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Abstract In plant phenotyping, there is a demand for
high-throughput, non-destructive systems that can accu-
rately analyse various plant traits by measuring features
such as plant volume, leaf area, and stem length. Exist-
ing vision-based systems either focus on speed using 2D
imaging, which is consequently inaccurate, or on accu-
racy using time-consuming 3D methods. In this paper, we
present a computer-vision system for seedling phenotyping
that combines best of both approaches by utilizing a fast
three-dimensional (3D) reconstruction method. We devel-
oped image processing methods for the identification and
segmentation of plant organs (stem and leaf) from the 3D
plant model. Various measurements of plant features such
as plant volume, leaf area, and stem length are estimated
based on these plant segments. We evaluate the accuracy of
our system by comparing the measurements of our methods
with ground truth measurements obtained destructively by
hand. The results indicate that the proposed system is very
promising.

Keywords High-throughput phenotyping · Seedling
phenotyping · 3D Plant model · Plant trait measurements

1 Introduction

Common morphological plant traits of interest include para-
meters such asmain-stem height, size and inclination, petiole
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length and initiation angle, and leaf width, length, inclina-
tion, thickness, area, and biomass [1]. Until recently, most
of these observations and their quantification, known also as
plant phenotyping, relied on human assessments and mea-
surements [2], being both costly and slow. Additionally, the
exponentially growing amount of possibilities in all fields
of plant sciences, such as genomics, and breeding make the
application of automated methods in plant phenomics vital.

Plant phenotyping is the set of methodologies and pro-
tocols used to measure plant growth, architecture, and
composition with a certain accuracy and precision at dif-
ferent scales of organization, from organs to canopies [3].
The plant phenotype includes complex plant traits that are
assessed through measurement of the root morphology, bio-
mass, leaf characteristics, fruit characteristics, yield-related
traits, photosynthetic efficiency, and biotic and abiotic stress
response [4]. Plant phenotyping has become a major field
of research in plant breeding stimulated by the rapid devel-
opment of plant genomics. Phenotyping is addressed by
combining novel technologies such as non-invasive imaging,
spectroscopy, image analysis, robotics and high-performance
computing [1]. Plant measurements have been done on dif-
ferent scales, at the level of cells, organs, root systems, plants,
and canopies, where different sensors are used for each scale
[5].Measurement are performedusing two-dimensional (2D)
images or 3D models. 3D geometrically accurate models
of plants enable more accurate measurements and mod-
elling of biological processes, such as, photosynthesis, yield
prediction, and plant-growth modelling. Some non-invasive
phenotyping systems make use of 2D hyperspectral imag-
ing such as HyperART [6], or systems for measurement of
structural parameters of plant canopies [7,8].

Visible-light imaging plays a significant role in measur-
ing plant traits, such as, biomass, plant height, stem length,
and leaf area. In current systems used in the field, a single
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digital camera is mounted above the plant to generate a top
view of the plant, sometimes accompanied with one or two
additional cameras to generate side views, for the calculation
of the shoot biomass or leaf area using the imaging software
[9]. However, the estimation of the biomass of a plant from
2D images results in high inaccuracies, while a robust and
accurate method is required for high-throughput phenotyp-
ing as proposed in [10]. The measurement accuracy of such
methods highly depends on the relative position of the cam-
era with respect to the plant. Accurate measurement of leaf
area can be obtained if the camera observes a frontal view of
the leaf. However, the actual observation may deviate signif-
icantly, resulting in a poor estimation of the true leaf area. In
general, the measurement of leaf area from the 2D images is
characterized by large standard deviations.

Phenotyping systems relying on 2D images are dominant
in the literature [11–15]. This paragraph describes several 2D
image-based systems together with their applications. The
PHENOPSIS phenotyping system [12] uses 2D images to
investigate the development of the Arabidopsis thaliana in
different conditions. Phenoscope [16] is a 2D image-based
phenotyping system monitoring rosette size and expansion
rate during the vegetative stage, with automatic image analy-
sis allowing manual correction. This system continuously
rotates pots to minimize the influence of the camera perspec-
tive. In the initial stage of the growth of a seedling, 2D images
can capture its development reliably, as the plant structure is
still flat [17]. HTPheno [13] is an image analysis pipeline
for high-throughput plant phenotyping, which provides the
possibility to analyse colour images of plants that are taken
in two different views (top view and side view) during a
screening. Within the analysis, different phenotypical para-
meters for each plant, such as, height, width, and projected
shoot area of the plants are calculated for the duration of the
screening. HTPheno was applied to analyse two barley cul-
tivars. Also PHIDIAS [18] is a system for high-throughput
phenotyping, in this case successfully tested on Arabidop-
sis. In GROWSCREEN [15], leaf area and relative growth
rate were measured based on images from a camera placed
above an array of seedlings. The phenotyping system GlyPh
[19] is a low-cost platform for phenotyping plant growth and
water use, which allows the evaluation of plants growing in
individual pots. In GlyPh, top- and side-view images of the
plants are captured, to measure traits such as height, width,
and projected leaf area.

