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Abstract It is well known that docking of Autonomous
Underwater Vehicle (AUV) provides scope to perform long
duration deep-sea exploration. A large amount of literature is
available on vision-based docking which exploit mechanical
design, colored markers to estimate the pose of a docking
station. In this work, we propose a method to estimate the
relative pose of a circular-shaped docking station (arranged
with LED lights on periphery) up to five degrees of freedom
(5-DOF, neglecting roll effect). Generally, extraction of light
markers from underwater images is based on fixed/adaptive
choice of threshold, followed by mass moment-based com-
putation of individual markers as well as center of the
dock. Novelty of our work is the proposed highly effec-
tive scene invariant histogram-based adaptive thresholding
scheme (HATS) which reliably extracts positions of light
sources seen in active marker images. As the perspective
projection of a circle features a family of ellipses, we then
fit an appropriate ellipse for the markers and subsequently
use the ellipse parameters to estimate the pose of a circu-
lar docking station with the help of a well-known method in
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Safaee-Rad et al. (IEEE Trans Robot Autom 8(5):624–640,
1992). We analyze the effectiveness of HATS as well as pro-
posed approach through simulations and experimentation.
We also compare performance of targeted curvature-based
pose estimation with a non-iterative efficient perspective-n-
point (EPnP) method. The paper ends with a few interesting
remarks on vantages with ellipse fitting for markers and util-
ity of proposed method in case of non-detection of all the
light markers.
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1 Introduction

There has been a steady increase in need for long duration-
cum-autonomous deep-sea operations in survey applications
supporting offshore oil and gas facilities emplacement,main-
tenance of intercontinental communication cables, etc. [1].
A major constraint for deep-sea operations with an AUV is
limited on-board energy and data storage capacity, which
necessitates frequent launching and recovery of AUV for
basic operations like energy re-fuelling and data uploading.
It is for this reason, the concept of underwater docking has
evolved, which helps in battery recharging, dynamic path
planning, mission reloading, data retrieval, etc., while AUV
is on a long duration subsea mission. Figure 1 depicts a typ-
ical dock–AUV arrangement.

Needless to highlight, realization of docking is highly
challenging as one needs to design develop AUV con-
trollers for navigation in dynamic underwater ambiance.
It is observed that researchers have exploited optical [2],
acoustic [3] and electromagnetic [4,5] means to design dock-
ing systems. Though all three methods are recommended in
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literature a comparative chart in Deltheil et al. [6] summa-
rizes that optical means of docking have lower vulnerability
to external disturbances and also possess good directional
accuracy. It is for this reason, in the present work, we empha-
size on vision-based autonomous docking of an AUV.

Generally, vision-based docking of an AUV is a complex
task which requires 3D pose estimation of dock entrance in
its vicinity. Several variants of vision-based docking systems
have been proposed, including—color detection of markers
[2], usage of self-similar landmarks [7], 3D shape identifi-
cation [8], etc. Before we explore existing docking systems,
we first broadly classify them into two categories, namely,
active and passive imaging-based systems; where we refer to
passive imaging systems as thosewhich require external light
source to illuminate the scene to be captured, and active ones
as those which capture the scene to be an orderly arrange-
ment of lights. To illustrate, Frederic et al. [9] use passive
markers (i.e., black and white patterned sticks as landmarks)
for docking an AUV. Assuming the dock to be vertically
aligned with AUV, the authors dynamically measure the dis-

Fig. 1 An artist’s view of AUV entering into a floating dock

Fig. 2 Placement of beacons byHong et al. [2] (left) andPark et al. [13]
(right)

tance between camera and dock with the help of an acoustic
sensor. Negre et al. [7] propose to dock underwater vehicles
using self-similar landmarks. However, designing and real-
izing active landmarks proposed by them are an extremely
challenging task. Further placing such landmarks in front of
a dock is very difficult in a mechanical design perspective.
Maki et al. [10] proposed a docking method based on color
detection of markers for hovering type AUV’s. Their method
requires 3D placement of colored markers whose mechani-
cal arrangement once again is difficult. Moreover, it is shown
in [11] that using active markers in underwater context has
several vantages over passive ones.

