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Abstract The need for preservation of cultural heritage
has necessitated the research on digitally repairing the pho-
tographs of damaged monuments. In this paper, we first pro-
pose a technique for automatically detecting the cracked
regions in photographs of monuments. Unlike the usual
practice of manually selecting the mask for inpainting, the
detected regions are supplied to an inpainting algorithm.
Thus, the process of digitally repairing the cracked regions
that physical objects have, using inpainting, is completely
automated. The detection of cracked regions is based on com-
parison of patches, for which we use a measure derived from
the edit distance, which is a popular string metric used in the
area of text mining. Further, we extend this method to per-
form inpainting of video frames by making use of the scale-
invariant feature transform and homography. We consider the
camera to move while capturing video of the heritage site,
as such videos are typically captured by novices, hobbyists
and tourists. Finally, we also propose a video quality measure
to quantify the temporal consistency of the inpainted video.
Experiments have been carried out on videos captured from
the heritage site at Hampi, India.
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1 Introduction

Historic monuments and heritage sites across the world are
important sources of knowledge, depicting the evolution of
mankind. These are not only irreplaceable assets that sig-
nify the culture and civilization of the past, but also master-
pieces of accomplishments that symbolize the human poten-
tial. It is for this reason that globally many organizations
have taken up the initiative to safeguard and preserve the
heritage sites. Over the centuries, the heritage sites have wit-
nessed a number of natural calamities and sabotage, resulting
in their present ruined condition. Access to many such her-
itage sites is restricted, fearing the risk of further damage
by visitors. One may think of physically renovating the her-
itage sites to preserve them. However, the renovation may
not only pose danger to the undamaged monuments, but may
also fail to mimic the skilful work of history. It would be
interesting to have a heritage site reconstructed digitally, as
such a process avoids physical contact to the monuments.
The digitally reconstructed heritage site may then provide
an unrestricted access for viewing the monuments in their
entirety. Also, in today’s world, preservation of the digitally
reconstructed monuments would be inexpensive.

Digital reconstruction requires repairing of the damaged
regions in a plausible manner. This task can be achieved
using various inpainting techniques [4,9,10,33]. Given an
image and a region of interest in it, the task of an inpainting
process is to fill up the pixels in this region, in such a way that
either the original content is restored or the region is visually
plausible in the context of the image. Digital restoration of
the damaged regions in given images thus consists of two
steps:

(a) Selection/detection of the regions to be modified and
(b) Applying a suitable inpainting algorithm on these regions.
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Fig. 1 Auto-inpainting cracked regions. a Original image of a heritage scene. b Automatically detected cracked region using the proposed method
is shown in red colour. c Image obtained after inpainting the detected region

The process of selecting the regions to be inpainted is
usually subjective. One user may want some region of the
image to be modified, while another user may want to modify
another region in the same image. Hence, for an inpainting
algorithm, the regions to be inpainted are usually selected
manually. However, when looking at heritage monuments,
there is a consensus about the desire to view these in their
undamaged form. In particular, the damage involving cracked
regions diminishes the attractiveness of the monuments and
one would crave these to be seamlessly eliminated. One such
example is illustrated in Fig. 1.

The result of an inpainting algorithm is sensitive to the
selection of the region to be modified. The exact selected area
may vary for different users if the selection of cracked regions
in photographs of monuments is done manually. Therefore,
apart from being subjective, the process of selecting the
cracked regions is also an enervating task. This necessitates
an exploration for a technique that can automatically detect
the cracked regions in images of monuments, which is a crit-
ical and challenging problem for the success of digital recon-
struction of heritage sites [11,12,19]. An automatic detection
of cracked regions also proves useful in reconstruction and
repair of digitized 3D models. One can use these digitized
3D models for creating walk-through applications [3,20,40].
Furthermore, automatic detection of cracked regions will
facilitate inpainting to be performed on-the-fly for creating
efficient immersive navigation/digital walk-through systems.

This paper contributes by proposing a novel technique to
auto-inpaint photographs of damaged historic monuments
and its extension to inpaint videos. Note that the application
is to actually restore a heritage scene, i.e., digitally repair
cracks that physical objects have. Thus we are not talking
about image restoration, but about object completion. In other
words, unlike the techniques that detect an external damage
or defect due to alteration of a photograph, the proposed
method aims to detect and inpaint the cracked regions in the
photographed scenes/objects. The cracks could be developed
over a period of time due to environmental effects or due to
manual destruction. The paper also proposes a video quality

metric to measure the temporal consistency of the inpainted
video.

The detection of cracked regions uses similarity of non-
overlapping adjacent patches as a cue. In videos, the cracked
regions detected in a frame are inpainted and then tracked
across subsequent frames for maintaining the visual continu-
ity. Videos of heritage scenes captured with a moving cam-
era by novices, hobbyists and tourists usually contain rigid
objects. In such a situation, to track the detected cracked
regions in subsequent frames, we use homography [17] esti-
mated by matching scale invariant feature transform (SIFT)
keypoints [23].

