm under different constraint settings (with and
without constraint) to measure the contribution from the
introduced normalization. For a closer look, we also com-
pare the performance between initial parameters and learned
parameters.
Single scale experiment. We first test the denoising perfor-
mance of initial filters with andwithout constraints at a single
scale 3 × 3. In non-constraint setting, we get the denoising
performance with the filters initialized by the samples drawn
fromGaussian distributionwith different variances(cf. Algo-
rithm 1), as shown in horizontal axis of Fig. 4. In constrained
setting, we crop 20, 000 patches (15 × 15 sub-images)
randomly selected from the Berkeley image segmentation
database [19] to compute matrix B−1 as shown in Algo-
rithm 1 and normalize all the filters to a fixed norm in space
B−1 (i.e., f̃ si ). For objective comparison, we initialize all
αs
i to be 0.05 and adopt the same sampler Hybrid Monte

Carol (HMC) in both models. In implementation, we run
the sampling code downloaded from website [20] under the
following parameter settings: each HMC step consists of 30
leaps, the leap-frog step size is initialized with 0.01, and
adjusted adaptively to keep the acceptance range between 90
and 98 %.

Then we test the denoising performance on 68 test images
fromBerkerly database (transformed to gray scale)withman-
ually added zero-mean noise (σ = 25), and the result is
shown in Fig. 4. One can see that the performance of filters
drawn from a unit Gaussian distribution and without normal-
ization (the method in [27]) is much inferior to that of the
normalized ones, while normalizing the filters or constrain-
ing the norm of the filters in space B−1 would help provide
good initialization.

Further, we compare the denoising performance of non-
constraint algorithm [27] and constrained algorithm under
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single-scale settings. The result in Fig. 5 shows that adding
constraints brings little improvement on a large training
database including 20, 000 patches (the maximum num-
ber in previous work [27,36] within unacceptable training
time). However, when we reduce the number of training data
and find that our constrained algorithm gives much supe-
rior performance to the non-constraint one: we obtain the
peak performance with 25 % of the training data neces-
sary for non-constraint method, corresponding running time
also decreases linearly.This indicates that adding constraints
within a single-scale MRF would largely reduce the neces-
sary training data and the training time.
Multi-scale experiment. In this experiment, we only use 10%
of the patches used in single-scale experiment (i.e., 2, 000) to
learn our multi-scale MRF model, and drop the constraint to
get non-constraint result. We use three different cliques sizes

123



Normalized filter pool for prior modeling of nature images 443

Table 1 Denoising results for 4 test images [24]

σ /PSNR Barbara Boats Barco House

05/34.15 37.20 36.35 38.43 38.46

10/28.13 32.92 33.24 34.49 35.07

15/24.61 30.39 31.41 32.36 33.46

20/22.11 28.68 30.14 30.94 32.16

25/20.17 27.40 29.05 29.98 31.26

Table 2 Performance comparison of image denoising results in 68 test
images with σ = 25 [31]. Note that our result outperforms the state-of-
the-art

Model Inference Avg. PSNR (dB)

Buades et al. [5] MMSE 27.50

Roth et al. [27] MAP (w/λ) 27.74

Schmidt et al. [31] MMSE 27.95

Portilla et al. [24] MMSE 28.02

Ours Constrained 28.32

(3 × 3, 5 × 5, and 7 × 7) and remove one filter indicating
the mean value at every scale to learn 80 filters (i.e., 8 filters
at scale 3 × 3, 24 ones at scale 5 × 5 and 48 ones at scale
7 × 7). All the filters are initialized by the samples drawn
from a Gaussian distribution with fixed variance (variance is
4 in implementation and result is insensitive to the parameter
setting) and then normalized in space B−1. Initialization of
αs
i s and the sampling are the same with that in single scale

experiment.
From the results in Fig. 6 one can clearly see that the

added constraints prominently improve the integrated perfor-
mance than non-constraint fusion. This indicates that there
indeed exist large differences among filter responses at dif-
ferent scales (their large difference can also be seen from
Fig. 1) and validates the normalization operation.

