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Abstract Feature detection and matching is a fundamen-
tal problem in many computer vision applications. In the
past decades, various types of feature detectors and descrip-
tors have been proposed in the literature. Although several
comparative studies on feature detectors and descriptors
have been performed in the past, few studies have been
carried out concerning recently proposed descriptors such
as BRISK, FREAK, etc. Also, previous comparisons were
either application oriented or limited in experimentation or
in the number of detectors and descriptors compared. This
paper provides a comprehensive review of a large number of
popular feature detectors developed in the last three decades.
The study makes several contributions to the development
of a generic comparison of feature detectors and descrip-
tors. First, we conduct comparisons of invariance against
image transformations such as illumination changes, blur-
ring, rotation, scaling, viewpoint changes, exposure, JPEG
compression, combined scaling and rotation, and combined
viewpoint changes. Second, we provide a proper distinction
between detectors and descriptors using separate compar-
isons. Third, a few detectors have been tested on the variation
of parameter values. Fourth, we conduct a statistical analysis
of invariance against four popular types of transformations:
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viewpoint changes, blurring, scaling, and rotation. Fifth, we
carry out intuitive matching between detectors and descrip-
tors, testing on simulated and practical scenarios. Last, we
conduct exhaustive experiments on several datasets for each
combination of detectors and descriptors to provide a ranking
that can also be weighted to suit specific applications.
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1 Introduction

A feature in an image refers to specific meaningful structure
in the image. Features can range from a single pixel to edges
and contours, and can be as large as objects in the image.
Feature detection is the process of detecting these meaning-
ful structures in an image. The output of a feature detector is
usually a number of specific locations in an image, called
feature points. These locations are chosen based on their
tolerance against noise, transformations, and other deforma-
tions. A feature detector often has a descriptor for its feature
points. A feature descriptor represents either a subset of the
total pixels in the neighborhood of the detected feature points
or other measures generated from the feature points. In lit-
erature, some well-known feature detectors provide feature
descriptors. Thus, in the rest of the paper the detectors that are
comprised of descriptors will be mentioned in the respective
sections.

Since the very beginning of computer vision, feature
detectors have occupied an important place in the research
due to their numerous applications in such areas as object
recognition, categorization, classification, robot localization
and tracking, image matching and 3D reconstruction, image
retrieval, registration, etc.
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Due to the increasing demand for better feature detection
in variousfields of application, a question of suitability arises.
Not all types of feature detectors are suitable for a specific
application. Thus, application-specific comparative studies
of feature detectors demand more attention. Although, there
have been many papers on this subject, only a few of them
compare feature detectors against common types of image
transformations and deformations, and very few of them
include most of the state-of-the-art feature detectors. Also, a
separate comparison for descriptors has not been carried out
in general.

This work aims to provide a comparison guide for some of
the recently proposed feature detectors and descriptors. First,
ninemost popular feature detectors anddescriptors are briefly
reviewed. Then, each detector–descriptor pair is evaluated
under various transformations. A number of popular datasets
consisting of natural transformations are used for the evalua-
tion, and simulated transformations are usedwhere databases
provide insufficient data. Furthermore, we attempt to intu-
itively match a detector with a descriptor and compare their
performance on real and simulated data. Finally, we compare
these matched detectors and descriptors on motion tracking
using a large number of real-life road image sequences. The
findings of this study, as discussed at the end of Sect. 2, make
several new contributions to this field. We outline these con-
tributions after a brief discussion of the previous works to
establish a proper relation.

The organization of this paper is as follows: Sect. 2 pro-
vides an overview of the background and establishes the
necessity for our current research. Section 3 discusses the
feature detectors and descriptors. Section 4 provides the
experimentation details. Finally, the paper is concluded in
Sect. 5.

2 Background

The research on feature detectors and descriptors is a fast
growing area in image processing. The following short
review has been arranged chronologically to explain the
gradual improvements in feature detection, as well as the
evolution and limitations of comparative studies.

The first corner detection algorithm was designed by
Moravec [34]. Harris and Stephens [19] revealed the limi-
tations of this detector with their popular corner and edge
detector (henceforth named Harris corner detector as it is
popularly called). Lucas and Kanade proposed a popular
method, further developed by Tomasi and Kanade [44], often
called the Kanade–Lucas–Tomasi feature tracker or KLT
tracker, based on Harris and Stephens detector. A compre-
hensive review of a number of popular detectors is presented
in [39]. The authors compare Harris corner detector to a
number of other algorithms [9,21]. Later, Schmid et al. [40]
revised the comparisonmethod originally proposed, and con-

ducted a number of qualitative tests. The test results indicate
that the Harris operator (which is the basis of Harris cor-
ner detector) is the best among the compared methods. Shi
and Tomasi [41] proposed a new detection metric (Good
Features To Track or GFTT) based on the Harris operator,
arguing that their model was a better choice. A completely
new approach, called SUSAN, was also proposed in [42].
However, the proposed operators of SUSAN fall short when
rotation and scaling are involved. Hall et al. [18] provided
a definition of saliency under change of scale and evaluated
Harris, the method proposed in [28] and Harris–Laplacian
corner detector [31]. Harris–Laplacian is a combination of
the Harris and Laplacian function for characteristic scale
selection. Inspired by the need for a scale-invariant approach,
Lowe [29] proposed one of the most popular feature detec-
tors: the Scale Invariant Feature Transform or SIFT. SIFT is
a combination of feature point detector and descriptor. Miko-
lajczyk and Schmid [32] compared the SIFT descriptor and a
number of related descriptors, proving SIFT to be one of the
best feature detectors based on the strength of its descriptor.
Also, Zuliani et al. [48] provided amathematical comparison
of Harris, KLT, and a number of popular approaches. Harris
and SIFT have been well explored and improved by several
researchers [7,10,27].

Moreels and Perona [35] compared Harris, Hessian, and
difference of Gaussian filters on images of 3D objects with
different viewpoints, lighting variations, and scale variations.
They differentiated between detectors and descriptors, using
SIFT, PCA-SIFT, steerable filters, and shape context descrip-
tors. They found a good match of detector and descriptor.
In recent years, a number of reviews have been conducted.
Tuytelaars and Mikolajczyk [45] provide an informative
review of many popular feature detectors, and good com-
parisons are provided in [16,26]. However, new comparison
reviews are required to include newly developed detectors
and descriptors.

In 2012, Ziegler et al. [47] proposed a simple descrip-
tor, comparing it to BRIEF and SURF, both of which are
discussed in the following section. Also, Heinly et al. [20]
and Khvedchenia [23] reviewed some of the popular feature
detectors and descriptors. However, the shortcomings of the
existing research lie in the limitations of experiments, the
lack of proper distinction, and comparison of so few feature
detectors, descriptors and their combinations. Studies simi-
lar to our proposed one are carried out by Aanæs et al. [1],
Dahl et al. [6], and Kaneva et al. [22]. Studies in [1] and
[6] are well explained but are limited in terms of the num-
ber of compared detectors and descriptors. Kaneva et al. [22]
provide a studymostly concentrated on synthetic transforma-
tions. Also, there are a number of evaluation studies [8,15]
of feature detectors and descriptors for specific applications.
However, a study covering both general evaluations and
application-specific evaluations remains unavailable.
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In the current literature, several excellent feature detec-
tors and descriptors have been proposed. The unified study
by Moreels and Perona [35] to find an optimal detector–
descriptor pair is noteworthy. However, as the number of
detectors and descriptors to compare increases, such a study
becomes time-consuming and cumbersome.Due to the incor-
poration of various detectors and descriptors that performdif-
ferently for different applications, such a study often depends
on applications and implementation approach. However, as
the search for appropriate and accurate feature detectors and
descriptors is a continuous process, updated comparative
studies are always required. Our effort is directed at updating
the comparative studies in conjunction with existing litera-
ture. In the process, we focus on experimental evaluations
and analyses that are less highlighted in individual studies.
The following statements present a summary of the relation
of the proposed work to earlier studies, and the features that
distinguish our study from related works.

1. A number of recent feature detectors and descriptors are
included in addition to those already compared in [1,6,20,
23]. This increases the number of comparisons to a very
large extent, since our effort is to compare each detector–
descriptor combination.

2. In addition to using the databases used by Heinly et
al. [20], we have added two new databases with more
datasets to make a fair and reliable comparison. Finally,
we combine each detector with each descriptor to provide
a rich comparison.

3. We include both experimental results and a statistical
analysis in this paper. For our experiments, a number of
popular metrics are used in line with [20]. We have also
introduced a new metric, Reliability, to evaluate perfor-
mances using a new practical framework, discussed next.

4. We provide a practical framework on motion extraction
to test the performance of a number of intuitively cho-
sen detector–descriptor pairs. Our main goal behind this
is to demonstrate an evaluation of a number of detectors
and descriptors in practice. Unlike previous studies, we
provide both an experimental validation and a practical
validation. This framework can provide numerous practi-
cal scenarios and serve as a guideline and a stepping-stone
for future research.