Coming to active marker-based docking schemas, Hong
et al. [2] propose to use colored lights, five on the periph-
ery of dock and one away from the dock (Fig. 2, left). Since
perspective projection of a circle looks like an ellipse, they
propose to fit an ellipse for the identified markers and sub-
sequently estimate 6-DOF pose of the dock. In their work,
the basic assumption was that the diameter of a circular dock
(DC) would be the same as the length of major axis of an
ellipse (MAE) when seen in perspective projection, which
may not always true as difference between DC and MAE

increases with increasing relative angle between camera and
dock [12]. Besides reliable detection of light markers with
colored beacons in underwater ambience gets difficult due to
spectral absorption.

Park et al. [13] used a similar geometric arrangement (5
colored lights for dock Fig. 2, right) to estimate 3D pose of
the dock with respect to AUV. To estimate positions of light
markers in spatial domain, they recommend to choose a ran-
dom (but higher gray) intensity for binarization. However, as
seen in Fig. 3, arbitrary choice of threshold can lead to unre-
liable detection of markers due to non-uniform illumination
and scattering. Another problem with their approach is that
their algorithm fails if all the lights are not detected. Besides,
it is not lucid as to how the camera-dock range is measured
through pixel count comparison.

1.1 Problem statement

Though good amount of literature is available, the concept
of vision-based docking would prove successful only when
near-accurate control parameters acquired from vision data
are fed to the AUV controller. However, as mentioned earlier,

Fig. 3 Effect of non-uniform
illumination on choice of
threshold—original image (left),
effect of choosing lower
(middle) and higher (right)
thresholds
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realizing a vision-based docking system is complex task and
necessitates to address the following important issues:

• Feature of docking station Choice of a feature for
entrance of the dock as seen by an AUV plays an
important role in vision-based docking. Though differ-
ent features are exploited by researchers, we believe that
choosing a regular shape for the dock definitely aids in
3D pose estimation. For example, perspective projection
of a circle features a family of ellipses, a fact we exploit
in our work.

• Threshold selection Traditionally, 3D pose of a docking
station with respect to the AUV is obtained from a bina-
rized image. As we demonstrate in this work, choice of
suitable threshold for binarization especially in presence
of physical effects of the underwater channel definitely
plays an important role.

• Identification of dock center For progressive maneuver-
ing of AUV towards the dock, accurate computation of
the center of light markers in the image plane is essential,
especially during final stage docking. It is observed that
to dock, it is common to use mass moment-based cen-
troid of identified positions of markers. However, this
may impose the stringent condition of accurate detection
of all the light markers, failing which can lead to incor-
rect computation of the center, and eventual collision of
AUV with the dock.

• Pose estimation It is known that the success of the con-
ceptual docking relies in accurate and fast estimation of
the docks’ pose. However, this proves extremely chal-
lenging in a practical scenario as:

(a) in general, a docking station is in relativemotionwith
respect to AUV, for fixed as well floating docks,

(b) it is highly likely that an AUV drifts from its targeted
path (possibly) due to sudden currents resulting in
need for repeated pose estimation.

It is for this reason, generally, accurate cum non-iterative
solutions are sought for real-time 3D pose estimation. A
review of available non-iterative 3D pose estimation meth-
ods may broadly be classified to be based on—point/line
features (DLT [14], EPnP [15], LHM [16], RPnP [17]) and
curvature [2,18]. It is also noted that the most accurate point
feature-based non-iterative solution is EPnP [15]. On the
other hand, curvature-based methods as those developed in
[18] are also found to be quite suitable for non-iterative
3D pose estimation. However, considering the 3D pose esti-
mation requirement of AUVs docking into a circular cross
section (as in the present context), we note that:

• Typically, arrangement of lights on the dock is arbi-
trary and obtaining correspondence between 3D light
coordinates and 2D image points is not a simple task,

thus necessitating auxiliary methods like RANSAC be
employed. Moreover, accuracy of RANSAC method
depends on the number of iterations which in turn
increases the computational time, making it unsuitable
for real-time implementation. On the other hand, report-
edly, curvature-based methods are particularly suitable
for 3D pose estimation of circular sections. To illus-
trate, exploiting the fact that perspective projection of
a circular section in an arbitrary orientation is always
an exact ellipse and a circle has the property of high
image-location accuracy, according to [18]—“the com-
plete boundary or an arc of a projected circular feature
(i.e., ellipse) can be used for 3-D pose estimation without
knowing the exact point correspondence”.

• It is also observed from literature that existing methods
fail to accurately estimate the pose of the dock when
a few light markers remain undetected in the image. For
instance, EPnP is unstable when number of detected light
markers are less than five. However, elliptical curvature-
based methods are capable of estimating the pose of
circular sections even with four points (e.g., 4 light mark-
ers in the present context).