The rest of the paper is organized as follows: Literature
review is presented in Sect. 2. Our proposed technique for
detecting cracked regions is discussed in detail in Sect. 3 and
its extension to inpaint videos is described in Sect. 4. The
proposed temporal consistency measure is given in Sect. 5.
The experimental setup and the reported results are given in
Sect. 6, followed by conclusion in Sect. 7.

2 Literature review

Over the past two decades, image inpainting has been an
active area of research. Techniques based on connecting level
lines [4,16,26,28,45,47], exemplar-based methods [9,10],
methods based on image gradients [33], probabilistic struc-
ture estimation [39], methods using depth and focus [27],
etc. have been influential. However, these methods are semi-
automatic, i.e. the regions to be inpainted are required to be
manually selected by the users.

The literature reports only a few inpainting techniques
that also facilitate the automatic detection of the regions to
be inpainted [1,7,42]. Chang et al. [7] proposed a method to
detect damage in images due to colour ink spray and scratch
drawing. Their method is based on the use of several filters
and structural information of damages. Tamaki et al. [42]
address the detection of visually less important string-like
objects that block user’s view of a discernible scene. Their
method, however, is restricted to the detection of only those
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occluding objects that are long and narrow and highly con-
trasted in intensity with respect to the background. Amano [1]
presents a correlation-based method for detecting defects in
images. This method relies on correlation between adjacent
patches for detection of defects i.e. small number of regions
disobeying an “image description rule”, complied by most
local regions. The method works well for detecting computer-
generated superimposed characters having uniform pattern.

All the above mentioned techniques are suitable for detect-
ing actual damage or alteration caused to a photograph. These
techniques do not address the identification of damage to the
objects or scenes that are photographed. In this direction Par-
mar et al. [31] proposed a technique which uses matching
of edge-based features with pre-existing templates to dis-
tinguish vandalized and non-vandalized regions in frontal
face images of monuments at heritage sites. However, their
inpainting results are highly dependent on the selected tem-
plates and their method is restricted to frontal face images
of monuments. The template creation of both vandalized and
non-vandalized regions may not be practically realizable for
such images and, therefore, the detection process may lead to
undesired results. Another method to identify and inpaint the
defaced regions in statues is proposed in [29]. The method
matches templates by comparing the texton features and is
again limited to frontal faces. Turakhia et al. [43] proposed
a method to automatically inpaint cracks in images of her-
itage monuments. Their method relies on edge detection and
tensor voting to detect cracks.

The technique proposed in [30] compares overlapping
adjacent patches for similarity. The patches are compared
in the singular value decomposition (SVD) domain and use
an image-dependent threshold to identify cracked regions.
However, overlapping patches make redundant comparisons
due to which implementation slows down. Recently, Cornelis
et al. [8] have proposed a method for virtual restoration of
paintings. The method is flexible as the user may set para-
meters to suit the input. However, it is suitable only for the
detection of fine cracks that appear on paintings.

Techniques for micro-crack detection in concrete can be
found in [2,34], but one may note that these require special
imaging conditions. The actual surface is polished, impreg-
nated with a special dye and then photographed using micro-
scope. In this way defects of material including micro-
cracks, transition zones, porous areas and air-bubbles are
highlighted, generating a high contrast image. A method for
crack detection in pavement images using tensor voting can
be found in the work by Zou et al. [48]. The performance
of their technique is heavily dependent on the accuracy of
generation of crack-pixel binary map that acts as an input to
the tensor voting framework.

For inpainting in videos, a method has been proposed by
Patwardhan et al. [32]. Their technique considers a static
background with a moving foreground, any of which could

fall under the region to be inpainted. First, the occluded fore-
ground patches are filled up using motion-inpainting. The
background patches which are visible in other frames are
then directly copied. Finally, any missing region is filled up
using the exemplar-based inpainting approach [10]. It may
be noted that, in this approach the users need to manually
specify the objects or regions that are to be inpainted. Also,
many constraints are placed on the camera motion.

3 Proposed approach for detection of cracked regions

Visual discontinuities like damaged regions in a pho-
tographed scene/object attract attention of the human visual
system. The cracked areas are the breaks splitting the objects
which were developed over a period of time due to nat-
ural calamities or manual destruction. Inpainting these shall
improve the visual appearance and enable one to view the
photographed scene/object in an undamaged form. Here, we
propose a novel technique for automatically detecting such
cracked regions.

Cracks are typically characterised by dark areas in an
image. These can be easily identified by human beings but
pose difficulty to computers. In trivial cases, simple thresh-
olding is sufficient for detecting the cracks. However, in gen-
eral, the subtle variation in pixel intensities makes it chal-
lenging to detect the cracked regions. In what follows, we
describe a method for crack detection by enhancing the dark
regions and comparing non-overlapping patches. The patches
are compared using a distance measure inspired from the edit
distance [44] which is successfully used in the area of text
mining for comparing strings. The distance measure is such
that it avoids penalizing trifle differences between the corre-
sponding pixels of the compared patches. The patch penalty
along with average edge strength within the patches is used
to detect the cracked regions. The proposed method is shown
in Fig. 2 and the steps involved are described as follows.