5. We have designed a testing framework to judge the statis-
tical significance of our comparisons in accordance with
the work of Dahl et al. [6]. A t test based on the Precision
metric has been performedon fourmajor transformations,
namely viewpoint changes, blurring, scaling, and rota-
tion. Compared to [6], we have included more detectors
and descriptors and covered multiple transformations on
a large number of images. In addition, we have reported
the hypothesis, variance, and degrees of freedom to ben-
efit the study of future researchers.

6. We provide a comparison and discussion on performance
variation due to parameter changes for a number of detec-
tors. Although only a few of the detectors are studied due
to limited space, this idea can be extended to most of the
detectors and descriptors.

7. Finally, we propose a ranking methodology for the
detector–descriptor combinations in terms of individual
transformations, individual metrics, and overall combi-
nations. In comparison to the rankings used in previous
studies, the proposed ranking is more generic and can
be used to include or exclude any transformation and/or
metric. Also, a threshold-based positional ranking is
introduced to maintain a similar ranking for detector–
descriptor combinations with comparable performances.
Due to its generic nature, this ranking can be used in
application-specific environments and in generalized set-
tings.

The study presents a comparative experimental study of
different feature detectors and descriptors. It can benefit
researchers in choosing a better detector and descriptor com-
bination for featurematching and act as a connection between
previous studies and future work in feature detection and
matching.

3 Brief overview of feature detectors

The following subsections discuss the feature detectors and
descriptors compared in this paper. We have endeavored to
cover different types of detectors and descriptors in terms
of methodology, historical significance, popularity, and age.
The detectors and descriptors are ordered according to the
time when they were proposed. SIFT is the oldest and
FREAK is the most recent in the literature.

3.1 SIFT

Proposed by Lowe [29], SIFT is one of the most popu-
lar feature detectors and descriptors in the literature. SIFT
can efficiently identify object points in noisy, cluttered, and
occluded environments due to its high invariance to trans-
lation, scaling, and rotation. In this method, interest points
are extracted from the image in two steps. First, the image is
repeatedly smoothed using Gaussian filters and subsampled
to find images in smaller scales. This way, an image pyra-
mid is constructed with the reference image at the ground
level (level 1). Second, interest points are discovered in the
3 × 3 × 3 neighborhood of any pixel at an intermediate
level. These points are obtained from the image points where
the difference-of-Gaussians values attain an extrema, both in
spatial domain and at the scale level of theGaussian pyramid.
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The interest points extracted this way show scale invariance
and rotation invariance.

Lowe has also proposed a descriptor for these interest
points. The descriptor is a position-dependent histogram of
local image gradient directions around the interest point, and
is also scale invariant. There are numerous extensions of the
basic SIFT method, such as PCA-SIFT, color-SIFT, etc. The
SURF method is also largely based on SIFT, as discussed in
Sect. 3.4.

3.2 MSER

In computer vision, Maximally Stable Extremal Regions
(MSER), proposed byMatas et al. [30], are used as a method
to detect blobs in images. A fast implementation of MSER
can be found in [36]. Extremal regions have two properties:
(a) the set of these regions is closed under affine or projective
transformations on an image; (b) the set is closed under trans-
formations like lighting variations. Thus, they are scale and
rotation invariant as well. These regions are detected using a
connectivity analysis and by computing connected maximal
and minimal intensity regions.

3.3 FAST

Rosten and Drummond [37] propose Features from Accel-
erated Segment Test (FAST). Corners are detected in a
number of training images, first using FAST and then through
machine learning, to determine the best criteria for detection.
We find that the criteria for detection are decisions about
whether or not the pixel is a corner. The criteria together cre-
ate a decision tree, which can correctly classify all the corners
in the training images, embedding the rules for detecting a
corner from any test image. The decision tree is then con-
verted into a C-code, which is used as a corner detector.

3.4 SURF

Speeded Up Robust Features (SURF) is a very efficient
and robust scale and rotation-invariant feature detection and
descriptor algorithm proposed by Bay et al. [4]. It is very
similar to SIFT and is based on a Hessian matrix, which is
generatedby convolutionof theGaussian second-order deriv-
ative with image pixels. The interest points are extracted in
the same way as SIFT. This is accomplished by a 3 × 3 × 3
non-maximal suppression on a Gaussian pyramid, followed
by interpolation of the maxima of the Hessian matrix.

The SURF detector is found on each interest point by
orientation assignment and descriptor component analysis.
The orientation is assigned by calculating a Haar Wavelet
response in x and y directions in a circular neighborhood of
each interest point. The dominant orientation is found by cal-
culating the sum of orientations. Then, theWavelet responses

in a square region oriented in the dominant orientation pro-
vides the SURF descriptors. These descriptors are scale and
rotation invariant and are very robust against transformations
on images.

3.5 CENSURE

Center Surround Extremas (CENSURE) is a very accurate
detector proposed by Agrawal et al. [2] based on two criteria:
stability (persistence of features across viewpoint changes)
and accuracy (consistency of feature localization across
viewpoint changes). The method first determines the max-
imausing amethod calledHessian–Laplacian. TheLaplacian
is approximated using center surround filters called bi-level
filters. Using this Laplacian, a basic center-surround Haar
Wavelet is formed. These are the CENSURE responses. A
non-maximal suppression provides the necessary features.

3.6 BRIEF

Binary Robust Independent Elementary Features (BRIEF),
developed by Calonder et al. [5], is also a recently developed
attractive descriptor of binary strings that is very useful for
extracting descriptors from feature points for image match-
ing. BRIEF is also used in our experiments as a common
descriptor for those detectors that do not have their own
descriptors: FAST, CENSURE, and MSER. BRIEF has fast
execution and good accuracy.

3.7 BRISK

Binary Robust Invariant Scalable Key-points (BRISK), pro-
posedbyLeutenegger et al. [25], is a detector and adescriptor.
In this method, points of interest are first identified in the
image pyramid using a saliency criterion. Next, a sampling
pattern is applied to the neighborhood of each of these
detected key points to retrieve gray values, which are then
used to generate the orientation. The oriented BRISK sam-
pling patterns provide the descriptor. Once generated, these
key points can be matched very efficiently due to the binary
nature of the descriptor.

3.8 ORB

The Oriented FAST and Rotated BRIEF (ORB) detector and
descriptor was proposed by Rublee et al. [38] as a very fast
alternative to SURF. The authors state that ORB provides
the following [38]: (a) addition of a fast and accurate ori-
entation component to FAST; (b) efficient computation of
oriented BRIEF features; (c) analysis of variance and corre-
lation of oriented BRIEF features; and (d) a learning method
for de-correlating BRIEF features under rotational invari-
ance, leading to a better performance.
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3.9 FREAK

Fast Retina Key-point (FREAK) is a very recently developed
descriptor, proposed by Alahi et al. [3] and inspired by the
human visual system (HVS), or more precisely, by the retina.
First, a retinal sampling pattern is generated using a circu-
lar sampling grid called the “retinal sampling grid”, which
has a higher density of points near the center. Next, a binary
descriptor is formed by a sequence of one-bit difference of
Gaussians (DoG). A human vision-like search called a “sac-
cadic search” is used to select relevant features. Last, the
rotation of the key points at each selected feature point is
computed using the sum of the local gradients over selected
pairs, similar to BRISK.

4 Experiments

This section includes comparisons of the detectors and
descriptors based on their performances in image matching
under specific distortions. Two images are matched for their
similar regions. The images compared are referred to as the
“Reference” image and the “Target” image. The target image
has a level of distortion or transformation in comparison to
the reference, leading to a possible mismatch. Our goal is to
determine the accuracy of matching with varying degrees of
distortion. The experiments section has been divided into a
number of subsections based on the analysis, the target of the
experiments, and the practicality of the experiments.

1. Datasets: we have made every effort to keep our work
compatible with existing studies, while including more
datasets with different transformations. We use the
Oxford datasets provided by Mikolajczyk et al. [33],
Herz-JesuP8 and Fountain-P11 datasets from Strecha et
al. [43], and other datasets from Heinly et al. [20]. We
also include the Amsterdam Library of Object Images
(ALOI) [14] and an image database from the Signal and
Image Processing Institute or USC-SIPI [46] to increase
the number of test images with a goal of providing a
consistent and robust review based on a large number
of images. A subset of these images are shown in Fig. 1
grouped according to their distinctiveness. Finally, we
also use a number of simulated transformations to demon-
strate the performance on scaling, blurring, and rotation.
The types of transformations in the datasets used are
described below:

• Oxford datasets: image blurring, exposure, JPEGcom-
pression, combined scaling, rotation, and perspective
transformations of planar geometry;

• fountain-P11 and Herz-JesuP8 datasets: perspective
transformations of non-planar geometry;

• Datasets fromHeinly et al.: pure rotation, scaling, illu-
mination changes;

• ALOI: illumination variation and viewpoint changes;
• USC-SIPI: rotation of textures.

