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Abstract Various computer vision applications such as
video surveillance and gait analysis have to perform human
detection. This is usually done via background modeling
and subtraction. It is a challenging problem when the image
sequence captures the human activities in a dynamic scene.
This paper presents a method for foreground detection via
a two-step background subtraction. Background frame is
first generated from the initial image frames of the image
sequence and continuously updated based on the background
subtraction results. The background is modeled as non-
overlapping blocks of background frame pixel colors. In the
first step of background subtraction, the current image frame
is comparedwith the backgroundmodel via a similaritymea-
sure. The potential foregrounds are separated from the static
background and most of the dynamic background pixels. In
the second step, if a potential foreground is sufficiently large,
the enclosing region is compared with the backgroundmodel
again to obtain a refined shape of the foreground.Wecompare
our method with various existing background subtraction
methods using image sequences containing dynamic back-
ground elements such as trees and water. We show through
the quantitative measures the superiority of our method.
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1 Introduction

Many computer vision applications, such as video sur-
veillance [1], gait analysis [2], video segmentation and
retrieval [3], demand the detection of moving objects such as
humans and vehicles. To detect moving targets, one common
approach is tomodel the background scene and in each image
frame finds out those pixels that are similar to the background
and those that are not. This is background subtraction. An
alternative approach is to detect themoving targets by finding
those pixels that are certainly not similar to the background.
There have been many researches in detecting foreground
targets in static scene while detecting foreground targets in
dynamic scene is more challenging. In the former category,
the backgroundmay be stationary or moderately dynamic. In
the latter category, the background scene may exhibit vigor-
ous motions. Bouwmans [4] presented a survey on statistical
background modeling. The methods were classified in term
of category, strategies used, and critical situation to be tack-
led. Sobral and Vacavant [5] also presented a recent review
and evaluation of 29 background subtraction methods.

This paper reports on the detection of foreground targets
in a dynamic environment. Our proposed method is robust
so that it can detect targets in a scene containing moving
elements such as water and trees. The detection process
is complicated due to the presence of various defects in
the image sequence. For instance, to detect swimmers in
the swimming pool, the water surface can exhibit random
motions and ripples. Other objects such as lane dividers are
swaying. The wet body of swimmers and splashes can give
rise to specular reflections in the captured video frames. Tra-
ditional background modeling/subtraction methods are not
designed for tackling these problems. For instance, Ning et
al. [6] used the least median of squares method for mod-
eling individual pixels of the background scenes which are
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mainly static. Li et al. [7] proposed a method for modeling
background by the principal features and their statistics. The
principal features for static background were color and gra-
dient, while dynamic background was characterized by color
co-occurrence. Foreground and background were classified
and detected by a Bayesian framework. Pixelwise back-
ground color has also been modeled by a single Gaussian
distribution. It would be better to employ multiple Gaussian
distributions when pixels may exhibit multiple background
colors due to repetitive motions and illumination changes.
Stauffer and Grimson [8] proposed the modeling of back-
ground colors using mixture of Gaussian distributions. Pixel
values that did not match any of the background distributions
were regarded as foreground. However, randommotions and
sudden changes in the background are very difficult tomodel.
Since conventional background subtraction methods do not
assume the existence of a vigorously moving background,
they will not work on dynamic scene. We therefore model
the moving background as dynamic texture and propose a
method for foreground detection in dynamic scene.

The organization of the paper is as follows. Section 2
presents a review of relevant work on background model-
ing and subtraction. We describe the challenges and our
approach to achieve accurate foreground detection in a
dynamic environment. Section 3 describes the generation of
background frame which is used as the initial background
model in our foreground detection framework. Section 4
describes our two-step dynamic background subtraction and
the updating of background model. We briefly introduce
the block-based mixture of Gaussians model, codebook
method, self-organizing artificial neural networks, and two
sample-based background subtraction methods (visual back-
ground extractor, pixel-based adaptive segmenter), which are
selected for experimentation. All the methods are evaluated
using image sequences containing illumination changes or
moving background such as trees and water. Selected image
frames and numeric results are presented in Sect. 5.We exam-
ine the experimental results and discuss the strengths and
limitations of our two-step background subtraction method
with respect to other methods in Sect. 6. Finally, we conclude
the paper in Sect. 7.

2 Related work

Automatic video surveillance systems for monitoring mov-
ing objects typically consist of the background subtrac-
tion/foreground detection, tracking of targets along the image
sequence, and inference of the motion. Typical targets are
humans or vehicles and they are the foregrounds in each
image frame. Their detection can be achieved via the back-
ground subtraction process. One common assumption is
that the background is stationary or changes slowly. Some

recent methods have been proposed that can tackle back-
groundmovements. In [9],moving objectswere first detected
by subtracting the static background and the current image
frame. Pixels of moving objects were labeled as dynamic
background and foreground. Finally, Markov Random Field
model was used to infer the coherence over the labels for a
more accurate segmentation of background and foreground.
Liao et al. [10] proposed a pattern kernel density estima-
tion technique to model the probability distribution of local
patterns in the pixel. A multimodal background models and
multi-scale fusion scheme were developed for subtracting
the dynamic background. In [11], the background was mod-
eled as a set of warping layers to account for the intensity
changes of pixels due to background motions. Foreground
regions were then segmented as they cannot be modeled by
composition of the background layers. El Baf et al. [12] pro-
posed tomodel the dynamic background using a type-2 fuzzy
mixture of Gaussians model to tackle critical situations such
as waving trees and moving water.

To detect and recognize human motion in the aquatic
environment is very challenging. Most of the background is
non-stationary. Lu and Tan [13] modeled the entire back-
ground (the swimming pool) with a mixture of Gaussian
distributions. The method has the advantages of minimum
memory required to store the background model and is eas-
ier to update. Kam et al. [14] developed a video surveillance
system capable of detecting drowning incidents in swim-
ming pool. The background was modeled by incorporating
prior knowledge aboutmovements ofwater and lane dividers.
Swimmers were detected based on the similarity of colors to
the background model. In [15,16], the surveillance system
was changed to employ a block-based backgroundmodel and
swimmers were detected by hysteresis thresholding. Eng et
al. [16,17] proposed to model the background as a composi-
tion of homogeneous blobmovements. Themethod can adapt
to change of background regions over time which is good for
modeling the dynamic aquatic environment. The problem of
specular reflection at nighttimewas also tackled by a filtering
module.

Many background subtraction methods use intensity
(color or gray value) information and assume that the salient
features are still stable when the background exhibits quasi-
rigid motions. They may not work on scene where the
background elements can move vigorously. The intensity
patterns of the background can be greatly distorted spa-
tially and temporally. Methods have been proposed to use
motion feature. Wang et al. [18] proposed measuring motion
frequency in a pre-processing step. The per pixel motion
frequency was estimated by calculating the average num-
ber of significant interframe difference. Motion frequency
was classified as low, medium and high by thresholding.
Pixel color of the latter two classes was changed to remove
specular reflections, sensor noise, etc. Swimmer detection
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was finally carried out on the transformed video frame using
block-based background model. In [19], a modified mixture
ofGaussiansmethodwas used to subtract background (detect
foreground). Hierarchical optical flow field was computed
and only those optical flow vectors of large temporal inten-
sity difference were retained. Finally, the initial foreground
region was pruned by considering the amplitude and orien-
tation of the optical flow vectors. In [20], each foreground
feature point was selected if its motion (estimated by tem-
poral difference of Gaussian) was similar to its neighbors.
Foreground model was generated by clustering of 2D spatial
coordinates and motion vectors (estimated by optical flow
computation) of feature points.