A way to overcome the influence of the relative orienta-
tion of the camera and the leaf, in the phenotyping systems
based on 2D imaging, on the measurement accuracy is to
use additional height or depth information. These systems
acquire a 2.5-dimensional (2.5D) model of plants. The depth
can be measured by range cameras based on lasers (LIDAR)
[20], by time-of-flight (ToF) cameras [8,21–23], or using
stereoscopic cameras [7,24]. Other systems use projected-

light cameras, such asMicrosoft Kinect, to obtain 2.5D plant
models as in [22].

Special class of the shoot-phenotyping systems are the
systems which generate and use a 3D plant model. The
fast development in computing power results in the devel-
opment of techniques that process complete 3Dmodels [25].
3D plant models can be produced by several different tech-
niques, such as, hand-held laser scanning [26], or using
multi-view stereo or structure-from-motion to generate a 3D
model [27,28]. However, not each 3D imaging technique is
sufficiently fast to provide a high-throughput system. The
speed of the system depends on the plant morphology and
the challenges the imaging system needs to overcome to
generate the 3D model. A promising new technique for gen-
erating 3D models is described in [27]; however, the time to
recover the 3D model is significant and directly proportional
to the plant morphology complexity. The 3D plant modelling
from images presented in [28] is semi-automatic and uses
35–50 input images. In [25], 3D model is generated from
64 images using a commercially available 3D reconstruc-
tion method [29] based on an accurate shape-from-silhouette
method. In [27], the multi-view stereo algorithm, [30], in
conjunction with shape optimisation in the post-processing
step, uses 36–64 input images to generate surface-based 3D
model representations. Stereo-imaging andmesh processing-
based systems, such as GROWSCREEN 3D [31], allowing
more accurate measurements of leaf area, and extraction
of additional volumetric data. Although those 3D systems
result in very accurate 3D plant reconstructions and associ-
ated measurements, they are currently too slow to be used in
high-throughput phenotyping system.

In this paper, we focus on high-throughput, non-invasive
and non-destructive seedling phenotyping from a complete
3D plant model. We estimate the leaf area based on the 3D
plant model, as estimated leaf area is one of the most often
used traits in plant-phenotyping experiments.We have devel-
oped a system for fast 3D plant reconstruction from a small
number of calibrated images using a shape-from-silhouette
approach. Shape-from-silhouette methods were first intro-
duced by [32] and further improved by, i.a., [33–35]. The
method suits our needs because of its robustness and its
potential for optimized implementation. The method results
in a so-called visual hull of the object [36,37], represented
by the set of occupied points in the voxel space. Based on
such a 3D representation of a plant, we can accurately iden-
tify and segment the stem and the leaves from the 3D plant
model, which allows us to accurately measure different plant
features.

Using the 3Dplantmodel,we accuratelymeasure different
plant features. We measure the leaf area by identifying the
voxels that are on the surface boundary of the leaf. The length
of the leaf is measured by taking the distance from the stipule
(where the leaf connects to the stem), through the centre of
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the leaf to the leaf tip (apex). Leaf width is estimated by
taking the longest distance perpendicular to this line. We
also measure stem length by tracing the stem from the plug
up to the first leaf.

We will present our method in Sect. 2. The experimental
setup and results are described in Sects. 3 and 4. We end the
paper with a discussion on the method and future research in
Sect. 5.

2 Methods

Our system for high-throughput phenotyping is illustrated
in Fig. 1. The seedling is surrounded by different cameras,
observing the object from different perspectives (Fig. 1a).
The system can deal with a variable number of cameras. The
quality of the 3D reconstruction generally improves when
more cameras are used. However, as the increase in quality
gets smaller with higher number of cameras and the compu-
tational time increases linearly with the number of cameras,
a trade-off between accuracy and speed needs to be made.
In our experiments, we used 10 cameras as an optimum of
the trade-off. The silhouettes of the seedling in the acquired
camera images (Fig. 1b) are used to reconstruct the object in
3D through a shape-from-silhouette method (Fig. 1c). Next,

the reconstruction of the whole plant is segmented in stem
and leafs (Fig. 1d). Based on the whole plant reconstruction
and the segmented stem and leafs, different quality features
are calculated.

The 3D reconstruction method is described in more detail
in Sect. 2.1. The leaf/stem segmentation is outlined in Sect.
2.2, and the different quality methods are described in Sects.
2.3 and 2.4.

2.1 High-throughput 3D reconstruction

We developed a shape-from-silhouette [38] method that cal-
culates a 3D reconstruction of the sample from the silhouettes
in all camera images. To perform the reconstruction, the pre-
cision position and orientation of all cameras with respect
to the workspace need to be known, which are estimated
through a calibration procedure. This procedure is outlined
in Sect. 2.1.1, followed by a description of the fast 3D recon-
struction method in Sect. 2.1.2 and a short discussion of the
method in Sect. 2.1.3.

