Machine Vision and Applications (2016) 27:145-156
DOI 10.1007/s00138-015-0718-6

@ CrossMark

ORIGINAL PAPER

Extracting complex lesion phenotypes in Zea mays

Derek Kelly!2

- Avimanyou Vatsa’ - Wade Mayham?® - Toni Kazic?

Received: 5 May 2015 / Revised: 8 August 2015 / Accepted: 8 September 2015 / Published online: 16 October 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Complex phenotypes are of growing importance
in agriculture and medicine. In Zea mays, the most widely
produced crop in the world (United States Department of
Agriculture. World Agricultural Production. United States
Department of Agriculture, Foreign Agricultural Service,
Washington, 2015), the disease lesion mimic mutants pro-
duce regions of discolored or necrotic tissue in otherwise
healthy plants. These mutants are of particular interest due to
their apparent action on immune response pathways, provid-
ing insight into how plants protect against infectious agents.
These phenotypes vary considerably as a function of geno-
type and environmental conditions, making them a rich,
though challenging, phenotypic problem. To segment and
quantitate these lesions, we present a novel cascade of adap-
tive algorithms able to accurately segment the diversity of
Z.mays lesions. First, multiresolution analysis of the image
allows for salient features to be detected at multiple scales.
Next, gradient vector diffusion enhances relevant gradient
vectors while suppressing noise. Finally, an active contour
algorithm refines the lesion boundary, producing a final seg-
mentation for each lesion. We compare the results from this
cascade with manual segmentations from human observers,
demonstrating that our algorithm is comparable to humans
while having the potential to speed analysis by several orders
of magnitude.
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1 Introduction

1.1 The impact of phenotypic complexity on image
segmentation

From the susceptibility to chronic diseases to the yield of
crops when environmentally stressed, understanding com-
plex phenotypes lies at the heart of efforts to better the lives
of humans and our planet’s environment. Such phenotypes
are difficult to characterize because of their large number
of component traits; the wide variation in the components’
values; and the need for large sample sizes to capture the
phenotypic responses to the many influencing variables. The
sample sizes needed for better characterization and resolution
of the phenotypes multiply the logistical and methodological
issues of the experiments, sharply limiting analyses.

High throughput imaging can increase sample size,
improve quantitation, and better resolve visually related phe-
notypes, but introduces its own technical issues [2]. Chief
among these is the ability to identify and segment the phe-
notype of interest from unaffected structures in the rest of
the image. Image segmentation is an important task in many
medical and biological applications [3-6].

Segmentation becomes harder as phenotypic complex-
ity increases. One approach is to have people segment the
images [7,8]. Manual segmentation may be feasible for small
numbers of images with relatively few instances of the pheno-
types, and for phenotypes that fall into very distinct classes.
Usually, experts have time to segment only a few images,
limiting the sample size and therefore the statistical power of
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Fig. 1 Variations in lesion morphology as a function of mutant gene:
top Les2, bottom Les4

an experiment; they disagree in their segmentations; and how
well a segmenter performs can vary depending on the metric
used to measure them [9—12]. Using manual segmentation
in high throughput situations requires many more people,
further complicating inter- and intra-observer consistency
[8,13]. Thus, automating segmentation is highly desirable,
despite the challenges of more numerous and more varied
mathematical characteristics. Algorithms must be designed
and tuned to fit the mathematical characteristics of the phe-
notype studied, while remaining general and flexible enough
to include biologically salient variations.

The difficulties of segmenting complex phenotypes are
amply illustrated by the disease lesion mimic mutants of
Z.mays [14,15]. All the mutations produce macroscopic,
irregularly shaped regions of chlorotic and necrotic tissue
on otherwise healthy leaves, in the absence of exogenous
pathogens. The size, shape, color, spatial distribution, sharp-
ness and color of the lesion’s boundary, internal morphology,
and many other characteristics of the populations of lesions
vary profoundly as a function of the particular lesion mimic
mutation, the plant’s genetic background, and the environ-
mental conditions it experiences. Lesion plants with different
underlying genetics may produce lesions with various num-
bers of distinct or overlapping features, but determining
the relationships between lesion features requires accurate
quantitation of the phenotypes. These phenotypes provide
important clues about the mechanisms of lesion formation,
a key part of the plant’s defenses to disease, but their com-
plexity makes segmentation challenging. Some variations are
illustrated in Fig. 1.