2. Performance metrics: we use four metrics for perfor-
mance evaluation, as described below.

• The Putative Match Ratio = number of putative
matches/number of features: is used to address the
selectivity of the descriptor. This represents the frac-
tion of detected features to be initially identified as
a match. This ratio is based on the matching cri-
teria. With over-restrictive matching, this ratio will
decrease. Of course, feature point detection capabil-
ity varies from one detector to another, as depicted
in Fig. 2. Hence, the selectivity of the descriptor and
consequently, this metric plays an important role in
the evaluation of a detector-descriptor pair.

• Precision = number of correct matches /number of
putative matches: the number of correct matches is
found by geometrically verifying the initial putative
matches based on a known camera position. This is
also driven by how restrictive the matching criterion
is. However, this metric also represents the matching
accuracy of a detector–descriptor pair. High precision
indicates a better pair, as only correct matches would
be used for feature matching. For a specific image
pair, the precision may also be zero, indicating that
no putative matches were correct. This fact is used in
defining our last metric: Reliability.

• Matching Score = number of correct matches /num-
ber of features: this is equivalent to the multiplication
of Putative Match Ratio and Precision and indicates
how the descriptor has performed in extracting the
number of correct matches from the number of ini-
tially detected features. This can also be evaluated
as a metric measuring the pairing strength between a
detector and a descriptor. A descriptor has a higher
affinity with a detector if the descriptor has a better
selectivity over feature points detected, increasing the
Matching Score.

• Reliability=number of test imagepairswith non-zero
precisions/total number of test image pairs: this met-
ric indicates the fraction of image pairs with at least
one correct match out of the total number of image
pairs used. This does not depend on the quality of
matching, but is useful in practice where matches are
required between every two pairs of images. By two
pairs, we mean two reference and target image pairs.
An example is shown in Sect. 4.7, where a pair of ref-
erence and target images are represented by a stereo
pair (left and right, respectively) and two pairs are
found by two subsequent frames (a frame contains
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Fig. 1 A subset of the images used for the experiment. Images are
grouped to highlight their distinctiveness. In clockwise direction from
top-left, the first group shows two images with viewpoint changes, the
second group shows illumination variation, the third group consists of

some texture images from USC-SIPI used for simulated transforma-
tions, the fourth group shows rotational transformation, and the last
group shows two images from a sequence

a stereo pair). Highly reliable detector–descriptor
pairs should be able to find correct matches for a
large number of images over several transformations.
This is crucial in our practical scenario discussed
in Sect. 4.7, where insufficient matching in a sin-
gle pair may lead to significant localization errors.
Also, based on the requirements of an application,
thismetric can be formed using a threshold on the pre-
cision value. For example, Reliability may be formed
by dividing the number of test images with a preci-
sion above a certain threshold by the total number of
test images. Of course, this would represent a stricter
condition.

• Mean Execution Time: this is found by averaging the
average time taken to process each feature point over
all transformations. Mean execution time becomes
important for a real-time application; thus, it is also
used for rank computation.

3. Test setup: Table 1 classifies feature detection and
description methods based on the presence of feature
detectors and descriptors. As presented in the table, a
fewmethods are either detector or descriptor while others
are both. Thus, a fair comparison in terms of matching is
difficult. The best way to compare is to pair up each detec-
tor with each descriptor and compare the performance in
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Fig. 2 Figure showing the appearance and distribution of key points
from each detector: a BRISK, b CENSURE, c FAST, dMSER, eORB,
f SIFT, and g SURF. Evidently, FAST detects a lot of feature points,

whereas ORB detects the lowest number of feature points. The other
detectors have ranges in between these two detectors

Table 1 Comparison of
methods in terms of availability
of feature detector and
descriptor

BRIEF BRISK CENSURE FAST FREAK MSER ORB SIFT SURF

Detector No Yes Yes Yes No Yes Yes Yes Yes

Descriptor Yes Yes No No Yes No Yes Yes Yes

terms of a number of metrics. We have evaluated each
detector–descriptor pair on the referred datasets. For each
dataset, the features are detected on reference and target
images using the paired up detector. We then describe
the features using the paired up descriptor. Finally, the
features are matched using a brute-force matcher. As
pointed out in [20], pairing up a detector with a descriptor
introduces certain complications. The scale information
makes amismatch if either the detector or the descriptor is
scale invariant while the other is not. If both the detector
and descriptor are scale invariant, we discard the scale
information and compute the descriptor in the original
image resolution, where possible. A similar procedure is
followed when both detector and descriptor provide ori-
entation information.

4. Match criteria: The test uses brute-force matching to
match the features in image pairs. No restrictions have
been imposed on the number of features detected. The
default parameter values defined in the OpenCV imple-
mentations of the algorithms have been used for the
experiments. The matched feature points are reprojected
onto the source image using the homography or the
ground truth of 3Dgeometry (in case of non-planar geom-
etry) provided, and a reprojection error is calculated. In
cases where ground truth information is not provided, the
transformation values are used to reproject the matched
points onto the reference image. Transformation values

are represented by the amount of transformation applied
to the reference image to construct the target image, and
these values are known specifically for simulated trans-
formations. A reprojection error is the Euclidean distance
between the original and the reprojected feature point. A
threshold of 2 on the reprojection error has been used
to limit the inliers, i.e., correct matches. The threshold is
empirically chosen following [20]. However, it is reduced
to provide a stricter condition. The threshold cannot be
too low, as there will always be noisy measurements and
reprojection errors. Finally, the matcher uses L2 norm
(Euclidean distance) or the Hamming distance between
the descriptors formatching. L2 norm is suitable for SIFT
and SURF, while the Hamming distance is more suitable
for ORB, BRISK, BRIEF, and FREAK. We have tested
with both types of distances and followed the choice of
distance as mentioned above, to maximize the perfor-
mance of the descriptors. The performances of detectors
and descriptors are reported in Figs. 3 and 4 and are dis-
cussed in detail in the following subsections.

For the rest of the document, we denote detector–
descriptor pairs by ageneral notation: “Detector+Descriptor”.
If both the detector and descriptor are part of a single fea-
ture detection and/or description technique, they are simply
represented by the name of the technique. For example:
FAST+SIFT represents a combination of FAST detector and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3 Results for a illumination, b viewpoint changes, c rotation, d
blur, e scale, f JPEG compression, g scale and rotation, h scale, rotation,
and viewpoint changes, i exposure, j average ranking over all transfor-
mations. Rows are detectors, columns are descriptors: BF BRIEF, BK

BRISK, CN CENSURE, FT FAST, FK FREAK,MRMSER, OB ORB,
ST SIFT, SF SURF. Values are in percentages except for the ranks (blue
0%, red 100%) (color figure online)
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Fig. 4 Test of invariance against viewpoint changes (first row), blurring (second row), scaling (third row), and rotation (last row). The first, second,
and third columns represent the results for detectors, descriptors, and unified combinations, respectively

SIFT descriptor, while SIFT represents a combination of
SIFT detector and SIFT descriptor. The rest of Sect. 4 is
divided as follows: the performances of different detector
and descriptors are analyzed in Sects. 4.1 and 4.2, respec-
tively. Figure 3 provides a consolidated average for each pair
of detectors and descriptors over all transformation values
and all datasets. Figure 4 shows the individual performance

of detectors keeping a common descriptor, and performance
of descriptors keeping a common detector, against gradually
varying transformation values. Also, a few pairs are intu-
itively chosen for comparison based on the same framework,
and the results are discussed in Sect. 4.3. The statistical sig-
nificance of the results is analyzed using the Student’s t test in
Sect. 4.4. A study has been carried out on a few detectors for
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a number of parameters, as presented in Sect. 4.5. This part of
the experiment can also be extended to the rest of the detec-
tors or descriptors. Next, based on the paired performances, a
rankingmethodology has been followed and individual ranks
for each detector–descriptor pair are computed in Sect. 4.6.
Finally, a practical scenario for benchmarking is described
in Sect. 4.7.

4.1 Performance of detectors

Two figures are used to demonstrate the performances of
detectors and descriptors. Figure 3 presents the cumulative
performance of all combinations of detectors and descriptors
on each type of transformation over all transformation val-
ues and datasets. This figure presents a holistic comparison.
On the other hand, Fig. 4 shows the individual performances
of each detector, keeping the descriptor the same, and the
individual performances of each descriptor, keeping a com-
mon detector, with respect to the variations of transformation
values. Finally, a number of detector–descriptor combi-
nations are intuitively chosen to show more performance
variations.