2.1.1 Calibration

To be able to perform the shape-from-silhouette method, the
position of all cameras must be known with respect to the

Fig. 1 An overview of 3D-reconstruction and segmentation pipeline.
a The plant is observed by multiple cameras (10 used in the experi-
ments). b Each camera provides an image from which the silhouette of

the plant is determined. c Using a shape-from-silhouette method, the
3D shape of the plant is reconstructed. d The 3D model is segmented
in stem (green) leafs (coloured) and unknown black)
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Fig. 2 The calibration procedure involves multiple views of the cal-
ibration plate by each camera; the plate is detected using Halcon
software. For each camera, a ‘calibration pathway’ is calculated to one
specific calibration plate position, which serves as a real-world refer-

ence. The pathway consists of a chain of affine transformations. The
software determines all available pathways, and selects the chain with
the smallest cumulative error

workspace. For every voxel in the 3D workspace, we need
to know to which pixel(s) it maps on each of the cameras.
To be able to calculate this mapping, we need to determine
the internal and external parameters of the cameras. This
procedure is known as multi-camera calibration [39]. The
internal parameters describe the parameters of the camera
and the lens, and include the focal distance of the lens, the
size of a pixel on the sensor, the coordinates of the optical
centre of the sensor and the radial distortion coefficient. The
external parameters define the position and orientation of the
camera in space with respect to a chosen origin, in our case
the centre of the workspace.

To calibrate the system, a regular dot-pattern calibration
plate is used. The plate is placed in a number of different
orientations and positions and is synchronously observed
by the cameras. In each camera image, a number of unique
points can automatically be extracted. From the correspond-
ing points between different cameras and by knowing the
true dimensions of the plate, the internal and external para-
meters can be estimated. In general, the estimation improves
when the calibration plate is placed in more poses, but typ-
ically around 20–25 observations are sufficient for a good
calibration. We use the position and orientation of one of the
calibration plates to determine the origin of the voxel space.

The whole procedure of multi-camera calibration was
developed using Labview (Fig. 2), and is based on the sin-
gle camera procedures provided by Halcon. Once both the
internal and external camera parameters are determined for

each camera, one specific plate position is chosen as a real-
world reference. Through a chain of affine transformations,
the correspondence of all camera positions to the real-world
coordinates can be calculated. The software will optimize the
chain by determining the smallest overall RMS error.

2.1.2 3D reconstruction

By applying the calibration, i.e. the projection matrices for
each camera resulting from the external parameters and the
corrected camera model, the mapping between the voxels in
the 3D workspace and the pixels in the 2D camera images
can be determined.

Knowing the projection of the voxels on pixels in the
images, the object under observation can be reconstructed
from the silhouettes in the camera images. The method for
reconstruction is given in pseudo code in Fig. 3. All camera
images are first segmented in foreground and background,
resulting in binary silhouette images Bk.<2.1>This is done
using a procedure known as background subtraction, where
segmentation is obtained by subtracting an image containing
only the background from an image containing the seedling.
A pixel is part of the foreground when the Euclidian distance
in RGB space between the two images is larger than a thresh-
old value. The optimal value of this threshold is set manually
for each camera to correct for small differences in apertures
and lighting conditions.
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for each camera image Ik
Bk <- foreground_background_segmentation( Ik )

end

for each voxel v in the voxel space V
V(v) <- occupied

end

for each voxel v in the voxel space
for each camera k

i <- get_corresponding_pixel( v, Pk )
if Bk(i) = background

V(v) <- empty
break

endif
end

end

Fig. 3 Pseudo code of the shape-from-silhouette method

Next, all voxels in the voxel space V are initially set to
‘occupied’. The occupancy of each voxel is then investigated
by looking at the corresponding pixels in all camera images,
which are determined using the camera parameters Pk. If all
corresponding pixels are labelled as foreground, the voxel
must be part of the object and remains occupied. Otherwise,
the voxel is set to ‘empty’.

Figure 4 shows three different views on a 3D reconstruc-
tion of a tomato seedling. The plant is reconstructed well.
Stem and leaf shapes are clearly visible. Also smaller struc-
tures like the petioles are included in the model.

2.1.3 Discussion on the 3D reconstruction method

We intentionally chose the fastest and simplest implementa-
tion of space carving. This approach is known to have minor
drawbacks: a voxel is eliminated from the reconstruction vol-
ume if one of the image pixels covered by a voxel shows
background. Thus, as a voxel usually covers multiple pix-
els in the same image, it is not ensured that a voxel is kept
if at least one corresponding pixel in every image contains
foreground. In some cases, this may lead to discontinuities
in the reconstruction. To avoid this, the finest structures need
to have a diameter of at least 2

√
3 ≈ 3.5 voxels for the

worst-case scenario when the structures are oriented diago-

nally. In our experiments, we used a voxel resolution of 0.25
mm/voxel,whilst the diameter of the leaf stemswas generally
well above 1 mm. See also the description in Sect. 3.1.