Doretto et al. [21] considered the image sequence of mov-
ing scene as dynamic texture. They proposed a method to
model, recognize and synthesize the visual signals close to
moving scene. Chetverikov et al. [22] addressed two related
problems: detect regions of dynamic texture and detect tar-
gets in a dynamic texture. Dynamic texture was modeled as
optical flow residual which was a simplified and faster ver-
sion of their previous method [23] using level-set function.
Traver et al. [24] proposed an optical-flow-based dynamic
texture detection method. Dynamic texture was detected
when therewas violation of the brightness constancy assump-
tion.

Our foreground detection method, as shown in Fig. 1,
is composed of background modeling and dynamic back-
ground subtraction. Background frame is generated from the
original image sequence. The background is modeled by par-
titioning the background frame into non-overlapping blocks
of pixels. We consider the moving background elements
(e.g., waving trees, rippling water, swaying lane dividers)
as dynamic texture. Some background elements may exhibit
changes due to illumination changes (e.g., windows) or
camera jitter. The remaining background elements (e.g.,
road, swimming pool walkway) are considered as station-
ary. All these elements must be handled by our background
subtraction method. To speed up the background model-
ing/subtraction process, we employ pixel colors rather than
extracting motion feature from the image sequence. We
compare each pixel of the current image framewith the back-
groundmodel in a two-step dynamic background subtraction
framework.

The idea of two-step background subtraction was first
proposed in [25]. A background frame is generated from a
short image sequence by vector median filtering The back-
ground is modeled as block-based color Gaussian mixture
model by k-means clustering. In the first step of background
subtraction, the current image frame is compared with the
background model via a spatial similarity measure. The
potential targets are separated from most of the background
pixels. In the second step, if a potential target is sufficiently
large, the enclosing block is compared with the background

Image sequence . . . . . .. . . . .

Background frame

Background model 1st background 
subtraction

2nd background 
subtraction

Fig. 1 Overview of the two-step background subtraction (TSBS)

model again to obtain a refined shape of the foreground. The
parameters of the two-step background subtraction are set
empirically. There is no background model updating step. In
that work, test was carried out on only one swimming image
sequence.

In the present work, initial background model can be gen-
erated quickly using only one original image frame. The
background scene is modeled by the real observed colors in
the image sequence, not synthetic values. We sampled some
image frames and employed ROC analysis to determine the
two critical parameters of the two-step background subtrac-
tion. To speed up the background subtraction, once the new
pixel matches with a background pixel, the search will stop.
The background model is updated periodically based on the
previous background subtraction results. A thorough test was
carried out on many image sequences using the same set of
parameters.

Stauffer and Grimson [8] claimed the pixelwise mixture
of Gaussians can deal with repetitive motions of scene ele-
ments. However, the results in [9] and [12] indicate that the
pixelwise mixture of Gaussians is not effective in model-
ing dynamic background such as swaying trees and waving
water. Eng et al. [16,17] partitioned the background frame
into blocks andmodel each block of background colors using
hierarchical k-means clustering. They implemented a spatial
searching process to detect the displaced background colors.
The detected swimmer is refined via the foreground model-
ing step. Our method also models the background scene by
a block-based scheme since it is a better approach to tackle
background motions than the pixelwise scheme. Haque and
Murshed [26] proposed a background subtraction method by
measuring the similarity of the current pixel with all recently
observed background colors instead of using the mean val-
ues as the believed-to-be background colors. We also find
that k-means clusters are not effective in modeling highly
textured background such as swaying trees. Therefore, the
background scene is modeled as blocks of background frame
pixel colors. We define the background color similarity mea-
surewhich is different fromEng et al. [16,17]. As foreground
colors can be wide ranging, our method has no fore-
ground modeling step. We implement a two-step approach
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to detect and subtract background colors in a coarse-to-fine
manner.

Zha et al. [9] considered the background/foreground
segmentation as a labeling problem. Multi-scale images
were formed. While dynamic background may be wrongly
detected as foreground in small scale, it will be detected as
background in large scale. True foreground will always be
detected in all scales. They proposed aMarkovRandomField
model to infer the spatial and temporal coherence over the
background/foreground labels. Our method compares each
frame of the image sequence with the background model via
a spatial similarity measure. It needs no temporal coherence.
Therefore, stationary foregrounds can be detected imme-
diately. Some methods, e.g., [9] and [11], need to set up
multiple images for the subtractionof dynamicbackground in
each video frame.Ourmethod demands only one background
frame. Somemethods employ optical-flow-based techniques
to model background motions. There is no guarantee that the
motion vectors of foregrounds and backgrounds are sepa-
rable. Moreover, to compute motion feature is more time
consuming. Eng et al. [16,17] implemented a filtering mod-
ule to tackle the problem of specular reflection of the water
surface at nighttime.We find that the use of appropriate color
model can tackle the temporal changes of the background
colors.

3 Initialization of the background model

The background subtraction methods chosen for comparison
usually have the background modeling step included. We
generate a background frame which contains no foreground
objects for our foreground detection method. If the image
sequence contains image frames with no foreground objects,
we can select one as the background frame. If the training
image frames contain moving objects, the background frame
is generated from the image sequence by vector median fil-
tering to remove the foreground colors. The only limitation is
that if slowmoving objects or stationary objects are present in
the initial training frames, the background model is not cor-
rect. That will take some time for the updating step to correct
the backgroundmodel. Fortunately, we did not encounter this
situation in the testing image sequences.

Let V τ
x,y be an array of colors over τ number of sampled

image frames, V τ
x,y = {vtx,y |t = 1, . . . , τ }, where vtx,y is the

color vector of the t th sampled image frame at spatial coor-
dinate (x, y) having color components vtx,y,i , i = 1, . . . , k.
Each background pixel is obtained by

bx,y = argmin
v
q
x,y

τ∑

r=1

(
k∑

i=1

|vrx,y,i − v
q
x,y,i |

)
(1)

where q is the index of the sampled image frame contain-
ing the most likely background color, k is the number of
color components. In most cases, τ is set to 10. We sam-
ple 10 frames in a training sequence of 100 frames at an
interval of 10. Therefore, the background frame pixel colors
are real background colors, not artificial values computed by
statistical measure. Figure 2 shows the background frames
generated from the testing image sequences. For PETS 2001
and Campus image sequences, we select one image frame
as background frame. For the two swimming pools image
sequences, all image frames contain swimmers. We gen-
erate the background frames by vector median filtering. It
can be seen that the foreground swimmers (see Fig. 14)
are completely removed in the background frames as shown
in Fig. 2c, d. The background frame is partitioned into a
number of non-overlapping blocks for use in the following
foreground detection.