1.2 Individual performance of standard algorithms on
maize lesions

Segmentation is a common problem in medical and bio-
logical image analysis, and there are many approaches to
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segmenting contiguous, visually distinct regions of an image.
The problem of maize lesion mutants is so far untouched, but
many similar problems have been tackled by the computer
vision community. Macroscopic skin lesions, MRI scans of
body regions, and cellular microscopy share several key fea-
tures with maize lesions, though none of them exhibit the
heterogeneity of disease lesion mimic mutants. Common
approaches to these segmentation problems include color
analysis and feature extraction [4], edge detection, water-
shed and thresholding, gradient vector flow and diffusion
[3], active contour evolution, or some combination of these

[S].

1.2.1 Color-based techniques: thresholding and feature
extraction

If images are standardized sufficiently and phenotypes are
homogeneous, it may be possible to apply a naive approach
such as thresholding. Barbedo recently developed an auto-
matic lesion segmentation procedure for leaves of several
species using color transformation and thresholding, which
performed well for the images tested [16]. Notably, these
were small leaves that are flat when laid in a scanner. Maize
lesions, by comparison, show considerably more phenotypic
variation; and our experimental throughput, several orders of
magnitude larger than Barbedo’s, results in higher technical
variation between images. Maize leaves are much larger and
their edges much longer than their central axes, producing
significant rippling and highlights and shadows, necessitating
a photographic technique. The combination of phenotypic
and image complexity requires a more flexible and robust
approach.

Feature extraction techniques consider transformations of
the image matrix rather than raw image values, and can
include color transformations, edge detection, and spectral
decomposition, etc., [17]. Color transformations and edge
detection have been used to extract macroscopic skin lesions,
which like maize lesions can be of many sizes and shapes
with considerable internal structure and differences in color-
ing. Images of skin lesions usually show one in isolation, so
the color gradients are very sharp and reasonably symmetric
about the lesion [4]. But images of maize lesions usually have
hundreds or even thousands of lesions, complicating edge
detection of what should be considered independent lesions.
Moreover, maize lesions often have very diffuse boundaries,
similar to MRI images of breast or brain tissue. Diffusion
of the boundaries further flattens the gradients, exacerbating
the problems caused by crowding.

1.2.2 Microscopic cell nuclei: gradient vector diffusion

Identifying and separating individual cells in an image
has been a central goal of biological image segmentation
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Fig. 2 Comparison of standalone algorithms. a Gradient vector dif-
fusion followed by gradient tracking, b active contour refinement at a
single resolution, ¢ our approach. Segmentation boundaries shown in
pink and orange

for over 50 years [18]. The task is difficult due to the
size and shape differences between cells and the density
of cells in an image. Cell nuclei and maize lesions often
appear as localized regions of brightened pixels that can
be sparsely to densely packed within the region of interest.
The common approaches to segmenting cell nuclei include
intensity thresholding, feature detection, morphological fil-
tering, watershed transformation, deformable model fitting,
and graph-cut approaches [3,19].

Gradient diffusion and flow tracking model the image
as a deformable sheet and propagate strong gradients while
suppressing weak ones. This approach was successful in seg-
menting the clustered cell nuclei of C.elegans, where the
nuclei are very uniform in size, texture, and structure [3]. Not
surprisingly, this approach worked well for detecting small
and consistent lesions, even if they were densely packed.
But it failed as the lesion phenotypes became more diverse
(sizes varying over several orders of magnitude, variations in
lesion texture and interior structure, and wider variation in
lighting). For example, large lesions were severely overseg-
mented (Fig. 2a).

1.2.3 Active contours

Active contour algorithms, such as the Chan—Vese algorithm,
evolve a segmentation boundary toward a local optimum,
generally expressed as minimizing an energy function depen-
dent on internal information (e.g., boundary curvature) and
external information (e.g., image intensity or gradient) [20].
The final boundary is therefore a compromise between
the locally optimal, “greedy” path around the object and
smoothness constraints. These approaches provide smooth
boundaries and accurate segmentations, but only if the algo-
rithm is initialized sufficiently near to the object to be
segmented. An example of mis-segmentation due to variable
lesion size is shown in Fig. 2b. Smaller lesions are success-
fully identified, but larger lesions are oversegmented because
the most salient features of smaller lesions struggle to prop-
erly characterize larger lesions.

The need to “seed” the active contour algorithm with an
approximate boundary suggested the use of a wavelet-based
multiresolution analysis (MRA) to identify putative lesions
without prior knowledge of their size or shape [21]. MRA
creates a series of image approximations, each representing
the features of an image at different scales. The boundaries
of these features are approximate, both because only a few
scales are used in the MRA and because many objects may
have irregularly crenelated polygonal boundaries.