Another knowndisadvantage of the shape-from-silhouette
method is that only those parts of the object can be recon-
structed well that are visible in the contour images, which
means that occluded parts and concavities cannot be recon-
structed. However, since plants, especially seedlings, are
relatively open structures, all relevant parts are visible and
this can hardly be called a drawback. Issues with occlusion
are not unique for this method.

One of the strengths of the method is its high flexibility.
The number of cameras, their viewpoints and their optics can
be altered, requiring only a recalibration of the system,which
is easy to perform. Also the dimensions of the workspace and
the voxel resolution can easily be changed. The workspace
can be adapted to the size and structure of the plant, which
allows to work with very small workspaces of a few mil-
limetres to workspaces that span several meters. There is,
however, a practical limit to the number of voxels in the
voxel space, as the method needs to store tables in memory
with the relation of all voxels to the corresponding pixels
in all images. The flexibility to easily adjust the size and
resolution of the workspace allows the system to work with
various types and sizes of plants, as long as the plant struc-
ture is relatively open, not to create too much occlusions and
concavities.

<3.2>Amajor advantage of the space carving method is
its ability to be used for in-line purposes at high speed using
relative low-cost hardware, making it suitable for large-scale
phenotyping experiments.

2.2 Stem and leaf segmentation

To be able to calculate the stem and leaf features, the com-
plete 3D representation of the plant needs to be segmented
into stems and leaves. We developed a segmentation method
exploiting the structural layout of tomato seedlings (see Fig.
5 for a 2D illustration of themethod). This algorithm is based
on the breath-first flood-fill algorithm with a 26-connected
neighbourhood,which iteratively fills a structure. In our case,

Fig. 4 Three different views on a 3D reconstruction of a tomato seedling
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we start with the lowest point in the voxel representation, the
bottom of the main stem of the plant (red square in figure).
In every iteration of the flood-fill algorithm, the neighbour-
ing points that are not yet filled are added and the iteration
number is stored for these voxels (illustrated by decreasing
brightness of the squares). As long as the main stem is filled,
the added points in each generation are closely located in
space. However, at the point that the first side branches and
leaves appear, the spread of the newly added points increases.
When this exceeds a given threshold, that iteration is labelled
as the end of the main stem (yellow square). This threshold
depends on the resolution of the voxel space and the char-

Fig. 5 Illustration of the stem–leaf segmentation algorithm. Themeth-
ods starts filling the structure from the bottom (red). Subsequently,
neighbouring points are filled and the iteration number is stored for
these voxels (indicated by the gradient). As long as the neighbouring
points are close together in space, we trace the stem. Once they spread
out, we mark the end of the stem (yellow). When all voxels are filled,
we start from the last added point, a leaf tip (green) and back-trace until
the end of the stem. All back-traced voxels are added to the leaf seg-
ment. The same process is repeated for the other leaf tips (blue). This
illustration gives a 2D example, however, in reality, it performs on a 3D
reconstruction of the plant

acteristics of the plant type. In our experiments, we used a
threshold of 4 mm.When the flood fill is completed, we start
a leaf segmentwith the last added point (green square), which
will be one of the leaf tips, and subsequently backtrack the
flood fill until the end point of the main stem is reached. In
the process, all voxels are added to the leaf segment (squares
white borders). We perform the same procedure from the
next leaf tip (blue square), resulting in another leaf segment,
and repeat this until all voxels have been labelled as either
stem or leaf. If a leaf consists of a number of lobes, this algo-
rithm separates the leaf into different segments. To correct
this, segments that connect at a place other than the end of
the main stem are merged.

2.3 Measuring leaf features

After stem and leafs are segmented, we calculate relevant
phenotypic features of the leafs, specifically leaf length, leaf
width, and leaf surface. These features are very predictive
for the quality of the plant, as the size of the leafs play an
important role in growth through the photosynthetic process.

2.3.1 Leaf length

We define the length of a leaf as the length of the midrib
from the stipule (where the leaf connects to the stem) to the
apex (the tip of the leaf). The leaf tip is determined by the
segmentation method (see Fig. 5, blue and green point). It is
the point on the surface of the leaf that is furthest from the
stem end point. The stipule is determined in reverse order, as
the point on the leaf surface that is furthest from the leaf tip.
Thismethod assumes an elongated leaf shape.Both points are
marked in Fig. 6a by a purple cross. The Euclidian distance
between these two points would be a very crude approxi-
mation of the leaf length and always an underestimation, as

Fig. 6 Measuring leaf and stem features. aLeaf length is approximated
by the length of the 3D polyline running from the stipule (purple cross)
to the centre of the leaf (green cross) to the tip of the leaf (purple cross).
Leaf width is determined by the line between the two blue crosses. b

The leaf surface is approximated by the leaf’s surface voxels. cThe stem
length is approximated by the length of the polyline running through
the stem-skeleton points (red circles)
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a leaf is typically curved in 3D. Instead, we estimate the
leaf length with an additional point in the middle of the leaf
(green cross in Fig. 6a). To determine this midpoint, a band
of points halfway between the begin and end point of the leaf
is selected (marked light blue in Fig. 6a). The midpoint is set
to the centroid of this band of points. The leaf length is then
calculated as:

l leaf =
∣
∣
∣
−−−→
m − s

∣
∣
∣ +

∣
∣
∣
−−−→
a − m

∣
∣
∣ ,

where s is the stipule, m the midpoint and a the apex. |x|
gives the length of the vector x.