4 Foreground detection

In the following sub-section, we propose a method for fore-
ground detection via a two-step background subtraction
(TSBS). Finally, we present an algorithm for background
model updating.

4.1 Two-step background subtraction (TSBS)

We are inspired by the research works in dynamic texture
detection. Dynamic textures, usually considered as spatio-
temporally varying visual patterns, are modeled in various
approaches such asMarkov randomfield and incoherent opti-
cal flowfield [24]. In our study,we need to subtract both static
and dynamic backgrounds. Take the swimming pool scene as
an example. The foreground swimmers may be moving fast
or slow or even motionless. Static background elements con-
tain the walkway surrounding the swimming pool, lifeguard
stand, etc. However, when there is camera movement (e.g.,
jitter) or illumination changes, these background elements
are not purely stationary. Dynamic background elements are
the water and swaying lane dividers. There are various kinds
of background motion—sinusoidal movements of ripples,
random motions of water, unidirectional motion of splashes,
undulating motion of lane dividers, etc. To tackle illumina-
tion changes or specular reflections in the background scene,
we adopt the HSV color model for the image data. HSV is
better than RGB since the base color is separated from the
brightness. In the first step of background subtraction, the
dynamic and static background colors are detected by a spa-
tial similarity measure. Finally, in the second step, the initial
foreground regions are refined by the subtraction of back-
ground colors via a close-range similarity measure.
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Fig. 2 Background frames generated from: a PETS 2001, b Campus, c swimming pool 1, d swimming pool 2

SB

DB DB DB

DB DB

DB DB DB

Background model

Search space

Current image frame

Find similar 
background color

Fig. 3 First step of background subtraction (DB block containing
dynamic background colors, SB block containing static background col-
ors)

We consider the problem of background subtraction as a
searching problem in the background model such that there
are colors in the background model very similar to the colors
in the current image frame. With the use of a stationary cam-
era in the acquisition of the image sequence, it is reasonable
to assume that the background elements do not move over
a long distance. Therefore, a dynamic background can be
found in nearby regions of the background model. The lim-
ited search space, besides reducing the computation time,
also reduces the chance of foreground colors being wrongly
regarded as background. A static background can be eas-
ily detected at close proximity. Figure 3 shows this spatial
similarity search strategy. The current image frame is parti-
tioned into non-overlapping blocks. Each pixel of a block is
tentatively labeled as background or potential foreground by
computing the similarity with each pixel of the search space
in the background model. If the current pixel belongs to a
static background, it is likely to find a match in the center
block. If it belongs to a dynamic background, it may find
a match in neighboring blocks. If it belongs to foreground,
probably it never finds a match in the search space.

Due to complex background scene and wide ranging fore-
ground colors, there are two problems in the first step of
background subtraction. First, some background colors in the
current image frame cannot find a match in the background
model due to large change of colors resulted from motion or

Background model

Search space

Current image frame
Background-foreground 

classification

Fig. 4 Second step of background subtraction

illumination change. Second, some foreground colors in the
current image frame are wrongly regarded as background.
The larger the search space, the higher chance the errors
exist in the first step of background subtraction. To obtain a
refined foreground region, we implement the second step of
background subtraction. To reject the false positive errors, we
examine the potential foregrounds detected in the first step. If
the foreground pixels can cluster to form a sufficiently large
region, the block of pixels enclosing that potential foreground
is allowed to proceed to the second step of background sub-
traction. Therefore, scattered and small foreground regions
can be eliminated. To reject the false negative errors, we
limit the search space in the second step of background sub-
traction. As shown in Fig. 4, each pixel of the foreground
containing block is classified as background or foreground
by searching the background model at close proximity. This
is to avoid the foreground color to find a falsematch in neigh-
boring blocks of the background model. The algorithms of
our foreground detection method are shown below. Detail of
the implementation of TSBS is described in the following
paragraphs.

Each image frame is partitioned into n1 × n2 non-
overlapping blocks Ba,b, where 1 ≤ a ≤ n1 and 1 ≤ b ≤ n2.
The block size is the same as in the background model. In
step 1, pixels are classified as potential target or background.
For each pixel p in Ba,b, background models of the enclos-
ing block and neighboring blocks are used in the similarity
measure
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Algorithm 1 – Step 1 of TSBS 

Partition current image frame into blocks 

For each pixel 

 Label pixel as potential foreground 

 Calculate similarity of pixel with each pixel of the search space in background model 

 If similarity >= DTfar

  Label pixel as background 

  Step over to the next pixel 

Algorithm 2 – Step 2 of TSBS

For each block in current image frame

If size of potential foreground > Ntarget

For each pixel

Label pixel as foreground

Calculate similarity of pixel with each pixel of the same block in background model 

If similarity >= DTnear

Label pixel as background

Step over to the next pixel

Sp,m,n =
k∑

i=1

ωi exp

(
−

(
pi

bm,n,i
− 1

)2
)

(2)

where pi is the i th color component, ωi is the weight on the
i th color component, k is the number of color components,
andbm,n,i is the i th component of a background color in block
Bm,n , m = a − 1:a + 1, n = b − 1:b + 1. The maximum
distance of neighboring blocks depends on how vigorous the
background motion is. In our method, we set the distance
to one block. The non-linear similarity measure makes the
identification of true background pixels easier. If the pixel
belongs to background, at least one background color is close
and the corresponding similarity measure is large (near to
1). If the pixel is not a background, no background colors
are close and all similarity measures are low. Our similar-
ity measure is similar to the one used in [24]. In [24], the
weights on color components depend on local variance. We
have studied, using the Campus image sequence, the effect
of the weights on color components. A stronger weight on H
will produce better background subtraction result. Therefore,
we fix the weights on HSV to 0.9, 0.05, 0.05, respectively.
Other similarity measure, e.g., Eq. (6) in this paper, exhibits
a linear relationship with the ratio of current pixel color to
background color. If the current pixel color has 10 % devi-
ation from the corresponding background color, our method
can result in 10 % higher similarity than the linear method.
Therefore, our similaritymeasure ismore tolerable to change
of background color which is common in dynamic scene.
Thresholding of the similarity measure is governed by the
parameter DTfar. p is first labeled as a potential foreground

pixel. If Sp,m,n ≥ DTfar, p is re-labeled as a background
pixel and step over to the next pixel.

In step 2, each potential foreground region will be refined
to produce the final foreground region. For each block, if the
number of potential foreground pixels is sufficiently large, a
genuine target may be present in this block. Otherwise, this
block belongs to background. This filtering process aims to
remove small and scattered foreground regions. Each pixel
of the foreground containing block is compared with the
background model of that block by a close-range similarity
measure

Sp =
k∑

i=1

ωi exp

(
−

(
pi

ba,b,i
− 1

)2
)

(3)

where ba,b,i is the i th component of a background color in the
enclosing block Ba,b. k, pi and ωi are specified as in Eq. (2).
If the pixel belongs to background, at least one background
color is close and the corresponding similarity measure is
large (near to 1). If the pixel is not a background, no back-
ground colors are close and all similarity measures are low.
Thresholding of the similarity measure is governed by the
parameter DTnear. p is first labeled as a foreground pixel. If
Sp ≥ DTnear, p is re-labeled as a background pixel and step
over to the next pixel.