Fig. 2 Proposed approach for detecting the cracked regions
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(a) Input (b) Detection

Fig. 3 Proposed detection of cracked regions. The detected regions are
shown in red colour

(a) I0 (b) Iw

(c) I0 ∗ Iw (d) Iv

Fig. 4 Preprocessing of the input image shown in Fig. 3a

3.1 Preprocessing

Consider a normalized intensity image I0 of size M × N .
Since the cracked regions are dark, low-intensity pixels are
more likely to be part of a crack. A weight matrix Iw is
constructed such that dark pixels have higher weights, given
by,

Iw(x, y) = exp(−I0(x, y)), (1)

where (x, y) denote the pixel coordinates. The weights in
Iw are multiplied to the corresponding pixels in I0 and the
resulting image is eroded to obtain Iv . The erosion operation
is performed so that the narrow dark regions grow sizeably
for proper detection, which may otherwise remain undetected
during further processing. The results of preprocessing on the
input image shown in Fig. 3a are depicted in Fig. 4.

3.2 Comparing patches using tolerant edit distance

Since the cracked regions exhibit noticeable dissimilarity
with respect to the neighbouring regions, we intend to mark

Fig. 5 Comparison of a sum of absolute difference image, b sum of
squared difference image and c tolerant edit distance image It E D for
tolerance δt = 10. Patch size is 3 × 3. With the input image of size
684 × 912 we have It E D of size 227 × 303. Here, an enlarged, intensity
inverted version is shown for clarity

them out by comparing adjacent non-overlapping patches in
the image Iv . A simple method for comparison is to calcu-
late sum of absolute difference or sum of squared difference
(SSD) across corresponding pixels of the compared patches.
These measures are, however, sensitive to noise and may give
a high error even for visually similar patches, which is evi-
dent in Fig. 5. Moreover, comparing a patch with its spatially
shifted version also gives high error, where in fact both are
visually identical. Thus, it becomes difficult to separate the
cracks from the surroundings using a threshold.

In string matching, shifting errors are overcome using the
edit distance [44]. Edit distance is a string metric that gives
the count of operations required for transforming one string
into another. The transformation is achieved by comparing
the characters of first string with that of the second string and
performing an appropriate operation. Here, the valid opera-
tions on comparing a pair of characters are insertion, deletion
and substitution. For example, consider two strings “books”
and “loops”. Here only two operations, both substitutions
viz. “b” to “l” and “k” to “p” are required for the transforma-
tion. Hence the edit distance between “books” and “loops”
is 2. Likewise, for transforming “books” to “oops” we again
require two operations, a deletion and a substitution, giving
an edit distance equal to 2.

Now, in order to compare patches, consider the lexi-
cographical ordering of two patches synonymous to two
strings with pixels synonymous to characters of the respec-
tive strings. If we calculate the edit distance, it would give
the number of operations required to transform one patch to
another. A smaller value of edit distance conveys less num-
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ber of operations and in turn higher similarity of the patches.
However, in the presence of noise, the edit distance will still
be higher. This is because the substitution operation penalizes
the mismatch of compared characters.

In order to overcome the noise sensitivity of edit distance, a
tolerance can be used for the substitution operation. In other
words, if the difference between the compared characters
falls within some tolerance value, the characters can be con-
sidered as equivalent and, therefore, no penalty is given by
the substitution operation. We call the edit distance with such
a substitution operation as tolerant edit distance (tED). The
tED thus gives a measure of similarity between patches, in
the presence of noise and spatial shift.

Algorithm 1 Calculation of tED
% For vectors v1 and v2 with lengths |v1| and |v2|, respectively and
δt as tolerance value,

% Initialization
D[0, 0] := 0
for i := 1 to |v1| do D[i, 0] := i end for
for j := 1 to |v2| do D[0, j] := j end for

% Required operation: substition, insertion or deletion
for i := 1 to |v1| do

for j := 1 to |v2| do
m1 := D[i − 1, j − 1] + C(v1[i], v2[ j], δt )

m2 := D[i − 1, j] + 1
m3 := D[i, j − 1] + 1
D[i, j] = min(m1, m2, m3)

end for
end for

% Result
return tED := D[|v1|, |v2|]

% Comparison function: C(v1[i], v2[ j], δt )

if |v1[i] − v2[ j]| ≤ δt then
C(v1[i], v2[ j], δt ) := 0

else
C(v1[i], v2[ j], δt ) := 1

end if

Consider patches of size m × n. Then, patch �p at pixel
p with coordinates (x, y) in the image Iv consists of pixels
with coordinates (X, Y ) such that X = x, . . . , x + m − 1
and Y = y, . . . , y + n − 1. For patch �p, the right and bot-
tom non-overlapping adjacent patches are �r and �s at pix-
els r = (x, y + n) and s = (x + m, y), respectively. Let the
pixels of patches �p, �r and �s be rearranged using lexi-
cographical ordering to form vectors vp, vr and vs , respec-
tively. We then calculate the tED between the pairs vp, vr

and vp, vs , the average of which is assigned to patch �p. The
tED is calculated using the edit distance calculation method
described in [44], along with a tolerance value1 δt , as given

1 The Details of selecting a suitable tolerance value δt are given
in Sect. 6.

in Algorithm 1. The tED is calculated for all the patches for
which there exist both left and bottom non-overlapping adja-
cent patches. The calculated tED values are used to form an
image It E D . The image It E D when multiplied with an edge
strength image makes it easier to detect the cracked regions.
Figure 5c shows the image It E D corresponding to image Iv
depicted in Fig. 4d.