In view of the lacuna in available literature, in the present
work, we make an attempt to estimate the pose of a circular
dock relative to AUV upto 5-DOF via curvature-based pose
estimation methods. Before we conclude the section, major
contributions of the present work may be summarized as
follows:

• Propose a novel adaptive thresholding scheme for fea-
ture extraction from active marker images. Also with the
help of a point spread function (PSF) model, validate the
proposed method through simulation and experimental
analysis.

• Analyze and report vantages of employing ellipse fit-
based methods in estimating pose of a circular dock.

• Estimate near-accurate relative pose of a circular dock
with respect to AUV upto 5-DOF, even when some of
the light markers are not detected.

The rest of the paper is organized as follows: Sect. 2
presents the proposed 5-DOF pose estimation method for
vision-based docking an AUV. Section 3 presents the exper-
imental results for the proposed pose estimation method.
Section 4 concludes the paper with a few remarks on util-
ity of proposed method.

2 Proposed pose estimation methodology

The present section describes the proposed 5-DOF relative
pose estimation methodology for vision-based autonomous
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Fig. 4 Flow chart of proposed method to 3D pose estimation

docking of an AUV. Four assumptions made in devising the
proposed method are:

1. AUV is homed up to vicinity point (10–20 m from dock
[19]) and is ready for final stage docking.

2. Shape of the dock is assumed circular, which effec-
tively eliminates the need to correct roll effects. This also
implies that 5 DOF pose estimation is sufficient.

3. Underwater dock being tracked byAUV is, in principle, a
circular arrangement of lights and hence images captured
by camera are active marker images.

4. Effect of external light is negligible on imaging assuming
docking is performed at larger depths.

Figure 4 depicts processing sequences of the proposed
method which may be categorized into two phases, namely,

(a) Image processing phase This phase includes detection
of peripheral light markers through binarization of cap-
tured image using proposed HATS, identification of final
position of each of the light marker via mass moment
method and elliptical curve fitting for markers identified
in binarized image.

(b) Pose estimation phase In this phase, estimated ellipse
parameters are fusedwith dimensions of dock and camera
parameters to estimate the pose of dock for progres-

sive maneuvering of AUV towards, and finally into the
dock. The following subsections describe each of these
sequence of operations in detail.

2.1 Detection of light markers from captured image

As seen in Fig. 4, the first step in our pose estimationmethod-
ology is to binarize the captured image. However, instead
of conventional fixed thresholding, we propose an image
histogram-based adaptive thresholding method for the pur-
pose. The utility of the proposed HATS would be apparent
from the intuitive discussion in Sect. 2.1.1. Also, subse-
quently, we model the explained phenomenon and support
our results through simulations. We also aid our results by
verifying with a versatile model as well as with experimental
images.

2.1.1 Proposed histogram-based adaptive thresholding
method: an intuitive reasoning

To explain the basis of proposed adaptive histogram-based
choice of threshold, first we recollect the fact that image of
an object is the convolution of original image signal, say
f (x, y), with the system point spread function, PSF(x, y),
which, by definition is the effect of a point source propagating
towards the camera through a scattering medium [20]. We
also recall that the PSF(x, y) of a medium is a combination
of direct and glow field components which may be expressed
as:

I (x, y) = f (x, y) ∗ PSF(x, y)

= f (x, y) ∗ [
PSFd(x, y) + PSFg(x, y)

]
(1)

Intuitively, since glow component is due to scattering and
absorption effects, one may accept that direct-path compo-
nent carries larger power as compared to scattered ones, i.e.,
strength of PSFd(x, y) >> PSFg(x, y). The point we have
here is, it then follows that the direct component carries
maximum intensity light to the camera, thereby creating a
maximum intensity pixel in the image. Further, this behavior
of direct component may also be ascertained from Volume
Scattering Function (VSF) plot [light distribution with scat-
tering angle (θ )] for ocean water. Further, according to [20],
the behavior of direct-path stands valid up to a distance 75 m
and is hence applicable in the present context, as typical
dock–AUV distance ranges from 10 to 20 m.

Based on above discussion, it was felt that the histogram
of an active marker image could contain a peak correspond-
ing to the direct-path component. It is for this reason, we
recommend to identify and use the gray value correspond-
ing to the peak in the histogram, particularly on the higher
intensity side, for binarization.