Traditional background modeling methods capture the
movement of background elements via statistical measure of
the background colors in the temporal domain. The adop-
tion of a block-based scheme and the search for similar
background colors in neighboring blocks in the first step of
TSBS help to accommodate background motions as the ref-
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erence background model is spatially extended. To tackle the
temporal change of background colors caused by illumina-
tion change and specular reflection, we employ background
model updating and HSV color space. To ensure a refined
foreground detection, the background–foreground segrega-
tion is carried out in pixelwise manner. Also, as will be
shown in the ROC analysis in Sect. 5.1, DTnear is set a higher
value to relax the foreground detection in the second step
of TSBS.

4.2 Updating of background model

To perform background subtraction along a long image
sequence, we need a background model updating process.
An updated background frame is generated based on the
background subtraction results. For each pixel location, we
performabackward search. From thebackground subtraction
results and the original image frames, if the latest observed
background color is similar to the existing color of the
background frame by the following similarity measure, the
new background color will replace the existing background
color.

Sx,y =
k∑

i=1

ωi exp

(
−

(
ox,y,i
bx,y,i

− 1

)2
)

(4)

where bx,y,i is the i th component of the existing background
color at location (x, y), ox,y,i is the i th component of the
latest observed background color at location (x, y). k and
ωi are specified as in Eq. (2). Otherwise, the existing color
of the background frame remains unchanged. In our experi-
mentation, the updating process is performed once every 10
image frames. The algorithm of background model updating
is shown below.

In summary, TSBS can subtract the background, nomatter
whether it is static or dynamic.Assume the background frame
contains no target colors, TSBS is able to detect station-
ary foregrounds, while other simple background subtraction
methods such as interframe difference cannot. Compared
with many other methods, TSBS can recover and identify
covered background scene immediately. Since we adopt a
block-based framework, TSBScan tolerate camera jitter.One
limitation is that our method does not cater for large camera
movements such as pan, tilt and zoom. TSBS employs no
temporal coherence measure. Therefore, it can tackle sud-
den changes, such as entry and exit of targets.

5 Experimental results

Two parameters,DTfar and DTnear, are critical to the per-
formance of the foreground detection. Image frames are

Fig. 5 ROC for various DTfar and DTnear

sampled from four testing image sequences. As will be
explained in the following section, ROC analysis is carried
out to determine the optimal values of these parameters. We
test our method using image sequences containing dynamic
background elements and compare with various background
subtraction methods. Computation time and complexity of
our method are presented.

5.1 Choice of parameter values

We would like to employ the same parameter values in our
method on all testing image sequences. The block size should
equal to a certain fraction of the image size. For large image
frame size of 720 × 576 pixels or 768 × 576 pixels, we set
the block size to 24 × 24. For small image frame size of
160 × 128 pixels, we set the block size to 8 × 4. Ntarget, as
introduced in Sect. 4.1, is set between 10 and 30 % of the
block size. For large block, Ntarget is set to 10 % of the block
size as the actual size of the potential target is large enough.
For small block, Ntarget is set to 30 % of the block size to
allow a sufficiently large target to proceed to the second step
of TSBS. To determine the optimal DTfar andDTnear, we per-
form ROC analysis. 35 image frames are sampled from four
image sequences. These image sequences are the same being
used in the experimentation as described in Sect. 5.2. DTfar is
allowed to vary from 0.91 to 0.995. DTnear is allowed to vary
from 0.97 to 0.995. The ground truths of the sampled image
frames are manually segmented. The average true positive
rate and average false positive rate are computed. Figure 5
shows the ROC for various DTfar and DTnear. We employ
piecewise cubic interpolation to determine the knee point at
DTfar = 0.985,DTnear = 0.995.

123
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Algorithm 3 – Background model updating

Repeat

Input the latest background subtraction result and the corresponding image frame

For each pixel

If it is classified as background and not updated

Calculate similarity of observed background with existing background model

If similarity > DTfar

Update background model

5.2 Analyzing image sequences containing trees and
water

In the first part of the evaluation, three background mod-
eling algorithms: block-based mixture of Gaussians model,
codebook and self-organizing artificial neural networks, are
employed. We adopt and simplify the method of Eng et al.
[17] for modeling local color information as block-based
mixture of Gaussians (MoG). Each image frame is parti-
tioned into n1 × n2 non-overlapping blocks Ba,b, where
1 ≤ a ≤ n1 and 1 ≤ b ≤ n2. All pixels of the same block
(a, b) over a short duration are collected and clustered via
k-means into H homogeneous regions. Each homogeneous
region of that block position is characterized by the mean
and standard deviation of the Gaussian distribution, μBh

a,b
=

{
μR
Bh
a,b

μG
Bh
a,b

μB
Bh
a,b

}T
and σBh

a,b
=

{
σ R
Bh
a,b

σG
Bh
a,b

σ B
Bh
a,b

}T
,

respectively, where 1 ≤ h ≤ H . Each block is clustered
hierarchically until all regions have the compactness

Kc=R,G,B =
σ c
Bh
a,b

μc
Bh
a,b

(5)

less than the tolerance or the number of regions reaches the
allowablemaximum.Cleanbackground frames are generated
from the original image sequence. Initial background model
is generated from these clean background frames, also via
k-means. In contrast to the method of Eng et al. [17], we
do not model the foreground region and there is no special
consideration for filtering specular reflection. The similarity
of a pixel with respect to a homogeneous background region
can be computed using the distance measure:

D(Ix,y |μBh
a,b

, σBh
a,b

) =

√√√√√√√√

∑

c=R,G,B

(
I cx,y − μc

Bh
a,b

)2

(
σ c
Bh
a,b

)2 (6)

If the distance of the current pixel with respect to any homo-
geneous background region is below a certain threshold, it
is regarded as a background pixel. MoG, like TSBS, is a

block-based background modeling plus a pixel-based back-
ground subtraction method. The difference in the modeling
step is that MoG models the background colors as statistical
parameters while TSBS uses the original background col-
ors. In background subtraction MoG, only searches similar
background colors within the enclosing block while TSBS
performs the search first in a larger space and then refines the
background subtraction result within the enclosing block.

Programs of the other two background subtraction meth-
ods are available on-line. The first one uses codebook (CB)
[27] for modeling background.1 At each pixel, samples col-
lected from an image sequence are quantized into a set of
codewords based on color distortion measure and brightness
bounds. The model can handle illumination variations and
moving backgrounds. To obtain good results, the two para-
meters Ep1 and Ep2 are automatically estimated from the
image sequence and the parameter period is also tuned. CB is
a pixel-based background modeling and subtraction method.
It models temporal background changes while TSBS, with
a spatially extended search space, allows for more vigorous
background motions.