Before discussing detector performances for varying
transformation values, we take a closer look at their cumu-
lative performances by different detectors from Fig. 3.
CENSURE performs very well in the presence of illumina-
tion, blur, jpeg, and exposure.As described in [2], the detector
is built upon surrounding extremas, and it is proven tobemore
robust in comparison to SIFT or SURF. However, due to its
high selectivity in finding robust feature points, its Reliabil-
ity is quite low. On the other hand, ORB, SIFT, SURF, and
FAST have shownmoderate Precision, but yield higher Reli-
ability. FAST produces a large number of feature points as
shown in Fig. 2, hence it has high Reliability. However, fea-
ture points have low resistance against scaling, as can be seen
in Fig. 3. PutativeMatch Ratios of FAST are high for most of
the transformations, as it can find more feature points. How-
ever, after matching, FAST shows medium performance for
scaling.

ORB produces fewer feature points compared to other
detectors (as visualized in Fig. 2), and according to the table,
they are robust against rotation and scaling. The experimental
results support the claim in [38] that ORB is strong against
rotation and scaling. BRISK has comparable performance
and a high Reliability due to its internal use of FAST. SIFT
and SURF do not perform well due to their partial incom-
patibility with the descriptors. They perform better in the
presence of their own descriptors. However, SIFT performs
better against rotation if paired with a rotationally invariant
descriptor, specifically SIFT or ORB. ORB has a conflict
with SIFT, and the orientation assignment by SIFT has not
been used for ORB. Thus, this improved performance is due
to ORB’s resistance to rotation.

To find out more about the individual performances of the
detectors, each detector has been used to perform against four
fundamental transformations, namely viewpoint changes,
blurring, scaling, and rotation. Their performances have been
plotted in Fig. 4 (left column) against changing values of
transformation levels using Precision as the measure of per-
formance. Viewpoint transformations are provided in the
ALOI database for 1000 images. Blurring, scaling, and rota-
tion for increasing values of transformations are not part
of any database; thus, simulated transformations have been
used. The original images from ALOI viewpoint datasets
have been used for the simulated transformations. For blur-
ring, a Gaussian blur filter was applied to each image with
kernel sizes in the range [1, 10] with steps of 1. For scaling,
each image was resized using a scale factor in the range
[0.25, 2.5] with steps of 0.25. Finally, for rotation, each
image was rotated around its center, in a range of [0, 360]◦
with step size of 1◦.

A common descriptor is used for all experiments. To
prevent undue advantages, we cannot choose a descriptor
already associated with a detector, leaving only BRIEF and
FREAK. FREAK has shown very good performance with
FAST and SURF. The descriptor uses the sum of local
gradients, similar to BRISK, and it has a descriptive perfor-
mance that is highly compatible with SURF (can be verified
from results). Any SURF-like detector would also have high
compatibilitywith FREAK. This compels us to use a descrip-
tor like BRIEF that would not boost up the performance
of some of the detectors, biasing the comparison. BRIEF
also has no restriction from pairing with rotation invariant
detectors. However, as the descriptor is mostly responsi-
ble for enhancing the feature detector by extracting rotation
and illumination invariant descriptors, a descriptor such as
BRIEF that is truly disassociated with any detector would
be unable to enhance the capabilities of the detectors. This
can be seen in the performance graphs in Fig. 4 (left col-
umn), where robust detectors like SIFT do not show expected
performances.

4.2 Performance of descriptors

As shown in Fig. 3 for cumulative performance compar-
isons, BRISK and FREAK have shown very good perfor-
mances in the presence of rotation, illumination changes,
and viewpoint changes. They also have high Reliabil-
ity. This signifies their robustness to these transforma-
tions, as described in the relevant papers [3,25]. FREAK
also shows a surprisingly high compatibility with SURF.
FAST and ORB also make a good combination, as ORB
uses oriented FAST features. However, this combination
does not perform well in the presence of rotation due
to the loss of processing of FAST features for rotational
invariance.
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For similar reasons, FAST does not match well with SIFT.
For SURF, as its methodology uses Hessian matrices and
thesematrices have good responses for corner features, FAST
is more suitable. BRIEF is fast and has a moderate per-
formance for most transformations. However, its lack of
invariance to rotation is prominent.

As before, the performances of descriptors have also been
compared against viewpoint changes, blurring, scaling, and
rotationwhile keeping a commondetector. The performances
are shown in Fig. 4 (middle column). FAST has been used
as an independent detector, mostly because it can produce
a higher number of feature points for any type of transfor-
mation, as evident from the Putative Match Ratios present in
Fig. 3. The results are more informative compared to the case
of detectors. As evident from the figures, SIFT, SURF, and
FREAK have high performance against scaling and blurring.
ORB also has a considerably good descriptor.

4.3 An unified performance

Looking at the cumulative values from Fig. 3 and the
Precision values over all transformations in Fig. 4, we
find several good matches and bad combinations of fea-
ture detectors and descriptors. A variation of performance
of all combinations or detector–descriptor pairs over all
transformation values would be a valuable insight. How-
ever, due to limited space, we have intuitively chosen
a few pairs among the long list of 42 pairs. Among
the pairs, BRISK (detector and descriptor both belong
to BRISK), ORB, SIFT, and SURF have been chosen,
as they have performed well when paired with “them-
selves”. We wanted to take at least one pair so that
we could cover all the detectors and descriptors. With
this in mind, CENSURE, FAST, and MSER have been
used while pairing with BRIEF. BRIEF is used mostly
because it is fast and has no orientation requirements;
thus, it can be paired with any of the detectors. Also, as
seen in the performances of the detectors with BRIEF,
the performances of CENSURE, FAST, and MSER are
good compared to SIFT or SURF paired with BRIEF.
Finally, FREAK has shown high suitability when paired
with SURF. In total, 8 pairs have been chosen for a unified
performance: BRISK, CENSURE+BRIEF, FAST+BRIEF,
SURF+FREAK, MSER+BRIEF, ORB, SIFT, and SURF.

We have chosen a few pairs out of the 42 pairs to study
the invariance, as seen in Fig. 4, due to their use for prac-
tical purposes. To limit the number of experiments and
the paper length, only a few pairs are chosen for compar-
ison in the practical scenario described in Sect. 4.7. Of
course, a detailed study on invariance can always be car-
ried out on the same scenario for every pair. However,
this small study serves as a highlight for such an exten-
sive study. Before moving to Sect. 4.7, we have tested

the chosen unified pairs on the same test bench as the
detectors and descriptors. From Fig. 4 (last column), CEN-
SURE+BRIEF, MSER+BRIEF, SURF+FREAK, and SIFT
perform well against viewpoint changes. As scaling or rota-
tion was not involved, the performance of BRIEF did not
drop. However, for scaling and rotation, SIFT has shown
the best performance. BRISK, SURF+FREAK, and ORB
have also shown good performances. These results also
support the results in Fig. 3, where these pairs performed
well.

4.4 Statistical significance

A number of tests have been carried out on each detector–
descriptor pair under varied situations. The metric values
alone are insufficient to compare the performance of the
pairs due to their large variations in different tests. Also,
according to [6], the performance is affected by three factors,
including problem difficulty, type of method used for experi-
ment (the detector–descriptor pair in our case), and the noise
introduced to computation. To determine whether the per-
formance variations of each pair are due to noise or mutual
differences, we carry out a paired Student’s t test. The first
factor in the test is to decide on the methods, i.e., the combi-
nation of detectors and descriptors to compare. Thus, in the
rest of this section, a method denotes a “combination of a
detector and a descriptor”. As there are many combinations
to compare, the test is carried out on detectors keeping the
same descriptor (BRIEF, as before) and on the descriptors
keeping same detector (FAST, as before). In this way, the
combinations reduce the effective number of candidates for
statistical comparison. The second factor in the test is the
metric to consider for comparison. In [6], the authors created
the receiver operating characteristic (ROC) curve and used
the area under this curve (AUC) as the measure for the t test.
We have used four metrics for the experiments and preferred
to use precision as the metric, as it is among the most popu-
lar and commonmeasures of performance. Finally, tests have
been carried out on the results of viewpoint changes, scaling,
blurring, and rotation. The procedure followed is provided
next:

1. The mean value of precision µ over all parameter values
of the experiment is considered for each method. For
example, the mean Precision for 0–360 degrees rotation
representsµ. The underlying assumption of the test is that
the variance is the same for the two methods compared.
Our goal is to understandwhether themetric values found
for two methods belong to the same distribution.