1.3 Synopsis of our approach

Maize lesion segmentation requires an adaptive approach
which is sensitive to small lesions and able to simultaneously
detect and address large, diffuse, or internally structured
lesions. Our method accomplishes this by combining several
distinct techniques. First, wavelet decompositions at different
scales identify putative lesions, independent of shape and size
[21,22]. Then, the results of this multiresolution analysis are
passed to a gradient vector diffusion algorithm for a prelimi-
nary estimate of the lesions’ boundaries [3]. These two steps
work well for detecting and approximating lesion boundaries,
but for the final segmentation the Chan—Vese active contour
segmentation algorithm is used [20]. The output is a mask
that delimits each lesion in the image for subsequent quan-
titative characterization; example output of our algorithm is
shown in Fig. 2c.

Our approach was validated using a collection of manually
segmented images, which sample the range of maize lesion
phenotypes and include some of the more difficult lesion
types. We consider precision and recall measures to evalu-
ate the correct identification of lesions, and the object-level
consistency error (OCE) to measure overlap accuracy [23].
While our approach has been tuned to the problem of maize
lesions, its strategy may be flexible enough for processing
other, very heterogeneous images.

2 Materials
2.1 Plant materials

Fourteen different disease lesion mimic mutants were back-
crossed into three different inbred maize lines. The number
of back-crosses varied among the different line/mutant com-
binations. Plants were grown at the Missouri Maize Center,
University of Missouri, Columbia, MO in the summer field
seasons. Leaves were photographed shortly after the mutant
plants had finished shedding pollen. At this stage, some com-
binations had lesions that had reached stasis and had well-
defined boundaries, while other combinations had lesions
that continued to expand and differentiate. In some cases,
this latter class of phenotypes produce a diffuse chlorotic
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zone surrounding one or more necrotic central lesions. As
the chlorotic zones expand, intensify, and merge, it becomes
difficult for humans to identify the original lesions.

2.2 Images for cascade development

A set of 18 images from the summer, 2012 field season was
used for algorithm development. These images were chosen
to maximize the number of distinct phenotypes, compar-
ing among multiple lesion dimensions, while keeping the
set small enough to permit detailed visual inspection of the
algorithmic results.

Leaves were cut from plants, the cut ends immersed in ice
water, rinsed, and air dried. All leaves were photographed
within an hour after cutting, so they suffered no degradation.
The leaf was attached to a field of blue cloth, creating a dis-
tinct leaf foreground and cloth background, allowing the leaf
to be readily identified in the image. All images included an
identifying tag with a unique plant ID, the identifier’s bar-
code, and the number of the leaf. The images also included
a Gretag—Macbeth (now XRite) color checker for possible
color adjustment among images taken under differing light-
ing conditions.

Figure 3 demonstrates our setup for image capture. Images
were taken with a Nikon D80 10.2 MP DSLR camera with
an AF MICRO NIKKOR 60 mm lens and illuminated with
fluorescent 5000 K lamps. Using a purpose-built jig, leaves
were held parallel to the plane of the lens at a fixed distance
and illuminated along their length and from above and below.
Light was also reflected by aluminized bubble wrap enclosing
the back, top, bottom, and part of the front of the apparatus,
to further diffuse the angles of incident light. Most images
included a third or more of the maize leaf; smaller leaves
entirely filled the image.

2.3 Manual segmentation of test images

A set of 17 images, separate from the 18 used for algorithm
development, was manually segmented and serves as a test
set for the algorithm. These images came from the summer,
2011 field season, and were photographed differently from
the 2012 images. In this case, the leaf was mounted horizon-
tally, still parallel to the plane of the lens, and was illuminated
by a combination of overhead fluorescent lights and two spot-
lights of 5000 K lamps, placed to the left and right of the
leaf and angled onto it. Again, the identifying tag and color
checker were included.

The images were chosen to maximize the variety of phe-
notypes as before. To prevent undue fatigue, the leaf area
evaluated depended on the density of lesions, so that smaller
areas of very crowded phenotypes were assessed. We aimed
to have at least a hundred lesions in each segment, with
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Fig. 3 Jig used for image capture. Views from front (fop) and side
(bottom)

approximately the same number of lesions for all segments.
These parameters were evaluated by eye, however. With one
exception, none of the observers had viewed lesions in planta
before evaluating the image segments. Thus, they were at
least as naive as the cascade.