The last method uses self-organizing artificial neural net-
works (SOBS) [28].2 Each pixel has a neuronal map with
a set of weight vectors. The background model, as repre-
sented by the weight vectors, is trained by updating the
weight vectors of the pixel and its neighbors according to
a distance measure. The method can handle gradual illumi-
nation variations, moving backgrounds, camouflage and cast
shadows. The method is also adjusted instead of using the
default setting to obtain good background subtraction result
in each image sequence. SOBS, like TSBS, also uses HSV
color model. The weigh vectors, after updating, are synthetic
colors while TSBS always uses original background colors.
SOBS relies on a suitable neighborhood to tackle background
motions while TSBS uses a fixed block distance to deal with
background motions.

1 http://www.umiacs.umd.edu/~knkim/UMD-BGS/index.html.
2 http://www.na.icar.cnr.it/~maddalena.l/MODLab/SoftwareSOBS.
html.
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Fig. 6 F-measure versus image frame number of PETS 2001 image
sequence

All testing methods are evaluated using the image
sequence PETS 2001 dataset 1 camera 1,3 Campus with
wavering tree branches,4 and two swimming pool image
sequences.Allmethods are run on a 2.1GHzPCwith 1Gbyte
memory. Block-based MoG and TSBS are developed using
MATLAB. We evaluate the methods quantitatively in terms
of recall (Re), precision (Pr) andF-measure (F1).Recall gives
the ratio of detected true positive pixels (TP) to total number
of foreground pixels present in the ground truth which is the
sum of true positive and false negative pixels (FN).

Re = TP

TP + FN
(7)

Precision gives the ratio of detected true positive pixels to
total number of foreground pixels detected by the method
which is the sum of true positive and false positive pixels
(FP).

Pr = TP

TP + FP
(8)

F-Measure is the weighted harmonic mean of precision and
recall. It can be used to rank different methods.

F1 = 2 × Pr×Re

Pr+ Re
(9)

The higher the value of the quantitative measure, the better
is the accuracy.

In the first experiment, frames 530 to 599 are selected
from the image sequence PETS 2001 dataset 1 camera 1.
The image frame size is 768 × 576 pixels. It is a fairly easy

3 ftp.pets.rdg.ac.uk/PETS2001.
4 http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

Table 1 Average quantitative measures of the PETS 2001 image
sequence

Method Re Pr F1

MoG [17] 0.893 0.785 0.835

CB [27] 0.953 0.892 0.922

SOBS [28] 0.792 0.952 0.864

TSBS 0.756 0.982 0.853

The bold entries are the best results

Fig. 7 F-measure versus image frame number of Campus image
sequence part 1

image sequence and there is not much background motion.
The main challenge is illumination change. Figure 6 shows
the F-measure versus image frame number obtained byMoG,
CB, SOBS and TSBS. Basically, all methods can detect the
walker and car. CBproduces false positive errors in the region
of a window. MoG and SOBS produce more false negative
errors. Table 1 shows the average values of the quantita-
tive measures. TSBS achieves the highest precision and CB
achieves the highest F-measure value.

The second image sequence Campus contains wavering
tree branches. The image frame size is 160 × 128 pixels.
In the first section, a van moves from right to left. Figure 7
shows the F-measure versus the image frame number from
frames 1199 to 1228. MoG produces many false positive
errors which are similar to the results presented in [9,12]. CB
can tackle the trees but it cannot detect the foreground target
in the last few frames. SOBS produces more false negative
errors. TSBS obtains a fairly balance result. Table 2 shows
the average values of the quantitative measures. Among all
the testing methods, TSBS achieves the highest recall and
F-measure.

In the second section, a man walks from right to left and
a motorcycle moves from left to right. Figure 8 shows the F-
measure versus the image frame number from frames 1304
to 1403. MoG produces more scattered false positive errors.
CB produces some clustered regions of false positive errors
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Table 2 Average quantitative measures of the Campus image sequence
part 1

Method Re Pr F1

MoG [17] 0.747 0.271 0.360

CB [27] 0.669 0.781 0.719

SOBS [28] 0.639 0.863 0.730

TSBS 0.852 0.700 0.743

The bold entries are the best results

Fig. 8 F-measure versus image frame number of Campus image
sequence part 2

Table 3 Average quantitative measures of the Campus image sequence
part 2

Method Re Pr F1

MoG [17] 0.624 0.121 0.190

CB [27] 0.779 0.477 0.563

SOBS [28] 0.554 0.865 0.663

TSBS 0.683 0.526 0.584

The bold entries are the best results

in the trees and banner. It cannot detect the foreground target
in the last few frames. SOBS produces more false negative
errors. TSBS obtains a fairly balance result. Table 3 shows
the average values of the quantitative measures.

The first swimming pool image sequence captures some
swimmers. The image frame size is 720 × 576 pixels. In
the first section, the swimmer at the center swims away from
the camera in freestyle. Another swimmer on the right swims
slowly towards the camera in freestyle and appears very small
in each image frame. Figure 9 shows theF-measure versus the
image frame number from frames 1201 to 1300. Many back-
ground points, especially in the water ripples and splashes
nearby the center swimmer, are erroneously regarded as fore-
ground by MoG. CB produces more false negative errors.
SOBS produces more false positive errors. TSBS can detect
the center swimmer but not the right swimmer. There are

Fig. 9 F-measure versus image frame number of the first swimming
pool image sequence part 1

Table 4 Average quantitative measures of the first swimming pool
image sequence part 1

Method Re Pr F1

MoG [17] 0.224 0.025 0.045

CB [27] 0.205 0.347 0.229

SOBS [28] 0.287 0.189 0.225

TSBS 0.431 0.661 0.487

The bold entries are the best results

Fig. 10 F-measure versus image frame number of the first swimming
pool image sequence part 2

much fewer false positive errors. Table 4 shows the average
values of the quantitative measures. Among all the testing
methods, TSBS achieves the highest recall, precision and
F-measure.

In the second section, there is only one swimmer moving
away from the camera in freestyle. Figure 10 shows the F-
measure versus the image frame number from frames 5951 to
6050. MoG can only detect a very small part of the swimmer.
CB cannot detect the swimmer in many image frames. SOBS
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Table 5 Average quantitative measures of the first swimming pool
image sequence part 2

Method Re Pr F1

MoG [17] 0.038 0.047 0.040

CB [27] 0.159 0.346 0.203

SOBS [28] 0.061 0.386 0.101

TSBS 0.893 0.306 0.451

The bold entries are the best results

Fig. 11 F-measure versus image frame number of the second swim-
ming pool image sequence part 1

produces fewer false positive errors but the detected swimmer
region is also small. TSBS can detect a very good shape
of the swimmer. Table 5 shows the average values of the
quantitative measures. Among all the testing methods, TSBS
achieves the highest recall and F-measure.

The second swimming pool image sequence captures
some swimmers and the stationary lifeguard. The image
frame size is 720 × 576 pixels. There is camera jitter prob-
lem in this image sequence. In the first section, the swimmer
at the center swims quickly towards the camera in butterfly.
The swimmer on the right swims slowly in freestyle towards
the camera. Figure 11 shows the F-measure versus the image
frame number from frames 341 to 420. MoG can only detect
a small part of the center swimmer and the right swimmer is
basically undetected.CBcannot detect the center swimmer in
many frames. SOBS detects part of the center swimmer and
there are many false positive errors in the sunshade and lane
dividers. TSBS can detect a fairly good shape of both swim-
mers. Table 6 shows the average values of the quantitative
measures. Among all the testingmethods, TSBS achieves the
highest recall, precision and F-measure.