3.3 Edge strength calculation

Since the cracked regions are distinct from their neighbouring
regions, these exhibit higher edge strengths. In order to give
preference to patches having higher edge strength, we now
calculate the normalized gradient magnitude of every pixel
in the image Iv . Let Ig represent the image consisting of nor-
malized gradient magnitudes. The gradient magnitude along
the boundary of the cracked regions may vary and, there-
fore, the pixels of a cracked region may not have a unique
edge strength. In order to assign a unique edge strength to
each cracked region, we intend to identify the regions dis-
connected by weak gradient magnitudes.

The boundary of the cracked region within a small (say
3 × 3) patch would be similar to a horizontal, vertical, diag-
onal or anti-diagonal line. Since the gradient of the boundary
could vary, within this small patch the pixels which are part
of a horizontal, vertical, diagonal or anti-diagonal line can
be detected using the corresponding line filters. To achieve
this, we use a set of four 3 × 3 line filters shown in Fig. 6.
By convolving the image Ig with these filters, the maximum
response at each pixel is recorded to create an image Im .

In all our experiments we observed that the pixels around
the boundary of the cracked regions have a low non-zero
response to the line filter. Because of this, the disjoint cracked
regions get connected while performing unique edge strength
assignment. To avoid such a situation, the filter responses
having lower values are required to be discarded using an
image dependent threshold. Since the response to line filters
is not expected to vary significantly for pixels in the cracked
regions, a threshold with respect to the maximum response
can be used. Setting the threshold to 0.1 times the maximum
response was found appropriate for discarding the low non-
zero responses which were responsible for connecting the
disjoint cracked regions. The image Im is thus refined by
discarding the low responses as follows:

0 0 0

1 1 1

0 0 0

(a)

1 0 0

0 1 0

0 0 1

(b)

0 1 0

0 1 0

0 1 0

(c)

0 0 1

0 1 0

1 0 0

(d)

Fig. 6 Line filters. a Horizontal, b main diagonal, c vertical and d
anti-diagonal
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(a) Initial Ig Im(b) Refined and closed

(c) Updated Ig (d) Ie

(e) Itw

Fig. 7 Edge strength Ie and weighted tolerant edit distance images Itw .
Sizes of Ig, Im and Ie are the same as that of I0, while Itw and It E D are
of the same size. Here, enlarged and intensity inverted version of Itw is
shown for clarity

Im(x, y) =
{

0, if Im(x, y) < 0.1 ∗ max(Im),

Im(x, y), otherwise.
(2)

The image Im is morphologically closed using a 3 × 3
structuring element and the connected components are
detected. The gradient magnitude image Ig is now updated
such that the highest gradient magnitude within each con-
nected component is assigned to all the pixels within the
respective component. Updating Ig in this manner enables
us to assign a unique edge strength value to distinct com-
ponents. The edge strength image Ie is now constructed by
taking the normalized sum of Ig and Iw.

As mentioned earlier, the image It E D when multiplied
with the edge strength image Ie makes it easier to detect the
cracked regions. Therefore, to every patch �p for which tED
is calculated, the average of edge strengths of all the pixels
within the patch �p, and its neighbours �r and �s , is cal-
culated and assigned as the edge strength. We now multiply
these edge strengths with the corresponding tED to form the
weighted tED image Itw shown in Fig. 7e.

3.4 Thresholding

By multiplying the tED image It E D with the edge strength
image Ie, we ensure that only strong crack-boundaries are
retained. Since the tED image It E D has higher values at the
boundary of the cracked regions, the same holds true for the
weighted tED image Itw. In order to fill the gap between the
boundaries, a morphological closing operation is applied on
Itw, with the size of the structuring element depending on
the size of Iv . The morphologically closed image Itw is now
multiplied with the resized version of the weight matrix Iw
to obtain an intermediate image Iwc.

In order to assign unique values to different objects for
segmentation in image Iwc, we employ the method used for
updating the gradient magnitude image Ig in the previous
Sect. 3.3. Thus, by convolving the intermediate image Iwc

with the line filters shown in Fig. 6, thresholding the maxi-
mum response image using Eq. (2) and finally applying the
morphological closing operation, we obtain the image Ic, in
which the connected components have unique values. The
image Ic obtained here is shown in Fig. 8a.