In a similar fashion, the length of the midrib in 3D can
be determined more precisely by adding additional points
between stipule and apex. However, we approximate the
length by this three-point poly line, to keep computational
costs low, as we aim to develop a high-throughput phenotyp-
ing system.

2.3.2 Leaf width

The algorithm for finding the width of the leaf aims to find
the widest part of the leaf perpendicular to the axis through
the begin and end points of the leaf, indicated by the purple
crosses (Fig. 6a). The widest part is defined as the part were
the Euclidian distance between the blue crosses is maximal.
<2.2> To determine the position of the blue crosses, for all
leaf points, the orthogonal projection on the line through the
leaf’s beginning and end point (purple crosses) is calculated.
The distance between the purple crosses is divided into a
number (20) of equidistant sections. Leaf points having their
projection in a section are selected, indicated in blue. They
form a band across the leaf. The outermost points in this band
on the left,ml, and on the right,mr, are used to approximate
the width of that section. This is repeated for all sections; the
width of the leaf is defined as the maximum of these:

wleaf = max

{∣
∣
∣
∣

−−−−−→
ml − mr}

∣
∣
∣
∣

}

Aswith the leaf length this is an approximation thatwill result
in a slight underestimation, because the Euclidian distance
is used instead of the ‘true’ distance over the surface of the
leaf.

2.3.3 Leaf area

Growth of a plant is for a large part based on photosynthe-
sis. The amount of photosynthesis, and therefore the rate of
growth, is related to the total leaf area of the plant, which
is the sum of the surface areas of all leafs. Based on our 3D
voxel representation of the leafs,we can accurately determine
the leaf surface (see Fig. 6b).

A leaf is reconstructed by a set of voxels, where the thick-
ness of a leaf is generally at least two voxels thick. To get
the leaf area, we first determine the set of all surface points,
that is, all occupied voxels that neighbour one or more non-
occupied voxels. This set contains points on the top and on
the bottom of the leaf. The leaf area is defined as the area of
the top surface of the leaf. We obtain that value by:

aleaf = 1

2

∣
∣
∣Sleaf

∣
∣
∣ · r2,

where Sleaf is the set of all surface voxels of the leaf, |.| the
size of the set, and r is the voxel resolution (mm per voxel).
The surface of a voxel is thus approximated by the square of
the voxel resolution.

We have chosen to work with this approximation because
of its simplicity, but it should be noted that it is only fully
correct for horizontally or vertically oriented surfaces. For
tilted surfaces, themethodwill give an underestimation of the
area, which is worst for a 45◦ angle, when the actual area will
be underestimated by a factor

√
2. For the set of seedlings

used in this experiment, this approximation worked rather
well (see Sect. 4.4), but it is a limitation to be considered.

2.4 Measuring stem length

The stem length is another important quality feature of a
seedling. Our measure of the stem length is based on the
3D stem segment resulting from the stem/leaf segmentation.
The midline, or skeleton, of the stem is determined in 3D
by a midline-tracking algorithm finding a number of points
on the midline (see red dots in Fig. 6c). This is an iterative
algorithm that starts from the lowest point, m0. Each con-
secutive point on the midline is selected by searching the N
nearest points connecting to the current point that have not
yet been visited by the algorithm. From this set of N points,
the centroid is calculated, which defines the new point on
the midline, mi . Starting from that new point, the algorithm
iteratively continues until all points in the stem segment have
been visited. The length of the stem is then determined as:

lstem =
n

∑

i=1

|mi − mi−1| , M = {m0, . . . ,mn}

2.5 Processing time

Throughout the development, the aim has been to develop a
system that is actually capable to act as a high-throughput
phenotyping system, sufficient both in speed and accuracy.
To achieve the necessary speed, approximations were used
where needed.
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Table 1 Processing times of all parts of the processing and analysis

Operation Processing time (ms)

3D reconstruction1 20–60

Stem–leaf segmentation2 100–200, peaks to 1000

Leaf length2 5–10

Leaf width2 5–20

Leaf area2 10–20

Stem length2 5–10

1 This code has been optimized for speed
2 This code has not yet been optimized for speed
Most time-consuming part is the stem–leaf segmentation, which also
shows the largest variation in processing times

Actual processing speed depends on the size of the voxel
space, the number of cameras, and the size and complexity
of the plant. All experiments were done using a voxel grid
size of 240×240×300 voxels, 10 cameras, and a PCwith an
i7 type processor (3.2 GHz). The implementation was done
in C++ and Labview.

Table 1 gives an indication of the time needed for all steps
of the process.