2. The null hypothesis: for two methods, 1 and 2, the means
are identical, i.e.,µ1 = µ2; thus, the methods are similar
in performance.
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Table 2 Statistical results for detectors on viewpoint (hypothesis index, followed by t value and SD)

BRISK CENSURE FAST MSER ORB SIFT SURF

BRISK 0 1 1 1 1 1 1

0 2.76E−52 2.69E−58 4.39E−46 5.61E−29 1.10E−37 1.34E−58

0.00 7.12 0.79 5.45 5.31 3.24 1.87

CENSURE 1 0 1 1 1 1 1

2.76E−52 0 6.97E−48 4.81E−38 1.96E−46 3.53E−51 1.27E−57

7.12 0.00 7.15 4.47 11.52 5.38 7.88

FAST 1 1 0 1 1 1 1

2.69E−58 6.97E−48 0 8.12E−39 2.91E−38 4.37E−20 1.83E−68

0.79 7.15 0.00 5.49 5.34 3.27 1.91

MSER 1 1 1 0 1 1 1

4.39E−46 4.81E−38 8.12E−39 0 2.88E−39 4.59E−50 9.81E−55

5.45 4.47 5.49 0.00 10.55 2.66 6.19

ORB 1 1 1 1 0 1 0

5.61E−29 1.96E−46 2.91E−38 2.88E−39 0 2.81E−33 8.42E−01

5.31 11.52 5.34 10.55 0.00 8.31 5.19

SIFT 1 1 1 1 1 0 1

1.10E−37 3.53E−51 4.37E−20 4.59E−50 2.81E−33 0 8.58E−56

3.24 5.38 3.27 2.66 8.31 0.00 3.78

SURF 1 1 1 1 0 1 0

1.34E−58 1.27E−57 1.83E−68 9.81E−55 8.42E−01 8.58E−56 0

1.87 7.88 1.91 6.19 5.19 3.78 0.00

DOF: 70

Table 3 Statistical results for detectors on blurring (hypothesis index, followed by t value and SD)

BRISK CENSURE FAST MSER ORB SIFT SURF

BRISK 0 1 1 1 0 1 0

0 3.62E−02 1.46E−02 7.59E−09 6.63E−02 1.10E−02 5.87E−02

0.00 3.52 32.01 2.04 8.11 8.96 9.31

CENSURE 1 0 1 1 1 1 1

3.62E−02 0 9.86E−03 1.58E−10 7.84E−03 1.70E−03 6.12E−03

3.52 0.00 32.26 1.60 7.53 8.44 8.09

FAST 1 1 0 0 1 1 1

1.46E−02 9.86E−03 0 1.21E−01 1.21E−02 2.34E−02 1.57E−02

32.01 32.26 0.00 31.99 25.40 24.90 25.70

MSER 1 1 0 0 1 0 1

7.59E−09 1.58E−10 1.21E−01 0 9.75E−03 1.57E−01 3.14E−02

2.04 1.60 31.99 0.00 7.58 8.50 8.46

ORB 0 1 1 1 0 1 0

6.63E−02 7.84E−03 1.21E−02 9.75E−03 0 5.60E−05 1.48E−01

8.11 7.53 25.40 7.58 0.00 1.63 2.02

SIFT 1 1 1 0 1 0 1

1.10E−02 1.70E−03 2.34E−02 1.57E−01 5.60E−05 0 3.64E−03

8.96 8.44 24.90 8.50 1.63 0.00 2.16

SURF 0 1 1 1 0 1 0

5.87E−02 6.12E−03 1.57E−02 3.14E−02 1.48E−01 3.64E−03 0

9.31 8.09 25.70 8.46 2.02 2.16 0.00

DOF: 9
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Table 4 Statistical results for detectors on scaling (hypothesis index, followed by t value and SD)

BRISK CENSURE FAST MSER ORB SIFT SURF

BRISK 0 0 0 0 0 1 1

0 5.64E−01 9.92E−01 1.40E−01 2.76E−01 1.93E−02 4.13E−03

0.00 12.08 10.89 8.03 16.76 13.14 15.59

CENSURE 0 0 0 1 0 1 1

5.64E−01 0 6.96E−01 1.54E−02 3.12E−01 1.08E−02 1.23E−02

12.08 0.00 18.25 6.80 24.90 13.93 21.37

FAST 0 0 0 0 0 0 1

9.92E−01 6.96E−01 0 4.08E−01 1.33E−01 8.72E−02 7.45E−03

10.89 18.25 0.00 14.86 11.70 19.42 17.27

MSER 0 1 0 0 0 1 1

1.40E−01 1.54E−02 4.08E−01 0 7.81E−01 3.55E−02 1.90E−02

8.03 6.80 14.86 0.00 22.40 9.86 16.27

ORB 0 0 0 0 0 0 0

2.76E−01 3.12E−01 1.33E−01 7.81E−01 0 5.25E−01 1.24E−01

16.76 24.90 11.70 22.40 0.00 27.12 23.59

SIFT 1 1 0 1 0 0 0

1.93E−02 1.08E−02 8.72E−02 3.55E−02 5.25E−01 0 6.49E−02

13.14 13.93 19.42 9.86 27.12 0.00 10.49

SURF 1 1 1 1 0 0 0

4.13E−03 1.23E−02 7.45E−03 1.90E−02 1.24E−01 6.49E−02 0

15.59 21.37 17.27 16.27 23.59 10.49 0.00

DOF: 9

Table 5 Statistical results for detectors on rotation (hypothesis index, followed by t value and SD)

BRISK CENSURE FAST MSER ORB SIFT SURF

BRISK 0 1 1 1 1 1 1

0 3.68E−03 9.17E−06 3.51E−06 5.60E−06 6.82E−06 6.10E−06

0.00 29.86 1.65 10.12 7.78 6.51 3.29

CENSURE 1 0 1 0 1 0 1

3.68E−03 0 7.12E−03 3.55E−01 2.95E−04 5.84E−02 1.22E−03

29.86 0.00 29.42 26.88 33.25 27.83 31.47

FAST 1 1 0 1 1 1 1

9.17E−06 7.12E−03 0 3.53E−06 4.53E−06 7.79E−06 4.37E−06

1.65 29.42 0.00 8.62 9.16 4.97 4.72

MSER 1 0 1 0 1 1 1

3.51E−06 3.55E−01 3.53E−06 0 3.36E−06 6.89E−06 3.57E−06

10.12 26.88 8.62 0.00 17.47 4.29 13.26

ORB 1 1 1 1 0 1 1

5.60E−06 2.95E−04 4.53E−06 3.36E−06 0 3.36E−06 2.78E−05

7.78 33.25 9.16 17.47 0.00 13.47 5.32

SIFT 1 0 1 1 1 0 1

6.82E−06 5.84E−02 7.79E−06 6.89E−06 3.36E−06 0 5.30E−06

6.51 27.83 4.97 4.29 13.47 0.00 9.59

SURF 1 1 1 1 1 1 0

6.10E−06 1.22E−03 4.37E−06 3.57E−06 2.78E−05 5.30E−06 0

3.29 31.47 4.72 13.26 5.32 9.59 0.00

DOF: 12
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Table 6 Statistical results for
descriptors on viewpoint
(hypothesis index, followed by t
value and SD)

BRIEF BRISK FREAK ORB SIFT SURF

BRIEF 0 1 1 1 1 1

0 3.05E−35 3.48E−24 1.88E−19 5.28E−30 1.26E−22

0.00 1.47 1.55 0.84 1.16 5.03

BRISK 1 0 1 1 1 1

3.05E−35 0 1.72E−13 2.71E−39 5.89E−07 2.51E−12

1.47 0.00 1.22 1.65 2.25 4.42

FREAK 1 1 0 1 0 1

3.48E−24 1.72E−13 0 6.52E−31 5.88E−01 5.68E−19

1.55 1.22 0.00 1.70 2.34 3.98

ORB 1 1 1 0 1 1

1.88E−19 2.71E−39 6.52E−31 0 1.80E−36 1.73E−25

0.84 1.65 1.70 0.00 1.33 5.09

SIFT 1 1 0 1 0 1

5.28E−30 5.89E−07 5.88E−01 1.80E−36 0 2.25E−12

1.16 2.25 2.34 1.33 0.00 5.86

SURF 1 1 1 1 1 0

1.26E−22 2.51E−12 5.68E−19 1.73E−25 2.25E−12 0

5.03 4.42 3.98 5.09 5.86 0.00

DOF: 70

Table 7 Statistical results for
descriptors on blurring
(hypothesis index, followed by t
value and SD)

BRIEF BRISK FREAK ORB SIFT SURF

BRIEF 0 0 0 0 0 0

0 9.47E−01 6.47E−02 1.36E−01 1.93E−01 5.37E−01

0.00 37.97 17.36 1.34 24.91 47.57

BRISK 0 0 0 0 0 0

9.47E−01 0 3.14E−01 9.92E−01 6.30E−02 2.05E−01

37.97 0.00 31.87 37.61 17.74 20.48

FREAK 0 0 0 0 1 0

6.47E−02 3.14E−01 0 7.82E−02 2.30E−02 8.79E−01

17.36 31.87 0.00 17.28 26.15 38.12

ORB 0 0 0 0 0 0

1.36E−01 9.92E−01 7.82E−02 0 1.66E−01 5.65E−01

1.34 37.61 17.28 0.00 24.69 47.47

SIFT 0 0 1 0 0 0

1.93E−01 6.30E−02 2.30E−02 1.66E−01 0 6.13E−02

24.91 17.74 26.15 24.69 0.00 30.69

SURF 0 0 0 0 0 0

5.37E−01 2.05E−01 8.79E−01 5.65E−01 6.13E−02 0

47.57 20.48 38.12 47.47 30.69 0.00

DOF: 9

3. The alternate hypothesis: for two methods, 1 and 2, the
means are different, i.e., µ1 �= µ2; thus, the methods
perform differently.