The higher the value of a region in Ic, the more likely it
is to be a crack. Thus, the regions with values lower than a
threshold T need to be discarded. Let V denote the array con-
sisting of k unique values in Ic arranged in ascending order.
Then, inspired by the threshold selection method for match-
ing SIFT features given in [23], we estimate the threshold T
based on Ic as given below in Algorithm 2.

Algorithm 2 Selection of threshold T
% Initialize
T := V [k]

% Update
for i := k − 1 to 1 do

if V [i] < 0.2 then
break

end if
if ( V [i]

V [i+1] ) ≥ ( V [i−1]
V [i] ) then

T := V [i]
end if

end for

% Result
return T

Once T is calculated, the image Ic is thresholded using
the following Eq. (3):

Ic(x, y) =
{

1, if Ic(x, y) ≥ T,

0, otherwise.
(3)

The thresholding operation is followed by morphological
closing to fill in gaps between nearby disjoint regions. Note
that binary image Ic of size ( M

m − 1)× ( N
n − 1) is obtained

by operating on m × n sized non-overelapping patches in
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(a) Ic (b) I1

Fig. 8 Initial detection. Image Ic is thresholded and mapped to Iv to
obtain I1. Size of Ic is same as that of It E D , while I1 and Iv are of the
same size. Here, enlarged, intensity inverted version of Ic is shown for
clarity

the grayscale image Iv of size M × N . Here, the patches
located at (A, B), (A, B + n) and (A + m, B) in the image
Iv are used to obtain the value at pixel (a, b) in the binary
image Ic such that A = (a − 1) ∗ m + 1, . . . , a ∗ m and
B = (b − 1) ∗ n + 1, . . . , b ∗ n. Since we need the output
binary image to have the same size as that of the input
grayscale image Iv , we need an inverse mapping from pixels
in Ic to corresponding patches in Iv . For this purpose, con-
sider an image I1 having size same as that of Iv i.e. M × N .
The inverse mapping is now obtained by copying the val-
ues from location (a, b) in the binary image Ic to locations
(A, B), (A, B + n) and (A + m, B) in I1. This inverse map-
ping is performed for all pixels in Ic to corresponding patches
in I1 which is of the same size as that of Iv .

A second morphological closing operation is now applied
on the binary image I1 to avoid splitting of the detected
region after the inverse mapping. The resulting initial detec-
tion binary image I1 is shown in Fig. 8b. This gives a good
estimate of the cracked regions. However, few pixels of
the cracked regions which are similar to the surroundings
may still remain undetected. Therefore, a refinement step is
required to achieve a more accurate detection.

3.5 Refinement

The method described above relies on patch-based compar-
ison. Therefore, the initial detection binary image I1 local-
izes the cracked regions. In order to perform a more accurate
detection at pixel level, sophisticated techniques are required
such that a binary segmentation-based refinement around the
initially detected regions can be performed. Interactive image
segmentation techniques based on curve evolution, graph-cut
optimization have been widely used for accurately detecting
roughly marked objects. The active contour method [6] and
grab-cut technique [35] require the user to manually select a
region around the object of interest. By optimizing an energy
function, the selection is refined to fit the object boundary.

The initially detected binary image I1, which is detected
automatically without any user interaction, can be used as

(a) If (b) If overlapped on input
image

(c) Inpainted image

Fig. 9 Refined detection. a Final detection binary image I f , b detected
regions overlapped on the input image, c inpainted result

input to the above mentioned interactive segmentation tech-
niques. For refining I1, we use the method based on active
contours,2 proposed in [6], to obtain the final detection binary
image I f . Figure 9a shows the final detection binary image
I f obtained on refining I1. The detected regions overlapped
on the input image are shown in Fig. 9b. In order to justify the
suitability of the proposed method for inpainting, we show
the inpainted result in Fig. 9c. For inpainting, we have used
the method proposed in [10].

4 Proposed approach for auto-inpainting in videos

In order to extend the proposed crack detection method for
auto-inpainting in videos, it would be intuitive to think of
performing frame-by-frame detection and inpainting. This
abstraction, however, in practice is a long-drawn-out process
as it does not exploit the inter-frame redundancy. Moreover,
in frame-by-frame processing, the pixels corresponding to
cracked regions detected in one frame may not map to the
pixels corresponding to the same cracked regions detected in
some other frame. This is because, there may be occlusion or
change in illumination across frames as the camera moves.
Hence, the proposed crack detection method, which relies
on properties of patches in the input frame, may not detect
the exact same pixels in the two frames. This leads to large
variations in the two inpainted frames for the same cracked
regions, given that the inpainting task is highly sensitive to the

2 For active contour segmentation technique, we have used the
implementation available at http://www.mathworks.in/matlabcentral/
fileexchange/23847-sparse-field-methods-for-active-contours.
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Fig. 10 Proposed approach for
detecting and inpainting the
cracked regions in video

pixels to be inpainted. Therefore, the auto-inpainted videos
created by detecting and inpainting cracked regions indepen-
dently in every frame, appear unstable and the effect of seam
becomes visible.