In the second section, the swimmer at the center swims
away from the camera in backstroke. The swimmer on the
right swims slowly in freestyle towards the camera. Figure 12
shows the F-measure versus the image frame number from

Table 6 Average quantitative measures of the second swimming pool
image sequence part 1

Method Re Pr F1

MoG [17] 0.347 0.262 0.290

CB [27] 0.169 0.369 0.188

SOBS [28] 0.131 0.240 0.161

TSBS 0.383 0.952 0.517

The bold entries are the best results

Fig. 12 F-measure versus image frame number of the second swim-
ming pool image sequence part 2

Table 7 Average quantitative measures of the second swimming pool
image sequence part 2

Method Re Pr F1

MoG [17] 0.235 0.061 0.097

CB [27] 0.173 0.647 0.175

SOBS [28] 0.214 0.093 0.126

TSBS 0.334 0.966 0.494

The bold entries are the best results

frames 880 to 970. MoG can only detect a small part of both
swimmers and there are many false positive errors. CB also
detects a small part of the swimmers. SOBS can detect the
swimmers but there are many false positive errors in the sun-
shade, swimming pool walkway and lane dividers. TSBS can
detect a fairly good shape of both swimmers. Table 7 shows
the average values of the quantitative measures. Among all
the testing methods, TSBS achieves the highest recall, pre-
cision and F-measure.

Figures 13 and 14 show some visual results from the
four image sequences. The first row shows some original
image frames. The second row shows the corresponding hand
segmented ground truths. Rows 3 to 5 are the background
subtraction results obtained byMoG, CB, and SOBS, respec-
tively. The last row shows the background subtraction results
obtained by our method TSBS.
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Fig. 13 Background subtraction results from PETS 2001 (first col-
umn), Campus part 1 (second column), Campus part 2 (third column),
original image frames (top row), ground truths (second row), results

obtained by block-based MoG (third row), results obtained by CB
(fourth row), results obtained by SOBS (fifth row), results obtained by
TSBS (last row)
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Fig. 14 Background subtraction results from the first swimming pool
image sequence part 1 (first column), part 2 (second column), the sec-
ond swimming pool image sequence part 1 (third column), part 2 (fourth
column), original image frames (top row), ground truths (second row),

results obtained by block-based MoG (third row), results obtained by
CB (fourth row), results obtained by SOBS (fifth row), results obtained
by TSBS (last row)
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Table 8 Results of TSBS on the
dynamic background image
sequences

Image sequence Re Pr F1 FPR FNR PWC Sp

Boats 0.5441 0.5056 0.5241 0.0034 0.4559 0.6196 0.9966

Canoe 0.9402 0.8936 0.9163 0.0041 0.0598 0.6082 0.9959

Fall 0.4992 0.6845 0.5773 0.0042 0.5008 1.2949 0.9958

Fountain01 0.1312 0.0391 0.0603 0.0027 0.8688 0.3396 0.9973

Fountain02 0.8459 0.6263 0.7197 0.0011 0.1541 0.1417 0.9989

Overpass 0.8723 0.3149 0.4628 0.0258 0.1277 2.7133 0.9742

The bold entries are the best results

Table 9 Results of VIBE on the
dynamic background image
sequences

Image sequence Re Pr F1 FPR FNR PWC Sp

Boats 0.5277 0.1074 0.1784 0.0196 0.4723 2.1594 0.9804

Canoe 0.8974 0.6940 0.7827 0.0138 0.1026 1.6782 0.9862

Fall 0.8325 0.3415 0.4844 0.0355 0.1675 3.8338 0.9645

Fountain01 0.5803 0.0323 0.0613 0.0076 0.4197 0.7795 0.9924

Fountain02 0.8215 0.4282 0.5629 0.0015 0.1785 0.1691 0.9985

Overpass 0.7983 0.6003 0.6853 0.0053 0.2017 0.7254 0.9947

The bold entries are the best results

Table 10 Average results of
TSBS and other background
subtraction methods

Method Re Pr F1 FPR FNR PWC Sp

SOBS [28] 0.8798 0.5856 0.6439 0.0157 0.1202 1.6367 0.9843

VIBE [29] 0.7430 0.3673 0.4592 0.0139 0.2571 1.5576 0.9861

PBAS [30] 0.6955 0.8326 0.6829 0.0011 0.3045 0.5394 0.9989

TSBS 0.6388 0.5107 0.5434 0.0069 0.3612 0.9529 0.9931

The bold entries are the best results

5.3 Analyzing image sequences of change detection
challenge

In the second part of the evaluation, two more back-
ground subtraction methods are employed. Barnich and Van
Droogenbroeck [29] proposed a random policy to select pix-
els for background modeling. They called the method visual
background extractor (VIBE). Hofmann et al. [30] proposed
a similar background subtraction method. They called the
method pixel-based adaptive segmenter (PBAS). In contrast
to VIBE which has fixed values for randomness parameters
and decision threshold, PBAS allows parameters to be adap-
tively adjusted at runtime.

All testing methods are evaluated using the change detec-
tion5 2012 dataset, category of dynamic background [31].
There are six image sequences (boats, canoe, fall, fountain01,
fountain02, overpass). The ground truth images contain
five labels (static, hard shadow, outside region of interest,
unknown motion, motion). When we evaluate TSBS and
VIBE, we count TP, TN, FP, FN in the way as suggested in
the website of change detection. Besides the three quantita-
tive measures as mentioned in Sect. 5.2, we also calculate

5 http://www.changedetection.net.

specificity (Sp), false positive rate (FPR), false negative
rate (FNR), percentage of wrong classifications (PWC). The
numeric results of PBAS and SOBS are obtained from the
website of change detection. As for our method, we use
the same values of DTfar, DTnear, Ntarget as mentioned in
Sect. 5.1. The block size is set equal to a certain fraction
of the image size. For image frame size of 720 × 480 pix-
els, we set the block size to 24 × 24. For image frame size
of 432 × 288 pixels, we set the block size to 24 × 8. For
image frame size of 320 × 240 pixels, we set the block size
to 16 × 8.

Table 8 shows the results of TSBS on the six image
sequences of dynamic background. Table 9 shows the results
of VIBE on the six image sequences of dynamic background.
Table 10 shows the average results of TSBS and other back-
ground subtraction methods on the dynamic background
image sequences. Figure 15 shows some visual results from
the six image sequences. The first column shows some orig-
inal image frames and the results obtained by VIBE. The
second column shows the results obtained by our method
TSBS. The third column shows the corresponding ground
truths.