4. The tests are conducted under 95% confidence level for
a two-tailed test.

If the null hypothesis is true with significant differences
in results, this would signify that the experiment may be

noisy. Thus, careful observations for the results are required.
The results of the test are reported in Tables 2, 3, 4, 5,
6, 7, 8 and 9. Each cell in the tables contains three sub-
rows under each row signifying the hypothesis, t value from
the test, and the standard deviation (SD). The first row is
either 0 (supporting the null hypothesis) or 1 (supporting
the alternate hypothesis). Finally, the degree of freedom
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Table 8 Statistical results for
descriptors on scaling
(hypothesis index, followed by t
value and SD)

BRIEF BRISK FREAK ORB SIFT SURF

BRIEF 0 0 0 0 0 0

0 7.47E−01 5.00E−01 7.44E−01 2.25E−01 6.64E−01

0.00 13.17 13.35 8.78 16.66 17.75

BRISK 0 0 0 0 0 0

7.47E−01 0 3.63E−01 6.10E−01 3.05E−01 7.71E−01

13.17 0.00 14.36 13.87 24.01 12.05

FREAK 0 0 0 0 0 0

5.00E−01 3.63E−01 0 2.99E−01 6.62E−01 1.16E−01

13.35 14.36 0.00 5.81 27.31 9.97

ORB 0 0 0 0 0 0

7.44E−01 6.10E−01 2.99E−01 0 4.35E−01 4.23E−01

8.78 13.87 5.81 0.00 22.97 13.04

SIFT 0 0 0 0 0 0

2.25E−01 3.05E−01 6.62E−01 4.35E−01 0 3.39E−01

16.66 24.01 27.31 22.97 0.00 29.39

SURF 0 0 0 0 0 0

6.64E−01 7.71E−01 1.16E−01 4.23E−01 3.39E−01 0

17.75 12.05 9.97 13.04 29.39 0.00

DOF: 9

Table 9 Statistical results for
descriptors on rotation
(hypothesis index, followed by t
value and SD)

BRIEF BRISK FREAK ORB SIFT SURF

BRIEF 0 1 1 0 1 1

0 4.34E−06 7.26E−06 2.77E−01 9.55E−04 1.43E−02

0.00 15.38 14.40 1.65 2.75 14.18

BRISK 1 0 1 1 1 1

4.34E−06 0 1.90E−04 5.27E−06 4.02E−06 1.03E−04

15.38 0.00 2.53 15.43 16.77 14.22

FREAK 1 1 0 1 1 1

7.26E−06 1.90E−04 0 9.85E−06 5.81E−06 1.04E−04

14.40 2.53 0.00 14.58 15.64 11.88

ORB 0 1 1 0 1 1

2.77E−01 5.27E−06 9.85E−06 0 5.63E−03 2.11E−02

1.65 15.43 14.58 0.00 4.11 14.60

SIFT 1 1 1 1 0 1

9.55E−04 4.02E−06 5.81E−06 5.63E−03 0 4.31E−03

2.75 16.77 15.64 4.11 0.00 14.97

SURF 1 1 1 1 1 0

1.43E−02 1.03E−04 1.04E−04 2.11E−02 4.31E−03 0

14.18 14.22 11.88 14.60 14.97 0.00

DOF: 12

(DOF) is reported in the caption of each table. This is
a fixed number depending on the number of samples on
which the t test is performed. For the experiments, the
number of samples represents the number of transformation
values and the DOF is one less than the number of sam-
ples.

A thorough explanation of the tables requires considerable
space. Instead, we report select observations:

1. Diagonal elements for all tables have zero values. This
is evident, as statistically both distributions represent the
same pair and are identical.

2. The t values are tested from the available Student’s t test
charts for 95% confidence level under the given DOF.

3. A value of 1 for the hypothesis represents the alternate
hypothesis. As presented in Table 2, most of the com-
binations received a value of 1. This signifies that, for
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a given descriptor (here, it is BRIEF), the performances
of two detectors for a viewpoint transformation are sta-
tistically different. This also proves that the variations
of results produced by the tests mostly denote variations
in performance and not simply noise. As can be seen
in Table 2, the performance of CENSURE and MSER,
as well as CENSURE and SIFT, are similar. This also
supports the results presented in Fig. 4 (left column-
top row) as CENSURE, MSER, and SIFT are the three
best performers, while from Fig. 3b we can see that
their mean precision values are very close to each other.
As evident in Table 6, most of the descriptors have per-
formed statistically different for viewpoint changeswhen
the detector is kept constant (here, it is FAST), apart from
SIFT and FREAK. This is to be expected, since their per-
formance on viewpoint changes (Fig. 4 and in Fig. 3b)
are similar.

4. As seen in Table 3, most of the detectors have statistically
different performances in the case of blurring, as verified
by the majority of 1 s. However, ORB is similar to SURF
and BRISK. ORB was proposed as a faster alternative to
SURF, and its performance is close to that of SURF (from
Fig. 3d). However, the similarity of BRISK to ORB and
SURF is surprising. Similarities between SIFT to MSER
can also be observed, attributable to the fact that the
extractions of feature points for both detectors are similar.
As seen in Table 7, most descriptor performances are sta-
tistically similar in the case of blurring. This is because
descriptors are not generally responsible for invariance
against blurring. This can also be verified from results
presented in Fig. 4, where the performances of the
descriptors are somewhat arbitrary in nature.

5. In Table 4, we observe that a number of detectors have
similar statistical performances. This is because some of
the detectors aremore resistant to scaling than others. For
example, SIFT and SURF are scale invariant and their
performances are similar, while FAST is not scale invari-
ant and its performance is different from that of SIFT or
SURF.However, as stated above, asBRIEF is a descriptor
ofmoderate quality, these results also contain somenoise.
All descriptors in the presence of scaling have similar
performances, as shown in Table 8. This is also expected,
since, like in the case of blur, invariance against scaling is
mostly achieved at the detection level. Thus, descriptors
have a little role to play in the case of invariance against
scaling.

6. Finally, for rotational invariance testing, most of the
detectors and descriptors have statistically different
results, as shown in Tables 5 and 9. Although, rotational
invariance is mostly achieved in the stage of descriptor
assignment, it partly depends on detectors due to the
selection of feature points. Thus, statistically different
performances are expected.

4.5 Dependence on parameters

In reference to the metric values in Fig. 3, a mismatch can
be noticed. CENSURE provides high Precision values, while
its Reliability is low. The reason for such odd behavior can-
not be subtly judged from the experiments. Some detectors
and descriptors provide good results on some images, while
they do not work well with others. This observation leads
to an assumption that detectors and descriptors are more
comfortable within specific transformation value ranges and
for certain type of image contents. While judgement based
on image content would be a qualitative assessment that is
beyond the scope of this work, reaction to the change of
transformation values can be measured.

In response to such confusion, some of the parame-
ters related to detection for BRISK, FAST, and CENSURE
are adjusted, and matching performance is judged on the
ALOI viewpoint dataset. The viewpoint dataset is chosen
as it has naturally occurring viewpoint transformations with
many transformation values, improving the robustness of the
experiment. Variation of Precision values with changes in
parameter values are shown in Fig. 5. The parameters used
in the experiment are as follows:

BRISK:

• Octave: the octave of the scale-space pyramid used. Each
octave represents the progressive half-sampled image
pyramid. Higher octaves signify better detection.

• Threshold: this is the detection threshold used for BRISK.
More specifically, it is the threshold used for the initial
detector inBRISK: theFAST9–16detector. Thus, a higher
threshold value would indicate fewer detected points and
fewer incorrect detections.

FAST:

• Threshold: the threshold is used to detect corner pixels
using the accelerated segment test. A high threshold value
indicates stricter criteria for detecting corners in a neigh-
borhood of pixels and fewer incorrect detections.

CENSURE:

• Line threshold: line threshold is a ratio for the principal
curvatures that decide the number of features to be con-
sidered along an edge or a line. These features are often
improperly localized, and hence perform poorly. In the
implementation by OpenCV, we use two line thresholds
(lineThresholdProjected for Harris measure of response
and lineThresholdBinarized for Harris measure of sizes).
Any response along the edges that satisfies both thresh-
old comparisons is considered to be acceptable. For the
test, lineThresholdProjected is varied while lineThresh-
oldBinarized is taken as 0.8 of lineThresholdProjected.
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Fig. 5 Precision and Reliability variation with parameter changes are shown for BRISK, FAST, and CENSURE

Obviously, an increase in threshold would lead to fewer
features along edges/lines.