Alternatively, one may think of using motion as a cue
to track and inpaint the cracked regions across subsequent
frames. Motion estimation and compensation have been pop-
ularly used in video compression techniques [18,41]. Here
intermediate frames are generated using independent frames
and motion parameters. However, since these methods are
block based, their use to inpaint videos results in block-
ing artefacts. Moreover, such methods are computationally
expensive since the motion parameters are estimated inde-
pendently for each block. A frame-to-frame transformations
is, therefore, needed to track the damaged regions in subse-
quent frames for creating a seamlessly inpainted video.

Brown and Lowe [5] have suggested a method for auto-
matic image stitching, wherein transformation between the
images to be stitched is calculated by matching keypoints
invariant to rotation, scaling and view point. Here, the trans-
formation is considered to be projective or a homography
[17]. Since the videos captured at heritage sites usually con-
tain nearly planar rigid objects/scene with a moving cam-
era, we can consider the video frames to be images cap-
tured from different viewpoints. Hence, the transformation
between these frames can be represented by a homography.

In the proposed video inpainting method, we consider
pairs of temporally adjacent frames and use the correspond-
ing homography to track cracked regions from one frame to
another. The cracked regions are detected in reference frames
using the proposed method described in Sect. 3 and then
tracked to subsequent frames. Similarly, the detected cracks
are inpainted in the reference frames using the technique pro-
posed in [10] and then mapped to the tracked regions in the
subsequent frames. Note that the inpainting of video frames
cannot be done by simply copying objects visible in other
frames, as done in [32]. This is because, an object to be
inpainted in one frame also needs to be inpainted in other

frames as well, which mandates the use of a hole filling tech-
nique. The proposed approach for detecting and inpainting
the cracked regions in videos is shown in Fig. 10. The various
stages involved are described below.

4.1 Homography estimation

As already mentioned, two frames of a video can be consid-
ered as images captured from different viewpoints. A frame-
to-frame transformation between these frames can be esti-
mated in the form of homography by matching the SIFT
descriptors of keypoints in the two frames [17,22]. The
extraction of keypoints and corresponding SIFT descriptors3

is performed using the method given in [23]. The SIFT fea-
tures are robust to changes in contrast, illumination, rotation,
scaling and view point. Let the keypoint at location (x1, y1)

in the first frame match the keypoint at location (x2, y2) in
the second frame. For a set of such matching keypoints, the
homography matrix H obeys the following relation [17]:

⎡
⎣ x ′

2
y′

2
z′

2

⎤
⎦ = H

⎡
⎣ x1

y1

1

⎤
⎦ =

⎡
⎣ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦

⎡
⎣ x1

y1

1

⎤
⎦, (4)

where (x ′
2, y′

2, z′
2) are the homogeneous coordinates for the

point (x2, y2) in the second frame such that x2 = x ′
2

z′
2

and

y2 = y′
2

z′
2
, and H is a 3 × 3 non-singular matrix.

Using the set of matched keypoint locations, the homogra-
phy matrix H is estimated using Eq. (4) by setting z′

2 = 1, i.e.
setting the homogeneous coordinates (x ′

2, y′
2, z′

2)=(x2,y2,1).
Here, the random sampling consensus (RANSAC) algorithm
[15] is used to iteratively eliminate the keypoint matches that

3 An implementation for extraction and matching of SIFT keypoints and
corresponding descriptor is available at http://www.cs.ubc.ca/~lowe/
keypoints/.
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Fig. 11 Matching of SIFT
keypoints. a–b Two frames of a
video; c pairs of matching
keypoints shown by green
joining lines

do not agree with the estimate of homography matrix.4 Fig-
ure 11 illustrates the matching of SIFT keypoints between a
pair of video frames.

4.2 Reference frame detection

A reference frame is the one in which cracked regions are
detected independently. While capturing the video with a
moving camera, new cracked regions may appear. If the
cracked regions are detected in the first frame and tracked
across all subsequent frames, the new cracks that appear
as the camera moves will not be detected. Therefore, an
independent crack detection needs to be performed quasi-
periodically depending the camera movement. Thus, for fast
camera movement, the detection needs to be performed more
frequently, while for slow camera motion, a less frequent
detection is required. If the camera motion can be somehow
measured, an appropriate threshold can be set to declare an
incoming frame as a reference frame. An intuitive way to
quantify the camera motion is to calculate the magnitude of
translation.

The authors in [14,25] have shown that, given a homogra-
phy matrix, it can be decomposed to estimate the translation.
The decomposition yields four solutions in general out of
which only two are physically possible. However, each of
these solutions has the same magnitude of translation. We
make use of this information to detect the reference frame.
The solutions for decomposition5 of a homography H are
obtained using the method in [25].