3 Experimental setup

The main purpose of the experiments described in this sec-
tion is to evaluate the performance of the 3D measurement
system.We assess the accuracy and the usability of the image
processing algorithms for phenotyping of individual plants.
For each plant in the set, the following features were deter-
mined: the length, width and area of the leaves, and the length
of the stem.

The seedling set consists of 541 tomato an bell pepper
seedlings varying from 6 to 10 days of age. In this growth
stadium, typical seedlings have two leaves. The majority of
the plants in our set (474) had two leaves, 64 had three leaves,
and 3 had four leaves. Seedling sizes varied from about 15
to 65 mm total height.

Figure 7 shows typical seedlings and their natural variation
in size and shape.

We evaluate our non-destructive 3D acquisition system by
comparing the results to ground truth measurements, taken
by a calibrated 2D scanning of the separate plant organs: first,
the plants were scanned in the 3D acquisition system, then,
the leaves and stem of the seedling were cut off manually
and placed on a flatbed scanner. Using straightforward 2D
blob analysis tools, the required features were obtained and
are used as ground truth.

3.1 The 3D acquisition system

The 3D acquisition setup consists of 10 Basler acA1300-
30gm cameras with a resolution of 1280 × 960 pixels,
mounted in two semi-circles around the semi-spherical back-
ground lightning (see Fig. 8). The cameras are placed at a
distance of 900 mm from the seedling. Pentax lenses with a
focal length of 25 mm were used. The cameras are triggered
to ensure that images from all cameras are taken at exactly the
same time. Shutter time was about 1 ms. The illumination is
based on a backlight-illumination principle. Dimensions of
the 3D voxel spacewere chosen to accommodate the range of
seedling sizes. Our software allows for resizing, resampling,
and shifting the 3D voxel space with respect to real-world
coordinates afterwards, so the exact position of the seedling
does not affect the results. Final resolution of the voxel space
was set to 4 voxels/mm, using 240× 240× 300 voxels (x, y,
z), resulting in real-world dimensions of 60 × 60 × 75 mm.
The PC used has an i7 type processor (3.2 GHz) with 4 GB
of RAM (restricted by the 32bit Windows operating system
used).

3.2 Ground truth and 2D analysis method

To establish the ground truth, we manually cut individual
leaves and the remaining stem and positioned them on a
flatbed scanner set to 300 dpi (Fig. 9). Stems were man-
ually straightened to minimize measurement error and leafs

Fig. 7 Four stages of development: two leaves, 20–45 mm (a–c); three leaves, approx. 40 mm (d). Images shown were taken with one of the
cameras of the acquisition system
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Fig. 8 The semi-spherical
illumination with a seedling in
position (a); The full cabinet
with 10 cameras, illumination,
with an opening for an optional
conveyer belt (b)

Fig. 9 Leafs were manually separated from the stem and positioned on a flatbed scanner (left); Basic image analysis methods (Labview IMAQ)
were used to locate the individual parts and determine the features of interest (right)

were flattened as much as possible without tearing them. The
resulting scans are used to calculate the ground truth mea-
surements. A dedicated program was used to perform these
measurements in a semi-automatic way. It is based on the

detection of individual plant parts in a set of user-definable
ROIs. Plant parts are segmented from the background based
on colour thresholding. The resulting binary objects are
analysed using basic image processing tools as available in
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Table 2 The overview of the measured plant features and their calcu-
lation methods

Feature Calculation method

Length of the leaf Longest Feret diameter

Width of the leaf Widest section
perpendicular to the
longest Feret diameter

Surface of the leaf Calibrated pixel surface

Length of the stem Longest Feret diameter

Width of the stem Calibrated surface
divided by the length

the Labview IMAQ library: the leaf length is determined by
finding the longest Feret diameter; the width of the leaf is
defined as the widest part perpendicular to this length axis
(see Fig. 10). A similar procedure is applied to the stem. The
known resolution of the scanner (300 dpi) was used to trans-
form the measurements to real-world units (mm and mm2).

An overview of measurements performed is described
Table 2.

We interpret these measurements as ground truth, but one
must be aware of the fact that these measurements are not
perfect, due to physical and computational reasons. Some
of the leafs are curved in 3D space in such a way that a
2D projection on the flatbed scanner is not possible without
folding or tearing the leaf, which obviously influences the
measurements. Although carefully optimized, the segmen-
tation method and the methods for doing the measurements
also contain noise. This will contribute to the relative spread
in the measured 3D feature values and act as a limiting factor
in the overall apparent accuracy of the system.

4 Results

4.1 Stem length

Stem length was measured using the procedure described in
Sect. 2.4. The total stem length was derived from the 3D
voxel data by tracking the stem voxels from the plug up to
the stipule (attachment point) of the first leaf, following the
curvature of the stem (see Fig. 6c). This results are shown in
Fig. 11.