It is worth noting that the proposed multi-scale MRF
model (NFP) can be learned from a much smaller training
data under a given performance; the learning time does not
increase largely compared with learning a single-scale FoE.
The running time for multi-scale denoising is about twice of
that in single scale.

psnr = 20.17 psnr = 25.39 psnr = 26.30 psnr= 26.53 psnr = 26.31 psnr = 26.81

psnr = 24.61 psnr = 30.94 psnr = 31.76 psnr = 32.85 psnr = 32.04 psnr = 32.22

Noise added
psnr = 20.17

Roth et al.
psnr = 29.17

Portilla et al.
psnr = 28.90

Buades et al.
psnr = 28.21

Ours
psnr = 29.47

Schmidt et al.
psnr = 29.24

Fig. 7 Some image denoising results and the comparison with state-of-the-art approaches
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5.2 Applications in image restoration

In order to validate the effectiveness of the proposed multi-
scaleMRFmodel further, we conduct a series of experiments
in two typical applications: image denoising and image
inpainting.
Imagedenoising experiment. In this experiment,we addnoise
manually under given standard deviation (either Gaussian or
non-Gaussian) and use the learnedmodel for denoising using
Algorithm 2.
A. Denoising and performance evaluation

We apply the learned NFP for image denoising on two
databases: Table 1 shows the denoising results on fourwidely
used test images for denoising [24] and Table 2 shows the
average performance on 68 test images from Berkeley image
segmentation database [19]. Figure 7 shows an exemplar
denoising result in parallel with some previously published
work.

We compare the performance with that of state-of-the-art
algorithms, as shown inFig. 7 andTable 2, fromwhichwe can
see that the proposedmodel outperforms the previouswork in
both visual results andquantitative evaluation. Thepromising
performance may be due to the fact that we normalize the
filters across image scales before integrating them together
and help to achieve a more reasonable prior.
B. Effects of model parameters

In this experiment, we test the effects from two key para-
meters on denoising performance: clique size and l2 norm of
filters.

Figure 8 shows the denoising results with different clique
sizes and the one using integration scheme.Noticeable differ-

Original image Noise added image

(c) Clique  size: 3×3
PSNR =27.37dB

(a) Original (b) Noise added
PSNR =20.17dB

(d) Clique  size: 5×5
PSNR =27.89dB

(f) Integrated
PSNR =28.28dB

(e) Clique  size: 7×7
PSNR =27.74dB

Fig. 8 Image denoising result with respect to the clique size

ences exist in the denoising results at different clique settings,
among which performance of clique 5 × 5 is superior to that
at adjacent scales. However, the integration scheme gains
another 0.39 dB in PSNR, which validates the effectiveness
of the proposed filter pool.

We also analyze the effects of the parameter || f ||2 on
denoising performance. From the curve obtained on 3 × 3
cliques in Fig. 9, we can see that the performance stays rela-
tive stablewithin [6, 30], while degenerating largely once out
of this range. Experiments on other clique settings give sim-
ilar trends, which effectively validate the added constraints
in our prior model.
Image inpainting experiment. We also apply the learned
image priors to image inpainting. Figure 10 shows our
inpainted results of the cropped ‘three children photo’
together with the ones implemented by Roth et al. [27] and
Schmidt et al. [31]. For clarity, a detailed region is shown on
the right bottom of each result. Although there is no quanti-
tative measurement for inpainting performance, the visual
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Fig. 9 Average PSNR of image denoising with respect to log(|| f ||2)

Ours

Roth et al [27]Original

Schmidt et al [31]

Fig. 10 Results of image inpainting
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results reveal that our model is able to obtain inpainting
results comparable or superior to those of state-of-the-art.

6 Conclusions and future work

In this paper, we normalize the image statistics at differ-
ent scales and build a normalized filter pool for modeling
image priors; the normalization enables to integrate multi-
scale information in a unified manner to learn a high-order
MRF model. The proposed model obtains superior perfor-
mance in both image denoising and inpainting tasks.

In the future, we would like to extend the proposed model
in more flexible ways, e.g., design clique shape according to
segmentation results instead of uniform grids. Applying the
approach to other tasks (e.g., video, voice) is also a worth
considering direction.
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