123



Reliable pose estimation of underwater dock using... 225

Fig. 5 Simulation of image formation using PSF in [22]: (i) direct and (ii) glow field components, (iii) image formed by summing (i) and (ii);
corresponding histograms are shown in (iv) to (vi)

2.1.2 PSF-based modeling and simulation

In the following, we analyze our recommendation in
Sect. 2.1.1 with the help of a PSF model and through
simulations. First, we note that the phenomenon of light scat-
tering from a surface is, generally, approximated to follow
“Lambertian” distribution. Thus, an equivalent PSF can be
formulated by computing the radiant distribution of an omni-
directional point source at the entrance of an imaging device,
which is typically due to scattering and absorption effects.
In underwater context, forward scattering is one of the main
reasons for spreading of a point source, and depending upon
the characteristics of surroundingmedium can bemodeled as
a low-pass filter that generates symmetric/asymmetric image
cone.Hou et al. [21] provide a versatile PSFmodel for a given
angle (θ ), at a range (r ) as:

PSF(θ) = K (θ0)
bre−τ

2πθm
(2)

wherem = 1/(w0−2τθ0),w0 is scattering albedo, b is scat-
tering coefficient, τ is optical length and K (·) is a functional
constant dependent on mean scattering angle (θ0).

On the other hand, in our previous work in [22], we pre-
sented a modified version of (2) considering the fact that
scattering of light (after a traveling r meters) varies accord-
ing to a Poisson distribution. A near-accurate PSFmodel was
for this reason provided as:

PSF(θ) = K (θ0)
poisson_rand(λ)e−τ

2πθm
(3)

where poisson_rand(λ) is a random number generated
according to poisson distribution and λ (=br) is poisson
parameter.

Figure 5 simulates formation of an image using an
assumed direct component and the modified PSF in (3). The
direct and glow field components used for simulating the
image are shown in Fig. 5, (i) and (ii), respectively, whereas
their sum effect (forming the image) is shown in Fig. 5, (iii).
Also shown directly below these figures are their correspond-
ing histograms shown in Fig. 5, (iv)–(vi). Clearly, all three
histograms indicate presence of a vivid peak close to higher
gray value (253 in this case), which indeed proves our obser-
vation.

We repeat above simulation exercise with a widely used
PSF model proposed by Voss et al. [20] especially for ocean
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Fig. 6 Simulation of image formation using Vosss’ PSF in [20]: (i) direct and (ii) glow field components, (iii) image formed by summing (i) and
(ii); corresponding histograms are shown in (iv) to (vi)

waters. They provide a modulation transfer function (MTF)
whose zeroth order Hankel transform produces an equivalent
PSF. Direct, glowfield components of PSF, the image formed
and their corresponding histograms are shown in Fig. 6,
(i)–(iii) and (iv)–(vi), respectively. Clearly, Fig. 6 also val-
idates our observation that a vivid peak is present in the
histogram at higher intensities.

Apoint to bementionedhere is that the twodiscussedPSFs
were formulated based on the assumption that light source is
symmetric in nature. In general, light sources are asymmetric
when viewed from an angle and such an asymmetric mask
can be generated from a symmetric mask by rotating the PSF.
Figure 7 shows simulated images using an asymmetric mask
generated from PSF in (3). From the corresponding image
intensity distributions shown in Fig. 7 (iv)–(vi), our claim
once again stands justified. To validate our intuitive reason-
ing, we present histograms of experimental images obtained
with the setup explained in Sect. 3. Figure 8 indeed advocates
our recommendation to adaptively choose the threshold from
histogram for binarization.

However, in practical scenario depending on the view
angle, the rightmost intensity values in histograms of individ-
ual light markers (in an image) are not necessarily the same.
This in turn reflects asmultiple local peaks onhigher intensity

side of the histogram of the entire image, thus necessitating
extraction of individual light markers for finding the corre-
sponding threshold value from their respective histograms.
In other words, a “hard” choice of threshold (i.e., rightmost
peak from the histogramofwhole image)may result in detec-
tion of fewer distinct groups of light markers (for each of the
individual light markers) as opposed to detection of all the
light markers. Further, it is also observed that the variation
in histograms of individual light markers is not significant as
well. It is for this reason, in this work, considering the his-
togram of the whole image we recommend to adaptively find
themost suitable threshold by iteratively progressing towards
a lower intensity value (corresponding to the next peak in the
histogram) on a voting basis which ensures detection ofmax-
imum groups of light markers.