The estimations from our method correlate well with the
ground truth measurements, with a correlation coefficient of
0.87. The root mean squared error of deviation (RMSED) is
4.3 mm and the average relative error is 21 %. Looking at
the data, attention is drawn towards a series of 5 seedlings
with estimated stem length equalling 0. In some cases, the
automatic processing of the 3D data runs into a situation
where no result is generated for the particular feature. For

Fig. 10 Illustration of the measurement of the features using 2D scans
of the individual plant organs. Leaf length is determined using the
longest Feret diameter; leaf width is the widest part perpendicular to
this (left). The length of the stem is determined using the length of the
bounding box (right)

instance, in case of the encircled entry, we have the situation
that the seedlings stem was not detected, as can be seen in
Fig. 12. The stem is of unusual thickness, very short, and also
bulging out on the lower side. This specific combination led
obviously to amisclassification. In total, 530 out of 535 stems
were segmented correctly by our method, which corresponds
to 99 %.

The regression line has a slope of 0.79, which suggests
that the length is systematically underestimated. In case of
the stem length, this can be understood by looking closer to
the way of working: in the given situation, there were some
practical restrictions in the positioning of the lower end of
the stem. A set of pre-set positions was used, always cutting
of the lower end of the stem. In the future, we are looking
to use an automatic separation algorithm for detaching the
stem from the cup holding the seedling.

4.2 Leaf length

Leaf length was measured using the algorithm described in
Sect. 2.3.1. The lengths were evaluated for all leafs individu-
ally; almost all seedlings have at least two leaves, a minority
(64) had 3 leafs, and 3 seedlings had 4 leafs. Figures 13, 14
and 15 show the results of our 3D system compared to the
2D ground truth.

Our method performs well for leaf 1 and leaf 2 with cor-
relations of, respectively, 0.91 and 0.90. The accuracy of the
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Fig. 11 Stem length derived
from the 3D data vs. ground
truth from 2D flatbed scanner
data. N = 535, RMSED = 4.3
mm, average relative error =
21 %, R2 = 0.75; slope = 0.78,
offset = 1.39

Fig. 12 The stem of the seedling is unclassified (black). The ‘stem
length’ feature returns 0, ‘no measurement’. These ‘results’ were not
removed from the dataset, since we want to investigate applying the
measurement system in a real-life phenotyping setting

leaf length estimations as measured by the RMSED is 4.3
and 3.6 mm for both leafs, and the average relative error is
18 and 16 %. Unfortunately, the results for the third leaf are
not very good, as can be seen in Fig. 15 (correlation of 0.32,
RMSED of 11, and average relative error of 55 %). Not only
the spread is much larger, but there is a large number (16)
of seedlings where the method gives no result (length = 0).
Investigation shows that this is caused by a failure to cor-
rectly segment the leaf. The third leaf usually is the first true

leaf, which is more lobed than the cotyledons. In the first step
of the segmentation method, the different lobes are often dif-
ferent segments. These are then merged in the second step.
However, this sometimes fails, resulting in a small segment.
If the length of such a segment is below a threshold of 3 mm
<3.1>, the method returns 0.

4.3 Leaf width

<2.3> Leaf width was measured using the procedure
described in Sect. 2.3.2. Results for leafs 1 and 2 are shown
in Figs. 16 and 17:

The correlation of ourmethodwith the ground truth results
is 0.83 for leaf 1 and 0.85 for leaf 2, with a RMSED of
respectively 2.1 and 1.9 mm, and average relative error of 30
and 27 %. These errors are smaller than for the length of the
leafs, but since the width of the leafs is about one-third of
the length, the relative error is larger. This may not come as
a surprise; the number of voxels in this direction is less, and
hence, the accuracy.

4.4 Leaf area

Leaf area is based on the method described in Sect. 2.3.3.
Results are shown in Figs. 18 and 19. The method has a
correlation of 0.85, RMSED of 27, and average relative error
of 22 % for the first leaf and correlation of 0.88, RMSED of
24, and average relative error of 19 % for the second leaf.
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Fig. 13 Length of leaf 1
derived from the 3D data vs.
ground truth from 2D flatbed
scanner data. N = 541, RMSED
= 4.3 mm, average relative error
= 18 % R2 = 0.83; slope = 0.89,
offset = −1.25

Fig. 14 Length of leaf 2
derived from the 3D data vs.
ground truth from 2D flatbed
scanner data. N = 511, RMSED
= 3.6 mm, average relative error
= 16 %, R2 = 0.82; slope =
0.89, offset = −0.13
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Fig. 15 Length of leaf 3
derived from the 3D data vs.
ground truth from 2D flatbed
scanner data. N = 82, RMSED
= 11 mm, average relative error
= 55 %, R2 = 0.10. A number
of cases returned no valid result
for the leaf length of the third
leaf. In some cases, this was due
to incorrect segmentation of this
leaf