Each image segment was presented randomly to each
observer, for a maximum of three presentations, each sep-
arated by at least one other image. The observer outlined
the lesion boundary as accurately as possible using a stylus
and touch screen monitor. Despite our best efforts, the pix-
els designated as the boundary were not always the one the
observers intended. This boundary polygon was connected
automatically between the first and last points, and its points
recorded in a database. The observers varied widely in the
number of image views they assessed: the range was 5-50
views, with a median of 17 views per person. The number of
times each image was assessed also varied widely, ranging
from 4 to 9 views by all observers.
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3 Methods
3.1 Multiresolution analysis for lesion detection

Once the leaf is extracted from the raw image, the next step is
to perform a multiresolution analysis, allowing for a segmen-
tation approach that is agnostic to lesion size. Multiresolution
analysis (MRA) approximates a function at different res-
olutions by means of wavelet decomposition. The wavelet
function v (x) is a function that can be dilated and translated
to form a family of orthonormal basis functions spanning
f € L*(R) [21]. Intuitively, decomposing the function f
can be thought of as finding how much each basis function
contributes to f.

For analyzing signals that do not show strong periodicity,
as is often the case for images, the wavelet transform is a
considerable improvement over the Fourier transform, which
has led to its adoption for the JPEG2000 image compression
standard [22]. Images can be considered a discrete sampling
of the continuous function f at even intervals, and so discrete
approximations of the wavelet functions are scaled by a factor
of 2/ and translated by k, where (j, k) € Z. Antonini et al.
[24] define the discrete wavelet as finding the coefficients ¢
which satisfy:

f=>ciu(H)¥ix ()
cik(f)={fi ¥k 2)
Yik(x) = QIPY2Ix — k) pez A3)

where (f, ¥ x) represents the inner product (or “dot prod-
uct”) between f and ¥ x. In practice, this is equivalent to
convolving f with the compact function ¥; at all positions k.

The MRA approach developed by Mallat [21] uses two
special wavelet functions, a difference function ¥ and a
scaling function ¢. Transforming f with ¢; produces coeffi-
cients approximating f at resolution 2/, while transforming
f with v; produces coefficients measuring the information
difference between approximations at the scales 2/~ ! and 2/,
effectively dividing f into a smoothed background compo-
nent and a local detail component.

For images, a hierarchical algorithm has been devel-
oped which convolves f with low-pass and high-pass
filters and downsamples by 2 at each step, decomposing
an image into low-frequency and high- frequency com-
ponents [24]. For our purposes, we are interested in the
low-frequency image approximations generated via the
Cohen—-Daubechies—Feauveau 9/7 analysis coefficients [22,
25], which is a discretized version of the scaling function ¢;
these coefficients are effectively a low-pass filter (L) [24]. To

ensure even sampling, the image must be expanded to be a
multiple of 2" prior to decomposition, where n is the number
of times the image will be decomposed. The image is first
convolved vertically with L and downsampled, followed by
convolution horizontally and downsampling, creating a lower
resolution approximation of the original image; this proce-
dure can be repeated for as many scales as desired. For our
purposes, we find four decompositions to be sufficient for
detecting different-sized lesions. Figure 4b demonstrates the
effect of the resolution reduction procedure for a small leaf
section.

3.2 Gradient vector diffusion to find approximate
position of lesions

Once the matrices of scaling coefficients have been com-
puted, features across scales can be detected. While lesions
can vary in size by several orders of magnitude, small lesions
at a high resolution are visually very similar to large lesions
at a low resolution, appearing as distinct foci of bright pixels.
Measuring the gradient vectors of the images allows lesions
to be detected as areas of gradient vector convergence, and
by leveraging a multiresolution representation of the image,
similar methods of detection can be used for lesions of all
sizes. Due to the noise inherent in images, as well as irregular-
ities in lesion shape and internal structure, we apply the gradi-
ent diffusion procedure of Li et al. [3], with minor alterations
to adapt the method to two dimensions. This method was
motivated by the high density of nuclei and diffuse boundary
properties in microscopic embryo images of C. elegans.
The image is modeled as a deformable elastic sheet,
where the gradient vector field v(x, y) = (u(x, y), v(x, y)),
with horizontal component u(x, y) and vertical component
v(x, y), form solutions to the Navier—Stokes equation [26]:

w2V + (A + w)vdiv(y) + (Vf —v) =0 )

where V2 is the Laplacian operator, V is the gradient operator,
div is the divergence operator, and Vf is the original gradi-
ent. This equation is solved using a finite difference method,
decoupling v and treating # and v as functions of time:

w(x, y, 1) = uV2ulx, y, 1)

+ A+ ) (Vdiv(v(x, y, 1))«

+ ((Vf(x, ¥))x —ulx, y, 1))
vi(x, y, 1) = pVv(x, y, 1)