2.2 Elliptical conicoid fitting for markers identified
from binarized image

To estimate pose of the dock, as per our approach, we fit an
appropriate conic for the markers identified from the thresh-
olded image in Sect. 2.1. As noted fromSect. 1, in the context
of vision-based docking, researchers have exploited the fact
that perspective projectionof a circlewould feature an ellipse.
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Fig. 7 Simulation of image formation by rotating PSF in [22]: (i) direct and (ii) glow field components, (iii) image formed by summing (i) and
(ii); corresponding histograms are shown in (iv) to (vi)

However, very little work is observed on fitting an ellipse,
particularly in the context of docking.

In general, the problem of elliptical curve fitting on a
set of data requires choosing numerical methods which are
supposed to be both optimal as well as stable. Several meth-
ods are available for fitting an ellipse, which in principle,
may be classified into two categories, namely Clustering
and Optimization techniques [23,24]. It is observed that
clustering methods are robust to outlier data, but consume
large memory and call for higher computational time. On
the other hand, literature [23] suggests that least squares-
based optimization methods are highly accurate, but suffer
from non-convergence problems. It is for this reason, in the
present work, we adopt a direct least squares-based optimiza-
tion method proposed by Halir et al. [24] (which reportedly
is highly numerically stable) for elliptical curve fitting on the
positions of light markers. As derived in [23], the objective
function to near-accurately fit a ellipse over a set of N points
is,

min
a

{
f 2(a, x)|aTCa = 1

}
(4)

where f (a, x) = D · a = 0 is the equation of an ellipse in
the most general form. In (4), x = (xi , yi ), (where (xi , yi )
is center point of ith light marker obtained after conversion
from intrinsic “pixel” coordinate to “axes” coordinate using
calibrated camera parameters); D = (x2i , xi yi , y

2
i , xi , yi , 1),

where i = 1, 2, . . . , N and N is no. of light markers;
a = (a′, b′, c′, d ′, e′, 1) and C is a (6 × 6) constraint
matrix filled with zeros, except C(1, 3) = C(3, 1) = 2 and
C(2, 2) = −1. Finally, parameters of ellipse, a, are solved
using the algorithm proposed by [24], which is subsequently
used for estimating the entrance pose of the circular dock
under consideration.

2.3 3D Pose estimation of circular dock

Having elliptic fit the perspective projection for the circular
dock in the 2D image, in this section, we use the optimized
ellipse parameters in a from (4) to estimate the 3D pose of
the docking station (with respect to AUV) as seen in Fig. 9.

Let γ be the focal length of camera. As shown in Fig. 9,
taking ellipse as a base at z = γ in the imagery plane and
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Fig. 8 a, c Experimental images; b, d corresponding histograms

Fig. 9 A coordinate system perspective of a vision-based docking sce-
nario

the vertex at (0, 0,−γ ), the equation of a conicoid so formed
can be expressed in matrix form as:

[
x y z

] · Q · [
x y z

]T + P · [
x y z

]T + γ 2 = 0 (5)

where Q=
⎡

⎣
a′γ 2 b′γ 2 d ′γ
b′γ 2 c′γ 2 e′γ
d ′γ e′γ 1

⎤

⎦ and P=
⎡

⎣
d ′γ 2 0 0
0 e′γ 2 0
0 0 γ

⎤

⎦.

It may be noted that all parallel planar ‘sections’ lx +my +
nz = 0 would feature a similar type of a conic. Hence, rel-
ative orientation of the conic (ellipse in the context) can be
calculated by solving for (l,m, n), subjected to the condition
that the intersection of the conicoid with the following sur-
face is a circle, i.e., l2 + m2 + n2 = 1. However, in general
such an attempt to estimate 3D pose from an image produces
twohighly nonlinear equations, solving ofwhich necessitates
adoption of suitable numerical methods.

In the present context, we solve the pose estimation
problem by adopting the method proposed by Safaee-Rad
et al. [18] which produce a single solution for the “position”
estimate and two solutions for the “orientation” estimate.
In other words, they provide two sets of solutions. Figure 10
depicts the necessary coordinate transformations required for
estimating the 3D pose from an image, for detailed trans-
formation procedure, we refer the reader to [18]. Also, the
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Fig. 10 Coordinate transformations for pose estimation using [18] and two probable solutions for orientation of dock (top left)

top-left portion depicts two probable solutions for orientation
of the docking station and to the extent of our knowledge, no
work is available to solve this dual orientation problem at
least in the context of vision-based docking.