• Response threshold: in CENSURE, seven filters are
applied to images and the responses obtained are
processed with non-maximal suppression. Weak corner
responses are removedwith the response threshold. Thus,
a high threshold would keep only the better features.

Observations:

1. For most of the experiments, Precision and Reliability
follow an inverse relationship: an increase in Precision
relates to a decrease in Reliability. This phenomenon
can also be observed in previous experiments. This phe-
nomenon occurs, because an increase in Precision is
the result of the removal of unstable and confusing
matches. However, removing many matches leads to no

matches for some of the images, resulting in decreased
Reliability.

2. The parameter variations provide an easy way to find an
optimal parameter value for which Precision and Relia-
bility have desired values. For example, an octave value
of 4 would provide high Reliability with moderate Pre-
cision for BRISK.

3. The values close to 26 yield a peculiar nature of CEN-
SURE. A line threshold greater than 26 drastically
reduces the Reliability, while a high response threshold
of 26 increases both the Precision and Reliability. This
phenomenon is partially supported in [11].

4. Finally, there are two peaks in the Reliability for FAST.
High thresholds generally prevent detection of feature
points and increase precision. As discussed, this should
reduce the Reliability as well. However, this situation
may be a result of the fundamental way FAST works.
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Table 10 Mean execution time(s) for each pair of detector and descrip-
tor (in seconds)

BRIEF BRISK FREAK ORB SIFT SURF

BRISK 0.26 0.30 0.29 0.21 17.94 2.13

CENSURE 0.37 0.34 0.36 0.32 3.77 0.74

FAST 0.25 0.25 0.26 0.19 2.17 0.51

MSER 1.21 1.26 1.47 1.14 16.46 2.93

ORB 0.26 0.22 0.33 0.20 46.62 4.24

SIFT 0.57 0.56 0.59 0.55 3.03 0.92

SURF 0.62 0.78 0.75 0.60 14.99 2.51

The threshold is used to compare each surrounding pixel
to the center pixel to decide, based on an entropy, whether
the center pixel is a corner or a regular pixel. Based on
the threshold, the surrounding pixels are put into three
groups: darker, similar, or brighter. The entropy relation is
based on the relation of the center pixel to the surrounding
pixels. Thus, the way the surrounding pixel is related can
either increase or decrease the entropy and mark the cen-
ter pixel as a corner or a regular pixel. For the test images
in this study, threshold values of 20 and 45 possibly pro-
vide more information for the center pixel and improve
the performance. Of course, the performance depends on
the illumination variations of the images. For ALOI, the
center object is highly illuminated while the outside pix-
els are totally dark. It is possible that if other datasets are
used, the Reliability graph may not have the same peaks.

An extensive study comparing the parameters of each
technique can be a very interesting independent subject. The
variation of the Precision andReliability for different types of
transformation may also be useful for related research. Due
to the limited space of this work, we conclude the parameter
variation experiment here and keep these additional studies
for future work.

4.6 Rank computation

The main objective for undertaking such extensive experi-
mentation is to compare the feature detection and/or descrip-
tion techniques. Due to the unavailability of detectors or
descriptors for a single technique, comparisons cannot take
place by straight-forward comparison on the performance of
each technique. Instead, comparisons are conducted for each
pair of detectors and descriptors, and the results are tabulated
in Tables 10 and 11. The term “method” represents a com-
bination of a detector and a descriptor, similar to Sect. 4.4.
For comparison, five types of metrics are available: Puta-
tiveMatch Ratio, Precision,Matching Score, Reliability, and
Mean Execution Time. TheMean Execution Times are listed
in Table 10. Individual metric ranks for each transformation

Table 11 Average ranks for the compared combinations of detectors
and descriptors across all transformations

BRIEF BRISK FREAK ORB SIFT SURF

BRISK 10 6 4 15 16 17

CENSURE 7 10 11 8 3 23

FAST 2 6 5 7 1 23

MSER 17 10 11 19 18 21

ORB 17 10 9 13 17 14

SIFT 19 22 20 12 8 24

SURF 15 11 10 15 16 21

are easy to compute. However, a single rank based on all
metrics over all transformations would be beneficial.

In view of the above, a ranking methodology has been
adopted from Goyette et al. [17]. Although it was devel-
oped for change detection, we have found the methodology
equally useful for ranking detectors and descriptors based on
metric values on transformations. The procedure for ranking
is provided below:

1. For method m (representing a combination of a detector
and a descriptor) with transformation value e and metric
t , find the positional rank Pm,e,t by sorting the metric
values (a high value indicates better positional rank for
the PutativeMatch Ratio, Precision,Matching Score, and
Reliability while a low value indicates better positional
rank for mean execution time).

2. Find the average rank of m for transformation e, over all
metrics: Rm,e = 1

Nt

∑
t Pm,e,t . Here, Nt represents the

number of metrics.
3. Also, compute the average rank of m for metric t , over

all transformations: Rm,t = 1
Ne

∑
e Pm,e,t . Here, Ne rep-

resents the number of transformations.
4. Determine the positional rank of each methodm for each

transformation e based on the value of Rm,e, by sort-
ing Rm,e in ascending order (low Rm,e indicates better
positional rank).We do not use simple position in assign-
ing positional ranks. instead, the same positional rank is
assigned if two subsequent ranks have very similar values
within a certain threshold T . Thus, the positional ranks
begin with 1 and increase only when two subsequent
ranks have a difference of more than T . The positional
rank is represented as Pm,e. Similarly, positional ranks
from Rm,t are represented as: Pm,t . The choice of T
requires explanation. T cannot be a constant value, as
the variance of distribution for Rm,e or Rm,t may not
be equal. Thus, two values may be far apart yet sim-
ilar for one of the distributions, while two very close
values may require separation for the other distribution.
Thus, T needs to depend on the variance and, specifi-
cally, the SD of the distribution. For the rankings, we
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choose T = 0.05 × SD. A smaller multiplication factor
is chosen so as to satisfy a stringent similarity criteria.
With higher values of the factor, more methods will be
assigned similar ranks while lower values would separate
them. Thus, the choice would also depend on the appli-
cation. Here, we show the effect for only one value due
to limited space.

5. Find the average rank across transformations: Rm =
1
Ne

∑
e Pm,e. Here, Ne represents the number of trans-

formations.
6. Finally, determine Pm , the positional rank across trans-

formations by sorting Rm in ascending order.

To evaluate themethods, the positional average ranksPm,t

for each metric across all transformations, and average posi-
tional ranks Pm across all transformations are provided in
Fig. 3j and Table 11, respectively. According to Table 11,
FAST+SIFT and FAST+BRIEF are ranked on top. This is
strange for FAST+BRIEF, because neither FAST nor BRIEF
has good invariance against higher degree of transformations.
However, according to the consolidated results in Fig. 3,
although their ranks are not the best for blurring, scaling, or
rotation in terms of Precision, their combination has achieved
a higher level of consistency for most of the transformations
and for the rest of the metrics, accounting for their ranking.
FAST+FREAK has also performed well. This leads to the
observation that the feature detector makes a significant con-
tribution to the performance of the pair. It may not be clear
from Fig. 4 (first column) that how the descriptor limits the
performance of the detectors, as the descriptor is responsible
for extracting highly invariant features from detected feature
points; however, a detector that detects appropriate feature
points leads to a better detection. FAST detects a lot of fea-
ture points, out of which, some are stable and some are not.
As the number of stable feature points is also high, it leads to
a better overall performance. It can also be noted in Table 11
that a column summation would lead to a detector rank over
all descriptors, and a row summation would lead to a descrip-
tor rank over all detectors. Finally, the ranking can be made
different by weighing specific metrics and transformations
while taking the averages. Future work on ranking for spe-
cific applications and based on specializedmetricsmay prove
beneficial.

4.7 A practical scenario

This section reports a comparison of the combinations of
detectors and descriptors in a practical scenario. To limit the
amount of experimentation, only a few pairs of detectors
and descriptors are used. We have specifically used the uni-
fied pairs intuitively chosen in Sect. 4.3. Other choices are
equally applicable, and readers are encouraged to experiment

with other pairs. For this experiment, we have used the Kitti
Visual Odometry datasets developed by Geiger et al. [12].
The database information is briefly described below:

• Our goal is to extract themotion of amoving vehicle using
stereo images and recording the visual odometry.

• A standard station wagon is equipped with two high-
resolution color and grayscale video cameras to capture
images at a fixed interval.

• Stereo image datasets are captured by driving the vehicle
around the city of Karlsruhe, in rural areas and on high-
ways.

• Accurate ground truth positional data are captured using
a Velodyne laser scanner and a GPS localization system.

• The camera calibration is provided for each dataset.
• The first 11 sequences of the datasets have ground truth
odometry information. A total of 23,201 stereo frames are
used for the experiment.