+ A+ ) (Vdiv(v(x, y, 1))y

+((Vf(x, )y —vlx, y, 1) (5)
Consistent with the approach of [3], Ax, Ay, and Ar are

taken to be 1, and with indices i and j corresponding to x
and y, respectively:
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n+l _ . n

n+l n
ij Ui -

Uy = vi,j Ui,j

Uy = u
VAU = wigj A w1 — 4
VAV = g o1 Vil 4 Vi1 — 4
(VAiV(V)x = uiy1j +ui-1,j — 2uij + Vig1,j+1
—Vij+1 = Vitl,j T Vi
(VAiv(v))y = v j+1 + vi j—1 — 2v;,
F Ui 41— Uil — Wi ] T U
(Vhx =2fi+1,j + fixrj—1 + fir1,j+1
=2fi—1j = fi-1j-1 = fi—1,j+1
(Vh)y =2fij+1+ fim1j+1+ fis1,j+1
—2fij—1— fic1,j—1 — fi+1,j—1 (6)

The equations for the horizontal gradient components
(Vf)x and the vertical gradient components (Vf), of the
original gradient field are analogous to the Sobel filter, a
common technique for approximating image gradients.

Our current implementation uses A and p values of 0.015,
repeating the finite difference method for 45 iterations. These
values were decided upon by manual tuning to produce
suitable segmentations of the eighteen test images, and to
ensure speed and stability. This gradient diffusion technique
is applied to each matrix of scaling coefficients ¢ x ( f) sepa-
rately. After the gradients have been diffused, the divergence
is calculated from the horizontal and vertical gradient com-
ponents.

To create a consensus image, the divergence values at each
resolution are expanded to the native resolution (e.g., all pix-
els that are at half scale are repeated twice vertically and
horizontally, pixels that are one quarter scale are repeated
four times, etc.,), and the minimum at each pixel coordinate
is found across the calculated divergence matrices. Gradi-
ent vector diffusion at multiple resolutions automatically
enhances the gradient features of a lesion at the resolution
thatitis mostreadily detectable, and reexpansion to the native
resolution allows for a similar active contours refinement to
be calculated on lesions of all sizes. Lesions are detected as
pixels with a divergence of less than —45. This consensus
image provides an “initial guess” for implementation of an
active contour algorithm, which provides the final segmen-
tation (see Fig. 4d, e).

3.3 Active contours to refine lesion boundaries

Once a consensus mask has been calculated through MRA
and gradient vector diffusion, an active contour algorithm
can be initiated at each potential lesion. Active contour
algorithms are a popular segmentation approach for optimiz-
ing object boundaries or separating internally homogenous
regions of an image. The basic premise is to guess the object’s
boundary and to evolve it toward an optimal position accord-
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ing to image information and constraints on mean curvature
[18,20].

We utilize the Chan—Vese level-set method, which sep-
arates regions of an image u( by minimizing the variance
of their internal values and the curvature of the bound-
ary C separating them [20]. Defining an energy function
F:

F(cy,c2,C) =y - Curvature(C)

+ / luo(x, y) — c1]*dxdy
inside(C)

+ / luo(x, y) — c2|*dxdy (7
outside(C)

where ¢; and ¢ are the mean values of the interior and
exterior regions, respectively, and y is a weight parameter
which constrains the curvature; the larger y, the more rigid
the boundary. This is therefore the minimization problem:
inf¢ ¢,,cF(c1, 2, C).

The evolution of C is achieved using a level-set approach.
C is defined implicitly as the zero level (or ‘level-set’) of the
higher dimensional Lipschitz function 2, or:

C={(x. Ik, y) =0} ®)

Evolving the curve C in time is achieved by solving the partial
differential equation:

e _ 5. ()
ar
VQ

x [div (lv—m)—(uo—m)z-i-(uo—cz)z] =0 (9
Q(0, x,y) = Qo(x, y), (10)
S (2) 082

0 11
\VQ| 07 0 (i

where div( %) is the curvature of €2, Q¢ (x, y) is the initial
boundary, and §(£2) is the Dirac delta function. A discretized
Matlab implementation of the algorithm was used.!