We now move to final pose estimation phase, where to
identify the correct solution for orientation,we propose to use
the eccentricity parameter (e) of the ellipse in the frame. We
exploit the fact that the eccentricity of an ellipse monotoni-
cally decreaseswith decreasing view angle between theDock
and AUV. For this, we compute eccentricity of ellipse from
progressively captured images andmove in the direction such
that eccentricity→ 0 and hence ellipse tends to a circle; thus
allowing AUV to align with the dock and gradually enter into
it. A pseudo-code for the proposed stepwise methodology to
find the correct orientation solution is given in Table 1.

3 Experimental results and discussion

In this section, we present the analysis of observations from
experimentation for 5-DOF pose estimation of a circular
dock. In the following,wefirst present the experimental setup
and the procedure of experimentation in brief. Section 3.1
discusses the experimental results and Sect. 3.2 analyzes
other vantages of proposed approach.
A. Setup for Experimentation For experimentation, we use
a Kongsberg underwater camera (Model No. OE14-110), a

Table 1 Pseudo-code to solve orientation duality problem

Step1: Randomly choose one of the two orientation solutions
( j : 1, 2) obtained from first frame (i = 1) to estimate
initial pose of AUV. Let chosen solution be S11 �→ Sij

Step2: Compute eccentricity (e1) of the ellipse from the first
frame

Step3: Give a nominal motion control input to AUV and acquire
second frame. Once again estimate the solutions and
compute the eccentricity (e2) of the fitted ellipse from
second frame

Step4: Compare e1 and e2

Considering pitch (θx ) as comparison parameter,

if e1 < e2

Choose min(|S12 |θx − S22 |θx |, |S12 |θx − S21 |θx |)
else

Choose min(|S11 |θx − S22 |θx |, |S11 |θx − S21 |θx |)
end

as the solution for orientation of dock

Next frame onwards the correct orientation solution is identified by
comparing with previous solution and minimum deviated solution is
accepted

Digital Video System (DVS), a ring of 10 LEDs (dia. 30 cm)
and necessary measuring instruments. A schematic of elec-
trical connections with equipments and instruments is shown
in Fig. 11. It needs to be noted that the same setup is used
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Fig. 11 Schematic electrical
connection and coordinate
frame of experimental setup

Fig. 12 Experimental setup a in-house tank, b shallow basin facility at CSIR-CMERI Durgapur

for in-house water tank as well as shallow basin experiments,
both seen in Fig. 12a, b respectively.
B.Procedure for ExperimentationThe LED ring is placed on
the wall of the tank and was allowed to move in horizontal
and vertical directions as well as in angular fashion inside
the tank, thus bringing 5-DOF into consideration. Also, the
camera is fixed in different poses with respect to the ring to
capture images. To ensure the accuracy of pose estimation,
relative pose between camera and the ring is measured (using
tapes/large angles) and a series of images were taken from
different distances and angles. Due to constriction of space
during in-house trials, each time camera’s pose gets altered
with respect to ring, care is taken to see the ring remained
inside camera’s field of view (FOV).

3.1 On the estimated pose and GUI development

One hurdle for our experimentswas lack of infrastructure and
hence the experiments were carried only for shorter ranges
for both tank and basin.However, wemake a point tomention
that the proposed approach renders similar performance with
larger infrastructure as well.

In our experiments, assuming that the camera is positioned
at (0, 0, 0), the relative 5-DOFpose of the ring is computed as
(X,Y, Z , θ, φ). Tables 2 and 3 tabulate experimental results
for estimated pose of the dock, for images captured with
the setup from in-house tank and shallow basin, respectively.
First column of both the tables depicts images acquired in
different poses. Columns 2–6 represent 5-DOF pose para-
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Table 2 Basin experiments:
comparison of estimated and
measured pose (in brackets)

Image X (cm) Y (cm) Z (cm) θx (deg) θy (deg)

8.07 (8) −15.85 (−15.5) 145.32 (145) 8 (8) 16.2 (16)

7.96 (8) −13.58 (−13.5) 130.81 (131) 8 (8) 18.3 (18)

7.01 (7) −11.59 (−11.5) 113.15 (113) 7.3 (7) 20.9 (21)

−12.79 (−12.5) 11.52 (11.5) 157.36 (157) 29.5 (30) 29.5 (30)