123

http://www.changedetection.net


Detection of foreground in dynamic scene via two-step background subtraction 737

Fig. 15 Background subtraction results from the change detection dataset category of dynamic background—original image frames and results
obtained by VIBE (first column), results obtained by TSBS (second column), ground truths (last column)

5.4 Computation time and complexity analysis of TSBS

The computation time depends on computing platform,
software implementation, image frame size, block size, as

well as the contents of the image. We present the number
of operations involved in background model initialization,
background subtraction and background model updating. In
background model initialization, if the background frame is
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generated by vector median filtering, 10 image frames are
used and so complexity is O(10). In most image sequence,
we can select one image frame containing no foreground
objects as background frame. The computation complexity
is only O(1). In the first step of background subtraction, each
pixel searches for the similar background color in the search
space in background frame. To speed up the background sub-
traction, once the newpixelmatcheswith a background pixel,
the search will stop. For static background pixel, a minimal
one similarity calculation may be required. For foreground
pixel, it searches the whole search space and the number
of similarity calculations is 9 × block size. The complex-
ity ranges from O(1) to O(9b1b2) where b1 × b2 is the
block size. In the second step of background subtraction,
each pixel of the foreground block searches for the similar
background color within the block in background frame. Sta-
tic background pixel may require one similarity calculation.
For foreground pixel, the number of similarity calculations
equals to block size. The complexity ranges from O(1) to
O(b1b2). The background model updating process is per-
formed once every 10 image frames. It involves a backward
search and similarity calculation. At each pixel location, if all
10 background subtraction results are labeled as foreground,
there is no updating. If the latest result is labeled as back-
ground and its color is similar to the existing color of the
background frame, one similarity calculation is required. If
all 10 results are labeled as background but only the earli-
est pixel color is similar to the existing background model
color, 10 similarity calculations are involved. The complexity
ranges from O(1) to O(10).

TSBS is developed and run on a 2.1 GHz PCwith 1 Gbyte
memory using MATLAB. For a low-resolution image of
320 × 240 pixels and block size of 16 × 8 (set in relation to
image size), the computation time per image frame is about
17.7 s. The computation time is reduced to about 3.8 s using
a smaller block size of 4×4. For an image of 432×288 pix-
els and block size of 24 × 8, the computation time is about
83.6 s. For an image of 720 × 480 pixels and block size of
24 × 24, the computation time is about 191.2 s. To reduce
the computation time, the method will be implemented in C
language and executed on a GPU board in the future.

6 Discussion

In the experimentation, we use the same set-up for TSBS on
all image sequences to illustrate the generality of ourmethod.
The block size and Ntarget are automatically fixedwith respect
to the image frame size. The remaining two critical parame-
tersDTfar andDTnear are estimated byROCanalysis.We also
test our method using a fixed block size of 4×4.We observe
that with large block size, scattered false positive errors are
reduced but the shape of the detected foreground is not as

good as that obtained with small block size. With block size
fixed with respect to the image frame size, recall is lower,
precision and F-measure are higher than a small block size
of 4×4. For the referencemethods,MoG has the same set-up
but CB andSOBS can tune their parameters automatically for
each image sequence. The results obtained by TSBS are very
good. Inmany cases, it achieves the highest quantitativemea-
sure values. TSBS only demands one background frame for
modeling the background motions in the spatial domain. To
tackle the temporal change of background colors, we employ
the HSV color space. This is in contrast with other methods
that model the dynamic background in the temporal domain,
e.g., the pixelwise Gaussian mixture model. Our background
model is easy to compute and update. In addition, our back-
ground frame contains original background colors which are
better than the believed-to-be background statistical parame-
ters.

The PETS 2001 image sequence captures a very stable
background scene and is much easier to process than other
image sequences in our experimentation. CB produces false
positive errors which may be due to illumination changes
(in the windows of buildings) and camera jitter. SOBS pro-
duces more false negative errors, probably because windows
of the moving car have similar colors to the road. As shown
in Table 1, all methods achieve similarly high quantitative
measure values. The visual results shown in Fig. 13 illustrate
that TSBS has very few false positive errors that lead to its
highest precision among all methods.

The Campus with wavering tree branches image sequence
is more complicated. Besides the waving banner, the large
background region of trees is very difficult to tackle. MoG
certainly demands some post-processing to obtain a clean
foreground. In the first section, CB also cannot detect the re-
appearance of the van when it moves behind the tree. In the
second section, it produces more false positive errors. SOBS
generally produces more false negative errors. The detected
foreground is the smallest among all methods. TSBS obtains
a fairly balance result. It never misses the targets and they
are detected in fairly good shape in every image frame.

We test the methods using two swimming pool image
sequences capturing different swimming styles at different
viewpoints. It can be seen that MoG, CB and SOBS may
erroneously identify water ripples, lane dividers, sunshade,
etc., as foregrounds or detect only part of the swimmer. The
false positive errors are due to the moving background scene,
camera jitter and specular reflection. The false negative errors
are due to the existence of colors similar to the foreground in
the background model. They will lead to a lower precision
or recall. Either one can result in a lower F-measure. In some
image frames, in particular when CB is used, the swimmers
are totally undetected. TSBS can always detect the swim-
mers, especially when the body is above the water surface. It
achieves the highest F-measure in all swimming pool image
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sequences, indicating that the method can strike a good bal-
ance between true foreground and errors. One limitation of
TSBS is thatwhen the potential target region found in the first
step spans across blocks, the final foreground detectedwill be
small because of the small size of the potential target within
a block. In the future, rectification can be implemented to
allow neighboring blocks containing the same potential tar-
get to proceed to the second step of foreground detection.

Finally, we compare our method with VIBE using the
change detection dynamic background image sequences. We
also quote the numeric results of PBAS and SOBS. Our
method is not optimized for the dataset. Compared with
VIBE, TSBS still can achieve higher F-measure in four out
of six dynamic background image sequences. Both methods
achieve very low precision in fountain01 image sequence
due to small size of the moving car. TSBS also achieve low
recall due to large block size. We find that with a block size
of 4 × 4, TSBS can achieve higher recall, precision and F-
measure than VIBE. TSBS achieves lower precision than
VIBE in overpass image sequence. It is due to some fore-
ground blocks are excluded in the second step of background
subtraction and more false positive errors in the fence. We
use the method as suggested in the website of change detec-
tion to calculate the average ranking. TSBS achieves 26.57
which is better than VIBE of 31. According to the ranking
table in the website of change detection, the average rankings
of PBAS and SOBS are 15.43 and 23.00, respectively. The
performance of TSBS is close to SOBS and better than the
nonparametric method of kernel density estimation [32] of
27.29.

7 Conclusion

We develop a method for the detection of foreground in a
scene containing vigorous motions via a two-step dynamic
background subtraction. A background frame is generated
from the original image sequence, either by selecting one
image frame containing no foreground or by vector median
filtering. The background frame will be updated along the
image sequence based on the background subtraction results.
In the first step of background subtraction, static and dynamic
background pixels are rejected while the potential targets are
identified. This initial segregation is achieved by referencing
all the background colors within a certain range. In the sec-
ond step of background subtraction, each sufficiently large
target is checked with the background model proximally to
obtain a refined shape of the true foreground. After perform-
ingROC analysis, we can use the same set- up for ourmethod
on all testing image sequences to illustrate the generality
of our method. We compare our method with various back-
ground subtraction methods using our image sequences as
well as publicly available change detection dataset. Quanti-

tative measures are employed to evaluate the methods. Our
method can detect the foreground, no matter whether the
background scene has illumination changes, or exhibits vig-
orous motions such as waving trees and moving water.