3.4 Validation

A segmented image is considered as a binary image where
lesion pixels are labeled 1 and nonlesion pixels are labeled
0. An individual lesion is a set of contiguous lesion-labeled
pixels. Methods exist to create a ground truth image from the

! The code can be found at: http://www.mathworks.com/-matlabcentral
/-fileexchange/- 19567-active-contour-segmentation.
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Isolate Leaf: leaves are imaged
on a blue cloth background for

(@)  straightforward extraction via
the histograms of the red and
green color channels

Multiresolution Analysis: an-
alyzing the leaf at different
resolutions allows for lesions
of different sizes to be readily
identified

(b)

Gradient Vector Diffusion:
lesions are naturally irregular
and noisy; diffusing the image
gradients allows for the most
salient regions of high intensity
pixels to be identified

(o)

Combine Divergence: combin-
ing vector divergence measures
and thresholding provides an es-
timate of the boundary of each
lesion

(d)

Active Contours: given an ini-
tial guess of the lesion bound-
(e) ary, the active contour algorithm
is able to find a locally optimal
segmentation for each lesion

Fig. 4 An overview of our approach. The output of each algorithm is passed to the next in the cascade, producing a final segmentation of each
putative lesion in an image. The boundaries for initial and final segmentation are shown in pink (e)

input of multiple users by voting schemes [27] or Expecta-  segmented, not the hundreds to thousands present in Z. mays
tion Maximization [28], but these approaches are tailored to  lesion images. This, along with the low number of man-
situations where one or a handful of objects in an image are ~ ual segmentations available, resulted in highly irregular and
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algorithm

user 5

user 2

Fig. 5 Disagreement between two human segmenters and the algo-
rithm

unnatural ground truth images. We instead opted to perform a
“round robin” validation, wherein each segmenter (including
the algorithm) was compared against all other users. Rather
than evaluating the segmenter in absolute terms, this proce-
dure determines whether a segmenter is in agreement with
the other segmenters; our measure of success is therefore
whether the algorithm statistics lie within the range of inter-
human variation.

When comparing two segmentations of a lesion in separate
images of the same leaf, there is a distinct set of relationships
the putative lesions may share:

1. Exact match (True Positive): for every pixel belonging to
a lesion in one image, there is an equivalent pixel in the
second image, and vice versa.

2. Near match (True Positive): the centroid of one and only
one lesion in the first image falls within the convex hull
of a lesion in the second image, or vice versa.

3. Oversegmentation (True Positive): the centroids of more
than one lesion in the first image fall within the convex
hull of a lesion in the second image.

4. Undersegmentation (True Positive): the centroids of more
than one lesion in the second image fall within the convex
hull of a lesion in the first image.

5. False positive (False Positive): the centroid of a lesion in
the first image does not fall within the convex hull of a
lesion in the second image.

6. False negative (False Negative): no lesion in the first
image has a centroid which falls within the convex hull
of a lesion in the second image.

Relationships 1-4 are all examples of true positives (TP),
wherein a lesion has been correctly identified, with or without
some error.

Figure 5 demonstrates some of the variability that exists
between users, and illustrates several of the mis-segmentation
cases described above. In this case, it is apparent that user 5 is
considerably more conservative than user 2 or the algorithm,
while the algorithm tends to undersegment (relative to the
users) and user 2 tends to oversegment (relative to user 5 and
the algorithm). These examples also highlight the difficulty
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in deciding whether a segmented region constitutes a “true”
lesion.

To evaluate a segmentation, we consider the precision,
recall, and object-level consistency error (OCE) of the seg-
mented image against a ground truth [23]. When evaluating a
given segmentation, the ground truth image is taken to be all
pixels labeled as “lesion” pixels by the other participants,
which includes the automated algorithm when evaluating
manual segmentations. We considered excluding the results
of the algorithm for purposes of validation, but this unfairly
decreases the human metrics while increasing the algorithm’s
metrics. In this way, a lesion is considered valid if it was
detected by more than one observer.

Object-level consistency error (OCE) is a metric that quan-
tifies the overlap of a segmented and ground truth image at
the object level [23]. This makes it preferable for evaluat-
ing segmentations of multiple objects. The commonly used
Dice and Jaccard coefficients are appropriate for evaluating
the overlap of single objects, but topological disagreements
(oversegmentation and undersegmentation) are not properly
penalized as all labeled pixels are considered to be the same
object. OCE overcomes this by measuring the mismatch
between pairs of objects and weighting the mismatch by the
magnitude of the mismatch relative to the overall image. OCE
values range from O for perfect agreement to 1 for no agree-
ment between segmentations.