• The datasets contain different image sizes (1241 × 376),
(1242×375), and (1226×370). More information can be
found on the referred web site.

The experiment is described in the following steps:

1. Detect feature points and extract descriptors in each stereo
pair.

2. Match the feature points using the brute-force method, as
in Experiment I.

3. Estimate the ego motion from the stereo pairs in current
time instances and in previous time instances, using the
five-step approach defined by Kitt et al. [24].

4. Match the estimated positions of the vehicle to the ground
truth to evaluate the performance of the compared pairs
of detectors and descriptors.

According to the above, the experiments are divided into
four steps. Step 1 corresponds to the main comparison of
the pairs of detectors and descriptors. Step 2 is similar
to the matching procedure used in Experiment I. Steps 3
and 4 require discussion. Kitt et al. [24] have designed
a visual odometry estimation procedure based on stereo
image sequences with uniform bucketing of image features,
the RANSAC-based outlier rejection scheme, and an iter-
ated sigma point Kalman filter-based ego motion extraction.
They also provide an implementation of the procedure on
their web site. We use their implementation for accurate
results for their datasets. The implementation details of the
approach are described in the reference and are not repeated
here.

In regard to step 1 of the experiment, sparse matching
results on stereo image pairs from the dataset are provided
in Fig. 6. As can be observed from the figure, the num-
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Fig. 6 Sparse matching results on a Kitti dataset image from sequence 03. The rows from the top represent the matching results for BRISK,
CENSURE+BRIEF, FAST+BRIEF, SURF+FREAK, MSER+BRIEF, ORB, SIFT, and SURF, respectively
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Fig. 7 Output egomotion of
sequence 08 from the Kitti
dataset. The plot provides the x
(horizontal motion in camera
plane) and z (motion towards
camera axis) values of the
camera ego motion. However,
the plotting has been conducted
against the X–Y axis with Y
representing the z (forward)
motion. The ground truth
motion is overlapped with the
output from CENSURE+BRIEF
and BRISK (color figure online)

Fig. 8 The comparison of
framewise positional error (log
of Euclidean distance)
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ber of detected features depends on the complexity of the
scene and the performance of the algorithm. Thus, a fair
comparison can be made of the performance when a com-
mon scene is used. Following steps 1–4, the positions of
the vehicle for each stereo pair can be estimated. The posi-
tions are found in meters with respect to the starting position,
i.e., the first stereo pair. The positions can be plotted on
an X–Y plane for visual inspection. Such a positional plot
for sequence 08 has been displayed in Fig. 7. In the fig-
ure, the ground truth data (in blue) have been overlapped
with the data from CENSURE+BRIEF (red), and BRISK
(green). The starting position is (0,0). CENSURE+BRIEF
and BRISK are taken as the two pairs for the positional

error extremas. As can be seen from Fig. 7, the output from
BRISK starts to deviate more from the ground truth com-
pared to CENSURE+BRIEF. In the end, the difference is
large due to the accumulation of errors for consecutive stereo
pairs.

The error needs to be quantified to compare the odometry
results with the ground truth data. The error metric used for
the experiment is given in Eq. 1.

err( f ) =
log (

√

((gt ( f, 1) − r( f, 1))2 + (gt ( f, 2) − r( f, 2))2)).

(1)
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Table 12 Average positional error for all sequences and the overall average

Methods 00 01 02 03 04 05 06 07 08 09 10 Overall average

BRISK 34.14 407.32 288.46 8.71 2.18 43.77 8.98 9.14 158.71 150.72 136.20 113.49

CENSURE+BRIEF 50.07 233.92 49.80 3.65 2.03 12.86 10.95 4.94 22.12 16.40 5.64 37.49

FAST+BRIEF 47.43 145.73 67.61 7.30 1.65 16.32 7.35 5.82 34.54 24.79 3.37 32.90

SURF+FREAK 27.54 162.48 56.67 4.67 3.11 11.54 7.22 4.56 28.02 17.21 3.10 29.65

MSER+BRIEF 49.95 710.86 41.48 5.58 2.55 44.64 14.67 9.01 38.95 147.95 24.99 99.15

ORB 36.52 307.70 53.68 11.15 6.96 41.54 20.31 8.09 52.04 65.72 11.02 55.88

SIFT 45.73 131.38 74.36 5.70 3.30 15.20 7.29 7.07 36.33 20.50 5.78 32.06

SURF 43.00 170.99 57.92 4.91 3.00 14.20 7.92 6.51 35.51 18.61 3.12 33.24

Table 13 Comparison of computational time for motion recovery

Methods Time for 50 frames Average time/frame

BRISK 87.98 1.76

CENSURE+BRIEF 23.78 0.47

FAST+BRIEF 74.46 1.49

SURF+FREAK 180.07 3.60

MSER+BRIEF 52.20 1.04

ORB 16.07 0.32

SIFT 172.93 3.46

SURF 791.45 15.83

Here, err( f ) is the error output for frame f . gt and r contain
the ground truth and resulting (x, y) position of the camera,
respectively. gt ( f, 1) and gt ( f, 2) represent the x and z val-
ues for frame f , respectively. This is similar for r( f, 1) and
r( f, 2). The logarithm has been taken to reduce the differ-
ences between errors, as some of the pairs of detectors and
descriptors have large ranges of errors. The positional error
and its deviation can be clearer with a plot of the error.

A plot of the positional error for sequence 00 is shown
in Fig. 8. The x-axis is the frame number, while the y-axis
represents err( f ), which is the logarithm of the Euclidean
distance in meters. To simplify the label notation, it is shown
as Positional Error. As evident from Fig. 8, SURF+FREAK
performs better than others with a low positional error, while
CENSURE+BRIEF and MSER+BRIEF have high ranges of
positional errors.

The average error per sequence and the average over all
sequences have been tabulated in Table 12. The combined
average shows that SURF+FREAK performs best among the
pairs, while BRISK has the highest error rate. The perfor-
mance cannot be properly judged based on a single sequence,
because the rates and ranks of the pairs vary considerably
with different types of images. However, a cumulative judge-
ment gives a better picture. Also, some pairs exhibit higher
positional errors. This is due to their inability to provide accu-
rate matching results for some of the frames. As the ego
motion is calculated based on the values of previous frame, a
wrong calculation on one frame can affect the calculations on

subsequent frames, resulting in higher cumulative positional
errors.

Finally, the computational time for 50 frames from
sequence 3 with an image resolution of (1242 × 375) has
been tabulated in Table 13, where the comparison frame-
work is implemented using C++ and run on a desktop PC
with 3.4GHz Intel Core i7-3770 CPU. The table provides
another side of the experiment. Although FREAK performs
best among the descriptors, computationally it does not yield
the benefit of speed,whileORBandCENSURE+BRIEFpro-
vide better choices.

5 Conclusion

The paper has conducted an extensive comparative study of
nine popular feature detectors and descriptors. The study has
made the following contributions: (1) the experiments pro-
vide a broader idea of the performance of feature detectors
and descriptors against several image transformations like
blurring, rotation, scaling, and viewpoint changes in varying
degrees; (2) cumulative comparisons of several transforma-
tions over a number of databases have been performed for
a total of 42 combinations of detectors and descriptors; (3)
a study on parameters has been carried out for three detec-
tors; (4) a statistical analysis has been conducted separately
for detectors and descriptors for four major transformations;
(5) a sparse matching-based application framework has been
established to verify the performances of some combinations
of detectors and descriptors in practical situations; and (6)
the rankings shown in the paper highlight the relative per-
formances of the detectors and descriptors and can be made
more application specific by adapting to suitable weighing
methods and thresholds.

Several observations were made during the study. Some
of the observations are new, while others conform to the pre-
vious studies. For example, the performance of BRIEF as a
descriptor has been properly established through a number
of experiments and also the overall ranking. This also res-
onates with the works of Heinly et. al. [20]. Also, SIFT has
shown the best performance with its own descriptor. How-
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ever, its descriptor has shown great performance when paired
up with the FAST detector. This is one of the new observa-
tions coming out from the study. Finally, ORB has shown a
reliable performance for most of the experiments, and hence,
is quite suitable for a number of vision related applications.

The last part of the work shows a practical evaluation of
feature detectors and descriptors in feature tracking. While
this study is beneficial for several practical scenarios, it also
highlights Reliability as one of the predominant challenges
of feature tracking. Minor loss of reliable tracking for a few
consequent frames can result in a large positional error.While
there are a number of methodologies available to recover
from such errors, such as Kalman filtering, or probabilistic
modeling, a reliable detector and descriptor combination can
improve the tracking accuracy by a large margin and restrain
the use of such additional methods. Thus, a measure like
Reliability is required for feature tracking.

Future work will include experiments with a broader vari-
ation of images, the inclusion of more feature detectors, and
a study on parameters for each detector and descriptor.
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