Let t be the translation vector of one of the obtained solu-
tions such that t = [t1, t2, t3]T . Then the magnitude of trans-

lation is given by |t | =
√

t2
1 + t2

2 + t2
3 . Also, let δr be the

threshold for translation. Considering the first video frame
as a reference ref, a homography along with the translation
between the reference and every incoming frame fi is calcu-
lated. If the corresponding translation is greater than δr , then
the frame fi is declared as a reference. For the new incom-
ing frames, fi becomes the reference frame. This method

4 For fitting homography to keypoints using RANSAC, we used
the code available at http://www.csse.uwa.edu.au/~pk/Research/
MatlabFns/Robust/ransacfithomography.m.
5 For decomposition of estimated homography, we have used the imple-
mentation available at http://cs.gmu.edu/~kosecka/examples-code/
homography2Motion.m.

is given in Algorithm 3. The translation threshold δr is set
experimentally6 and depends on the frame size.

Algorithm 3 Detection of reference frame
% Let the i th video frame be denoted by fi such that the video consists
of total k frames. If Ri := 1 then fi is a reference frame.

% Initialization
R1 = 1; Ri := 0 ∀i := 2, . . . , k.
ref := f1. {reference frame.}

% Update Ri
for i := 2 to k do

suc := fi . {subsequent frame.}
Estimate translation t between ref & suc.
if |t | ≥ δr then

Ri := 1.
ref := suc.

end if
end for

% Result
return Ri ∀i := 1, . . . , k.

4.3 Tracking and inpainting cracked regions across frames

Every incoming frame is tested for being a reference frame.
When a reference frame is encountered, the cracked regions
that appear in this frame are detected using the proposed
method described in Sect. 3. If the incoming frame is not
a reference frame, then a homography with respect to the
previous frame is estimated using the procedure described
in Sect. 4.1. The estimated homography is used to track the
cracked regions across these frames. For a reference frame,
pixels in the newly detected cracked regions are indepen-
dently inpainted using the technique proposed in [10], while
for a non-reference frame, the inpainted regions from the pre-
vious frame are copied to the tracked regions. The tracking
of cracked regions is described below.

For a pair of temporally adjacent frames fi−1 and fi , the
crack pixels at locations (xi , yi ) in fi can be tracked using
the corresponding locations of crack pixels (xi−1, yi−1) in
fi−1 as given below in Eq. (5):

⎡
⎣ x ′

i
y′

i
z′

i

⎤
⎦ = Hi

⎡
⎣ xi−1

yi−1

1

⎤
⎦ , (5)

6 The details of selecting threshold δr are given in Sect. 6.
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Fig. 12 Tracking detected regions using the estimated homography
matrix. a Detected damaged regions in the frame fi−1; b frame fi ; c
tracked cracks in the frame fi . Green lines show the mapping of few

points on the boundary of crack regions, while the detected and tracked
cracked regions using SIFT features are shown in red

where (x ′
i , y′

i , z′
i ) are the homogeneous coordinates for the

point (xi , yi ) in frame fi such that xi = x ′
i

z′
i

and yi = y′
i

z′
i
, and

Hi denotes the homography between frames fi−1 and fi .
Here, it may happen that estimated coordinates xi and

yi are real numbers. These are rounded to the nearest inte-
gers so that we have the tracked pixels at integer locations.
For simplicity, let the integer-rounded location coordinates
be denoted by (xi , yi ). Setting these damaged locations to 1
with all other locations set to a value of 0, a crack-mask con-
sisting of 1’s and 0’s is constructed for the frame fi . Since
homography introduces geometric distortions, it may happen
that some narrow cracked regions detected in the frame fi−1

may become disjoint regions in the newly constructed crack-
mask, which leads to some part of the cracked regions being
missed out. In order to avoid this, we use morphological clos-
ing on the crack-mask to connect the nearby disjoint regions.
The crack-mask now gives the locations of the tracked cracks
in the frame fi that correspond to the crack regions detected
in the frame fi−1. Figure 12 illustrates the tracking of cracked
regions.

We now describe how an incoming frame is processed.
The first video frame f1 being a reference frame is inde-
pendently inpainted after identifying the cracked regions in
it. Any subsequent incoming frame fi may or may not be a
reference frame depending on the camera motion. For both
cases, we use the above procedure along with Eq. (5) to track
cracked regions from fi−1 to fi . Let Pi denote the binary
image consisting of the cracked regions tracked from frame
fi−1 to frame fi .

In case fi is not a reference frame, it can be inpainted
by filling up the location of the tracked crack pixels (i.e.
{(xi , yi )|Pi (xi , yi ) = 1}). This is achieved by simply copy-
ing the values of the corresponding pixels from the inpainted
version of the previous frame fi−1. Here, the frames are tem-
porally adjacent and the change in intensity of correspond-
ing pixels is negligible. Also note that the selected trans-
lation threshold δr is small enough so that the change in
intensity of corresponding pixels across frames within this
translation is also negligible. Thus, the copying of pixel
values across subsequent frames does not introduce any
seam.