6.75 (7) 4.92 (5) 96.5 (96) 16.2 (16) 23.2 (23)

Table 3 In-house tank
experiments: comparison of
estimated and measured pose (in
brackets)

Image X (cm) Y (cm) Z (cm) θx (deg) θy (deg)

−1.72 (−2) −0.22 (0) 70.76 (70) 33.3 (32) 0 (0)

0.03 (0) 4.17 (4) 79.4 (80) 28.2 (30) −6 (−5)

−5.12 (−5) 0.28 (0) 78.96 (80) −30.8 (−30) −18.4 (−19)

−1.92 (−2) 1.04 (1) 79.45 (80) 34.6 (35) 27.1 (26)

3.33 (3) 6.27 (6) 97.01 (95) 7.06 (7) −16.2 (−15)
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meters (where Z is horizontal distance between ring and the
camera) obtained from experimental images using proposed
algorithm. Actual values of the parameters (measured a pri-
ori) are shown just below the estimates in brackets, and it is
seen that the estimated pose closely matches actual pose. It
is to be noted that for in-house experiments, the maximum
range of imaging is constrained by length of the tank and by
near-field radiation pattern for that of basin.

To estimate the 5-DOF pose for a given image, for the sake
of convenience, a MATLAB-based graphical user interface
(GUI) is developed, a screenshot ofwhich is shown inFig. 13.
The GUI takes camera parameters, dimensions of dock and
an image, all as inputs, executes the sequence of operations
(refer Fig. 3) and provides one solution for position, and two
solutions for orientation. Taking these two sets of solutions
and eccentricity of the ellipse in the frame as hypothesis,

Fig. 13 GUI for image simulation and pose estimation

using procedure in Table 1 the AUV controller gradually
estimates the pose, and ultimately tracks the entrance of dock.

3.2 Comparison of curvature-based 3D pose estimation
with PnP method

As described in Sect. 1.1, non-iterative pose estimators are
more suitable for the present docking application and hence
we compare the pose estimated fromcurvature-basedmethod
with EPnP [15] method. Since EPnP requires point corre-
spondences, a new colored LED marker configuration has
been setup wherein the RED and BLUE markers are placed
in quadrature as shown in Table 4 which also compares pose
estimated via [15,18] with the measured (true) 5D pose for
two cases. It is evident from the table that the pose estimated
by adopted curvature based as well as EPnP is almost close
to the measured pose, the primary reason for which may be
attributed to successful detection of all the light markers (in
this case 12 lights).

Oneworthmentioning aspect with regards to colored light
marker configuration is the effect of spectral absorbtion on
threshold evaluation. It is observed that colored configuration
of markers makes near exact evaluation of the threshold via
HATS extremely difficult, which in turn influences the detec-
tion of correct positions of light marker. It is also observed
that this problem is prominent especially when the camera
is close to light markers (refer 2nd row figure in Table 4),
which is due to varying intensity levels for different colored
LEDs.

3.3 Other advantages of proposed approach

Before we present additional vantages of proposed approach,
we note that two commonly prevailing problems in vision-
based docking are, ‘spreading of features’ and ‘non-detection
of all the light markers’, from the image. In this subsec-
tion, we demonstrate reliability of proposed method in these
respects as compared to available methods.

Table 4 Comparison of
estimated and measured pose
detecting 12 light markers:
HATS followed by—[18] (top),
[15] (middle) and measured (in
brackets)

Image X (cm) Y (cm) Z (cm) θx (deg) θy (deg)

−24.6 2.5 139.9 25.2 24.4

−24.3 1.96 135.1 25.3 22.23

(−24) (2.5) (137) (25) (24)

−10.2 −0.65 87.8 30.4 32.9

−9.6 −1.4 82.2 29.1 31.6

(−10) (−1) (85.0) (30) (32)
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Fig. 14 Comparison of Euclidean distance between actual center and
estimated center (from detected markers) with threshold

3.3.1 Feature spreading case

As mentioned earlier, if the incidence angle of light is non-
zero with respect to the camera normal, the resultant effect
on the image formed is known as “non-uniform spreading”.
Such spreading effect renders extraction of oval-shaped fea-
ture points, (instead of circular ones). Further, this leads to
improper detection of center of light and ends up in erroneous
computation of the center of dock. Intuitively, the error in
computing dock center would be minimal if and only if light
markers are identified accurately which indicates that choice
of threshold plays a vital role.