Fig. 16 Width of leaf 1 derived
from the 3D data vs. ground
truth from 2D flatbed scanner
data. N = 541, RMSE = 2.1
mm, average relative error =
30 %, R2 = 0.69; slope = 0.80,
offset = −0.46
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Fig. 17 Width of leaf 2 derived
from the 3D data vs. ground
truth from 2D flatbed scanner
data. N = 541, RMSE = 1.9
mm, average relative error =
27 %, R2 = 0.73; slope = 0.96,
offset = −1.44

Fig. 18 Area of leaf 1 derived
from the 3D data vs. ground
truth from 2D flatbed scanner
data. N = 541, RMSE = 28
mm2, average relative error =
22 % R2 = 0.72; slope = 1.05,
offset = −14.8
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Fig. 19 Area of leaf 2 derived
from the 3D data vs. ground
truth from 2D flatbed scanner
data. N = 511, RMSE = 24
mm2, average relative error =
19 %, R2 = 0.78; slope = 1.00,
offset = −10.9

5 Discussion

In this paper, we presented methods to measure specific fea-
tures of a seedling based on a 3D reconstruction of the plant.
Implemented features include length, width and area of indi-
vidual leafs, and length of the stem. These are some of the
basis phenotypic properties of a plant. The proposed method
is optimized for speed, to be used in high-throughput pheno-
typing systems. The 3D reconstruction of the plant is created
using a shape-from-silhouettemethod.The resulting3Dplant
model is segmented in stem and leaf parts, from which stem
and leaf parameters are calculated. Stem length, leaf length,
and area can be determined with an average relative error of
approx. 20 %; the error measuring the width of the leafs is
close to 30 %.

A clear benefit of the proposed method is its fast process-
ing time. Other existingmethods for plant phenotyping using
full 3D reconstruction from camera image are based on
more complex 3D reconstruction methods, such as multi-
view stereo [27], structure-from-motion [28], space carving
[25] or using laser-line scan devices [26]. These methods
are more accurate, but with the cost of very long process-
ing times, making them not applicable for high-throughput
phenotyping (<1 s). We put much effort in optimizing the
speed of our 3D reconstruction algorithm, which now runs
in 20–60 ms, depending on the complexity of the plant, with
a voxel space of 240×240×300 voxels and using 10 cameras
with a resolution of 1280 × 960 on a PC with a 3.2 GHz i7

processor. Other steps in our algorithm (stem/leaf segmenta-
tion and the calculation of stem and leaf parameters) have not
yet been optimized for speed. Calculation of stem and leaf
parameters has low complexity and is fast (25–60ms), but the
implementation of the stem/leaf segmentation is slow, taking
100–200mswith incidental peaks up to 1000ms. Depending
on the structure of the leafs, the method’s first step can result
in many small segments, which then need to be merged in
a second step. Moreover, the method has been implemented
inefficiently in Labview.We are confident that we can greatly
improve processing time with a more efficient implementa-
tion and adapting the method to better deal with irregularly
shaped leafs.

To facilitate high-throughput plant phenotyping,wedevel-
oped fast, relatively simple methods that approximate the
relevant stem and leaf parameters. The leaf length is approx-
imated by two line segments, which is an underestimation
of the true length measured along the curved surface. This
is reflected in Figs. 13 and 14 where the slope of the corre-
lation between the 2D and 3D measurements is less than 1.
Similarly, the leaf width is estimated by taking the Euclidian
distance between two points instead of following the actual
surface. Again, this results in an underestimation which can
be noticed in Figs. 16 and 17. Finally, themethod for measur-
ing the leaf area assumes amainly horizontally (or vertically)
oriented leaf with an underestimation of the area when the
leaf is tilted. Despite these limitations, we believe that the
results of our system are very promising.
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The camera setup has been developed such that from
each camera perspective, the plant has a clear illuminated
background, which assures robust foreground/background
segmentation. We do not use a top view, avoiding the typi-
cal image-segmentation issues caused by pot, soil, moss and
other clutter visible in the images.

We hope to further improve the results in the near future.
First, the results show some limitations in the process of
stem and leaf segmentation. In case of very fine structures,
the method does not always find the optimal position of
stem–leaf transition. We expect to improve this by apply-
ing a skeletisation algorithm to the seedling, which will give
us a more accurate description of the plant connectivity and
topology. This will not only allow us to do a better segmenta-
tion, but also to improve the measurements of, for instance,
stem length. Next, to improve leaf measurements, we will
describe the leaf by a fitted surface curved in 3D. Doing so
will not only increase the accuracy of the leaf measurements,
but also reduce the sensitivity to noise. Itwill furthermore add
the possibility of measuring new features, like the shape of
the leaf’s contour. Finally, we are working on a way of mod-
elling more complex plants. One of the major challenges is
the way to deal with apparent loops in the model, i.e. sit-
uations where it is not clear whether plant parts are really
connected, or just touching each other. To solve such ambi-
guities, we will incorporate expert knowledge in the system,
so that the most likely representation can be found.

For phenotyping purposes, improving accuracy is not the
only important issue. The ability to measure characteristics
of individual plant parts is also a promising advantage of a
3D-based system. We hope that the system presented here
can contribute to this demand.
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