Consider a ground truth image Iy = {Ay, Az, ..., Ay},
where A is the jth fragment in /,, and a segmented image
Iy = {By, B2, ..., By}, where B; is the ith fragment in ;.
A partial error measure Eg (/g I5) is defined as:

M N A N Bil
Fustn 0= 3 (1= 30 v v
12)
8(A; N Bi])|B; Aj
. A NBDIBI AL gy

SN S(A; N BBl >Hoal

where 8(x) is the Dirac delta function and §(x) = 1 — §(x).
The OCE is thereby defined as:

OCE(ly, Is) = min(Egs, Es g). (14)

Precision (P) and recall (R) are measured as:

P = Number of TP
~ Number of TP + Number of FP’
_ Number of TP
R = Number of TP + Number of FN (15)

For a pair comprised of a ground truth and test image, cen-
troids for all possible lesions are calculated and true positive,
false positive, and false negative values are calculated as
described above. Using these values, the precision and recall
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is easily calculated. These measures effectively evaluate the
presence or absence of a lesion in a test image, while the OCE
score evaluates how well a particular segmentation captures
the total lesioned tissue.

4 Results
4.1 Variation in lesion phenotypes

Figure 6 demonstrates the results of our algorithmic cascade
on the 18 development images. These images sample from
the broad phenotypic variation present among maize lesion
mimic mutants, and highlight variation in phenotypic char-
acteristics and the difficulties in measuring them. Lesions
can vary in size from only a handful of pixels, as seen in
the W23/Les*-N2320 mutants, to several thousand, shown
by the Mo20W/Les6 mutants. Lesion boundaries also vary
considerably in sharpness and regularity, as demonstrated by
the defined but amorphous lesions of Mo20W/les23 and the
diffuse, ovoid lesions of M020W/Les8. Proximity of lesions
is yet another key though confounding phenotypic trait; a
handful of lesions may be scattered throughout the leaf
(W23/Les*-N2320) or they may be densely packed or touch-
ing (Mo20W/Les9). Finally, the background healthy tissue
itself presents challenges to lesion detection due to variable
lighting conditions, leaf damage, and non-lesion biological
structures such as leaf hairs and the leaf midrib.

4.2 Illustration of cascade

The principal stages of our approach are demonstrated by
Fig. 4. Multiresolution analysis decomposes the maize lesion
image into representations of decreasing resolution, while the
distinct lesion foci are detected by gradient vector conver-
gence. It is apparent that small lesions are readily identified
at a higher resolution and larger lesions at lower image reso-
lutions. After combining the gradient convergence measures
across the multiresolution image representation, the active
contours algorithm can be initiated at the native image res-
olution for final boundary refinement. Parameters and the
respective values used are shown in Table 1.

4.3 Validation

Four individuals hand segmented the 17 test images, which
included some of the most diverse lesion phenotypes. Only
one individual segmented the full set of extracts, with the
others completing some subset of the extracts. Partially
segmented extracts were not considered valid. Hand segmen-
tations vary considerably between individuals, and to a lesser
degree within individuals, so inter- and intra-researcher vari-
ation are both important to consider.

Mo20W/Les8 M1I14/Les21 M14/Les102

M1I14/Les*-N2418 Mo20W/Les*-N2320 W23/Lesl

g

Mo20W/Les17

W23/Les*-N2320 Mo20W/Les6

Mo20W/les23 Mo20W/Les4 Mo20W/Les4

Mo20W/Les*-N2320 W23/Les*-mil W23/LesLA

Mo20W/Les10

M14/Les4 Mo20W/Les9

Fig. 6 Examples of maize lesion phenotypes. The approximately hor-
izontal striations are leaf veins and the short, slender, mostly vertical
features are leaf hairs. The pink edges around the lesions denote the
segmentation results

Figure 7 and Table 2 summarize the results for hand-
segmented and machine-segmented images. For both humans
and the cascade, the segmentation results vary, a result of the
complexity of Z. mays lesion images as well as the subjectiv-
ity in defining what constitutes a lesion. Because in each case
the ground truth was considered to be those lesions identified
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Table 1 Parameters used across the various stages of the algorithm and
their values

Parameter Value Description

NMRA 4 Number of decomposition stages used for
MRA

o and A 0.015 Control speed of gradient vector diffusion

nGvDp 45 Number of iterations to run the gradient
vector diffusion

y 0.8 Rigidity of active contour boundary;
higher values result in more ovoid
segmentations

nAC 25 Number of iterations to run the active
contour boundary refinement

precision ‘ | recall ‘ | OCE
1.00 E:] == E;j

value
3

0.75 N :
.

o . é#

025 .

0.00

0 2 4 5 alg 0 2 4 5 alg 0 2 4 5 alg
user

Fig. 7 Box and whisker plots for precision (left), recall (center), and
OCE (right). Human segmenters shown in red and the algorithm in blue.
A precision and recall of 1 is ideal, while an OCE of 0 is ideal

by the other participants, low precision and recall can result
from disagreement. It is worth noting that in cases where
the algorithm performed poorly, there is also disagreement
amongst users, implying that these are particularly difficult
and perhaps subjective cases.