Since the objective is to find the center of dock for each
frame, it is felt that the error of computed position of the
dock center with that of the actual one would provide more
insight on proposed HATS as well as the entire approach.
To explore this aspect, we took up an exercise to evaluate
the error of computing center of the ring on one of the non-
uniform spread images (in Fig. 8c).

Figure 14 shows the effect of choosing an arbitrary thresh-
old on detection of center of dock. It may be seen that in
case of choosing only mass moment (red) for both individ-
ual marker detection and center of the dock, the Euclidean
distance between actual center and the estimated center is
minimum for a threshold of 203. However, in case of choos-
ing mass moment method for individual markers, followed
by ellipse fitting for computing the centroid of ellipse and
hence the dock center, the Euclidean distance is minimum
when the threshold is close to 206. Clearly, ellipse fitting
procedure closely identifies the center of dock (i.e., pro-
duces relatively smaller error),when compared to solelymass
moment method. Further, Fig. 8d also indicates that HATS
in fact extracts 206 as the suitable threshold for the image.

In the context of feature spreading, as a further analysis,
we compare performance ofHATSwith four versatile feature
extractionmethods, namely, (1) Otsu [25], (2) Sezan [26], (3)

Fig. 15 a Original active image. Feature extraction by thresholding
using b Otsu [25], c Sezan [26], d K-I [27], e Max-entropy [28],
f proposed adaptive threshold

K-I [27] and (4)Max-entropy [28].When these four versatile
methods and HATS are applied on the LED ring image (in
Fig. 15a), it is observed thatHATS-based thresholding proves
to be able to neatly extract all the feature points (see Fig. 15f).
This once again experimentally validates the proposedHATS
method.

We, therefore, conclude that HATS indeed is quite accu-
rate in choosing a suitable threshold from active marker
images and ellipse fit on the detected markers accurately
extracts the center of the dock.

3.3.2 Missing feature/marker case

Coming to the problem of missing a few of the light markers,
we note that such situation can arise in following cases:

• when dock is partially in cameras’ FOV and
• turbid environments.

We make a point to mention that in both these cases, the
proposed method is highly effective. To address this issue,
we first binarize image in Fig. 16a with a threshold (=237)
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Fig. 16 Usefulness of ellipse fit procedure with HATS

Fig. 17 Comparison of error in 5D pose computed via curvature-based method proposed by [18] and EPnP [15] methods
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obtainedviaHATS from its histogram inFig. 16b andobserve
that almost all the markers are detected (in Fig. 16c). We
then fit an ellipse on the detected markers, whose estimated
parameters are a = {89.56,−198.9, 751.4, 14.3, 16.45}.We
repeat the above exercise on the above image by choosing an
arbitrarily higher threshold (=245) (fewer markers seen in
Fig. 16d) and fit an appropriate ellipse only to observe that
the parameters of the ellipse are almost the same as obtained
earlier.

Further, when fewer 2D points so obtained are used for
EPnP-based pose estimation, it is observed that the accuracy
of the estimated pose severely degrades. On the other hand,
the pose estimated by the curvature-based method relies on
thefitted ellipse, and hence, the performance of the curvature-
based pose estimation remains almost intact even with fewer
light markers. As seen in Fig. 17, dock pose estimated by
the adopted curvature-based method in [21] is highly stable
even with fewer (≥4) detected light markers. This in turn
implies that the pose to be estimated would once again be
exactly the same, thus validating reliability of our method for
autonomous docking of an AUV in applications employing
circular entrance docks even when all the lights marker are
not detected.

4 Conclusions

A method is proposed to reliable relative 5-DOF pose esti-
mation of a circular-shaped docking station. In the process
of devising the pose estimation methodology, it is observed
that typically success of the vision-based docking largely
depends on reliable detection of light markers in the cap-
tured image. The other issue with active marker images is
the resultant non-uniform spreading. To cater to these issues,
a novel method (HATS) has been developed, which, besides
being scene invariant, can also reliably extract positions of
light sources in the image. Another worth mentioning aspect
of the present work is, though ellipse fitting for identified
markers is not a newer concept, the proposed curvature-based
approach to fit an ellipse upon the identified markers renders
reliable estimation of pose of dock in comparison with PnP
method. The point we have here is that available point-based
methods fail if fewer number ofmarkers are detectedwhereas
our proposed method works well, as validated, at least for
circle-shaped docks. Above all, simulation and experimen-
tal analysis of the entire method is indeed highly accurate,
which successfully validates the proposed method.
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