Acknowledgments The author would like to thank the reviewers for
their comments and suggestions.

References

1. Hsieh, J.-W., Hsu, Y.-T., Liao, H.-Y.M., Chen, C.-C.: Video-based
human movement analysis and its application to surveillance sys-
tems. IEEE Trans. Multimed. 10(3), 372–384 (2008)

2. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and
description of human gait models for recognition purposes. Com-
put. Vis. Image Underst. 90, 1–41 (2003)

3. Lu, C.M., Ferrier, N.J.: Repetitive motion analysis: segmentation
and event classification. IEEE Trans. Pattern Anal. Mach. Intell.
26(2), 258–263 (2004)

4. Bouwmans, T.: Recent advanced statistical background modeling
for foreground detection: a systematic survey. Recent Pat. Comput.
Sci. 4(3), 147–176 (2011)

5. Sobral, A., Vacavant, A.: A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos.
Comput. Vis. Image Underst. 122, 4–21 (2014)

6. Ning, H., Tan, T., Wang, L., Hu, W.: Kinematics-based tracking of
humanwalking inmonocular video sequences. ImageVis. Comput.
22, 429–441 (2004)

7. Li, L., Huang, W., Gu, I.Y.-H., Tian, Q.: Statistical modeling of
complex backgrounds for foreground object detection. IEEETrans.
Image Process. 13(11), 1459–1472 (2004)

8. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using
real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8),
747–757 (2000)

9. Zha, Y., Bi, D., Yang, Y.: Learning complex background by multi-
scale discriminative model. Pattern Recognit. Lett. 30, 1003–1014
(2009)

10. Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.:
Modeling pixel process with scale invariant local patterns for back-
ground subtraction in complex scenes. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp.
1301–1306 (2010)

11. Ko, T., Soatto, S., Estrin, D.: Warping background subtraction. In:
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1331–1338 (2010)

12. El Baf, F., Bouwmans, T., Vachon, B.: Type-2 fuzzy mixture
of Gaussians model: application to background modeling. In:
Proceedings of International Symposium on Visual Computing.
LNCS, vol. 5358, Part I, pp. 772–781 (2008)

13. Lu, W., Tan, Y.P.: A vision-based approach to early detection of
drowning incidents in swimming pools. IEEE Trans. Circuits Syst.
Video Technol. 14(2), 159–178 (2004)

14. Kam, A.H., Lu, W., Yau, W.-Y.: A video-based drowning detec-
tion system. In: Proceedings of European Conference on Computer
Vision. LNCS, vol. 2353, pp. 297–311 (2002)

15. Eng, H.-L., Toh, K.-A., Kam, A.H., Wang, J., Yau, W.-Y.: An
automatic drowning detection surveillance system for challenging
outdoor pool environments. In: Proceedings of IEEE International
Conference on Computer Vision (2003)

16. Eng, H.-L., Wang, J., Kam, A.H., Yau, W.-Y.: Novel region-based
modeling for human detection within highly dynamic aquatic envi-
ronment. In: Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2004)

123



740 K. L. Chan

17. Eng, H.-L.,Wang, J., Kam, A.H., Yau,W.-Y.: Robust human detec-
tion within a highly dynamic aquatic environment in real time.
IEEE Trans. Image Process. 15(6), 1583–1600 (2006)

18. Wang, J., Eng, H.-L., Kam, A.H., Yau,W.-Y.: Integrating color and
motion to enhance human detection within aquatic environment.
In: Proceedings of IEEE International Conference on Multimedia
and Expo, pp. 1179–1182 (2004)

19. Zhou, D., Zhang, H.: Modified GMM background modeling and
optical flow for detection of moving objects. In: Proceedings of
IEEE International Conference on Systems, Man and Cybernetics,
pp. 2224–2229 (2005)

20. Tang, P., Gao, L., Liu, Z.: Salient moving object detection using
stochastic approach filtering. In: Proceedings of International Con-
ference on Image and Graphics, pp. 530–535 (2007)

21. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures.
Int. J. Comput. Vis. 51(2), 91–109 (2003)

22. Chetverikov, D., Fazekas, S., Haindl, M.: Dynamic texture as fore-
ground and background. Mach. Vis. Appl. 22(5), 741–750 (2011)

23. Fazekas, S., Amiaz, T., Chetverikov, D., Kiryati, N.: Dynamic tex-
ture detection based on motion analysis. Int. J. Comput. Vis. 82,
48–63 (2009)

24. Traver, V.J., Mirmehdi, M., Xie, X., Montoliu, R.: Fast dynamic
texture detection. In: Proceedings of European Conference on
Computer Vision. LNCS, vol. 6314, pp. 680–693 (2010)

25. Chan,K.L.:Detection anddecompositionof foreground target from
image sequence. In: Proceedings of the 13th IAPR Conference on
Machine Vision Applications, pp. 459–462 (2013)

26. Haque, M., Murshed, M.: Robust background subtraction based on
perceptual mixture-of-Gaussians with dynamic adaptation speed.
In: Proceedings of IEEE International Conference on Multimedia
and Expo Workshops, pp. 396–401 (2012)

27. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-
time foreground–background segmentation using codebookmodel.
Real-Time Imaging 11, 172–185 (2005)

28. Maddalena, L., Petrosino, A.: A self-organizing approach to back-
ground subtraction for visual surveillance applications. IEEE
Trans. Image Process. 17(7), 1168–1177 (2008)

29. Barnich, O., Van Droogenbroeck, M.: VIBE: a powerful random
technique to estimate the background in video sequences. In: Pro-
ceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing, pp. 945–948 (2009)

30. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmen-
tation with feedback: the pixel-based adaptive segmenter. In:
Proceedings of IEEE Workshop on Change Detection at CVPR-
2012, pp. 38–43 (2012)

31. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.:
changedetection.net: a new change detection benchmark dataset.
In: Proceedings of IEEEWorkshop on ChangeDetection at CVPR-
2012, pp. 16–21 (2012)

32. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Back-
ground and foreground modeling using nonparametric kernel
density estimation for visual surveillance. Proc. IEEE 90(7), 1151–
1163 (2002)

K. L. Chan received his M.Sc.
degree in Electronics from the
University of Wales Institute of
Science and Technology, UK and
Ph.D. degree from the University
of Wales College of Medicine,
UK. He is currently an Assistant
Professor of the Department of
Electronic Engineering, the City
University of Hong Kong. His
research interests include image
processing and computer vision.

123


	Detection of foreground in dynamic scene via two-step background subtraction
	Abstract
	1 Introduction
	2 Related work
	3 Initialization of the background model
	4 Foreground detection
	4.1 Two-step background subtraction (TSBS)
	4.2 Updating of background model

	5 Experimental results
	5.1 Choice of parameter values
	5.2 Analyzing image sequences containing trees and water
	5.3 Analyzing image sequences of change detection challenge
	5.4 Computation time and complexity analysis of TSBS

	6 Discussion
	7 Conclusion
	Acknowledgments
	References