Multivariate analysis of variance (MANOVA) was con-
ducted for each pair of users (0, 2, 4, 5, and the cascade) with
the dependent variables of precision, recall, and OCE. The
cascade demonstrated lower precision than users 0, 4, and 5,
but only comparisons with users 4 and 5 were statistically sig-
nificant (p < 0.01). The cascade’s precision was comparable
to that of user 2. The cascade demonstrated higher recall val-
ues than all users, with comparisons against users 0, 4, and 5
being significant (p < 0.01). Finally, when comparing OCE
values for all users, there was no detectable difference among

users. This demonstrates a somewhat expected loss of preci-
sion due to automation, but an increase in overall recall with
no significant change in OCE.

5 Discussion

Zea mays lesion mimic mutants are an excellent example of
a distinct, measureable complex phenotype. By comparing
the phenotypic similarities and differences between mutants
in a quantitative manner, the underlying processes produc-
ing these phenotypes can be better understood. Quantitating
complex phenotypes, however, is itself a challenge, and the
phenotypic and technical variation of maize lesion mimic
mutants makes segmentation a particularly difficult problem.
Our initial attempts at background subtraction had modest
success, but were unable to overcome the range of local
intensities and biological structures present in our images.
Standard edge detection techniques such as the Sobel filter
were successful at segmenting highly defined lesions, but
diffuse boundaries and densely packed lesions made edge
detection infeasible. Use of active contour algorithms was
promising, but as has been previously noted [4,5,18,20,29],
the results are highly dependent on initialization. The gra-
dient vector diffusion technique of Li et al. [3] was very
successful at identifying small lesions, which are visually
similar to C. elegans embryos, but larger lesions with variable
internal structure led to high degrees of oversegmentation.
Multiresolution analysis overcame this barrier, allowing for
gradient vector diffusion at multiple scales to detect lesions
of many shapes and sizes. This permitted a final refinement
of their boundaries by the active contours algorithm.

By combining common image processing techniques,
including thresholding, multiresolution analysis, gradient
vector diffusion, and active contours, we have created a novel
approach which is able to segment lesioned Z. mays leaves
on par with human segmenters. Due to the complexity of
Z.mays leaf images and the difficulty of Z. mays lesion seg-
mentation, results between and within segmenters can vary
widely, with precision as low as 15 % and recall as low as
2 % for some of the more difficult examples. These results
are a product of both the technical difficulties in segment-

Table 2 Comparison of human

and algorithm segmentation User Total Uniq P P SD R R SD OCE OCE SD
performance 0 5 5 0.89 0.20 0.36 0.22 0.48 0.20
2 31 15 0.69 0.17 0.52 0.23 0.48 0.20
4 11 9 0.98 0.02 0.31 0.23 0.47 0.16
5 50 17 0.96 0.09 0.35 0.18 0.49 0.12
Alg. 17 15 0.69 0.22 0.64 0.18 0.46 0.19

Included are the number of total images segmented, number of unique images segmented, and the mean and
standard deviation of each user’s precision, recall, and OCE measures
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ing natural images as well as the subjective interpretation
of what constitutes a lesion. In cases where the cascade
struggled, there is higher disagreement among users, such as
the W23/Lesl, Mo20W/Les17, and W23/Les*-2320 mutants.
Nonetheless, the cascade demonstrates a high recall rate
and was comparable to humans with respect to OCE; that
is, our algorithm captured most of the lesions identified by
human segmenters. In the case of precision, the cascade did
under-perform some of the human segmenters, though it was
comparable to user 2, who segmented the most images. For
our phenotyping purposes, OCE and recall are the most per-
tinent measures: we will at least capture the lesions humans
do, for most of their area. Our approach demonstrates results
comparable to human segmenters and the potential to vastly
improve throughput, an essential requirement for our images,
which are comprised of hundreds of images with thousands
of lesions each.

To improve results, the simplest solution may be in
the field. By photographing leaves earlier, lesions will be
more distinct and better separated, while the leaf will show
less damage, simplifying analyses. Future improvements
on the cascade may include a more structured training of
parameters, inclusion of additional features such as color
transformations, or a more principled method for combin-
ing gradient information across levels in the multiresolution
analysis. Other performance measures would likely produce
different values. While this method has been tailored to the
Z.mays lesion problem, we believe its general approach can
be generalized to other problems in computer vision.
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