Since the homography matrix Hi is non-singular, its
inverse H−1

i exists. Therefore, the crack pixels at locations
(xi , yi ) and the corresponding locations (xi−1, yi−1) from
the previous frame fi−1 must be related as follows:
⎡
⎣ x ′

i−1
y′

i−1
z′

i−1

⎤
⎦ = H−1

i

⎡
⎣ xi

yi

1

⎤
⎦ , (6)

where (x ′
i−1, y′

i−1, z′
i−1) are the homogeneous coordinates

for the point (xi−1, yi−1) such that xi−1 = x ′
i−1

z′
i−1

and

yi−1 = y′
i−1

z′
i−1

. Since xi and yi were rounded to integers, we

may obtain the corresponding xi−1 and yi−1 as real num-
bers. The intensity at this location is obtained by considering
the first-order integer location neighbourhood and using the
bilinear interpolation. It may be noted that inpainting per-
formed in this manner across is almost insensitive to small
changes in the morphologically closed crack-mask due to
directly copying the values from the previously inpainted
regions.

If the incoming frame fi is a reference frame, then crack
detection is performed independently. However, since only
the newly appearing cracked pixels need to be inpainted, we
first calculate the binary image Pi consisting of the cracked
regions tracked from the previous frame fi−1. Now, let Bi

denote the crack detected binary image corresponding to fi

obtained using the method described in Sect. 3. Then, the
binary image Qi consisting only the newly appearing cracked
pixels is given by

Qi (xi , yi ) =
{

1, Bi (xi , yi ) − Pi (xi , yi ) > 0,

0, otherwise.
(7)

Now, an initial inpainting of the reference frame fi is
achieved using the inpainted version of the previous frame
fi−1 and the binary image Pi . The locations (xi−1, yi−1)

in frame fi−1 corresponding to the pixels at locations
{(xi , yi )|Pi (xi , yi ) = 1} are obtained using the relation in
Eq. (6). Similar to inpainting a non-reference frame as
described above, the pixels at locations (xi , yi ) are filled up
by copying values from the corresponding pixels at locations
(xi−1, yi−1) to obtain the initial inpainted image. The newly
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Algorithm 4 Video frame inpainting
% Let the i th video frame be denoted by fi such that the video consists
of total k frames. Ri := 1 denotes fi is a reference frame. Let Ai
denote the inpainted version of frame fi .

% Initialization
Detect damaged regions in f1 to get B1.
Set threshold δ0 := |B1|.
Perform inpainting on f1 using B1 to get A1.

% Loop
for i := 2 to k do

Extract SIFT descriptors and homography Hi .
Calculate Pi by tracking damaged regions.
if Ri := 1 then

Detect damaged regions in fi to get Bi .
Calculate Qi using Pi and Bi .
if |Qi | :≤ δ0 then

Calculate Si using Pi and Bi .
Fill pixels {(xi , yi )|Si (xi , yi ) = 1} using Ai−1 to get initial
inpainted image init.
Perform inpainting on init using Qi to get Ai .

else
Ri := 0, Ri+1 := 1.
Fill tracked pixels {(xi , yi )|Pi (xi , yi ) = 1} using Ai−1 to get
Ai .

end if
else

Fill tracked pixels {(xi , yi )|Pi (xi , yi ) = 1} using Ai−1 to get Ai .
end if

end for

% Result
return Inpainted frames Ai ∀i := 1, . . . , k.

detected cracked pixels given by the binary image Qi are the
holes to be filled up in the initially inpainted image. The final
inpainted version of the reference frame is obtained using
the method proposed in [10] considering the initial inpainted
image and the binary image Qi as inputs. An example for
performing inpainting when a new reference frame appears
is shown in Fig. 21 along with the experimental results in
Sect. 6.

It may happen that a detected reference frame is highly
blurred or noisy due to an unstable camera motion. In such
a case, the crack detection method described in Sect. 3 may
fail and detect many regions as cracked. This can be avoided
by simply thresholding the number of pixels in the newly
detected cracked regions. Assuming that the number of pixels
in the cracked regions do not vary substantially across the ref-
erence frames or whenever a new reference frame is encoun-
tered, we set a threshold δ0 based on the number of cracked
pixels detected in the first frame. This is a valid assumption
because, while the camera moves and new cracked regions
enter a frame, some pixels of the previously detected cracked
regions may exit. Also, even if the cracked pixels do not
exit, we expect only few new cracked pixels to enter. Let
|Qi | denote the number of newly detected cracked pixels in

the frame fi and |B1| denote the number of cracked pixels
detected in the first frame. Then, for a reference frame fi , if
we have |Qi | > δ0 (such that δ0 = 0.5 ∗ |B1|), the frame fi is
treated as a non-reference frame and inpainting is performed
accordingly. Also, the frame fi+1 is set as a reference frame,
provided fi is not the last frame. The complete procedure for
inpainting video frame is given in Algorithm 4.

5 Measuring temporal consistency of the inpainted
video

The quality of a processed image/video is usually quantified
in terms of some metric by comparing the image/video with
an undistorted source. For example, in video compression,
the quality of a video reconstructed at a receiver is measured
by comparing it with the original video transmitted by the
sender. However, in some applications the original source or
reference is not available for comparison. Video inpainting
is one such application in which missing regions in frames
need to be filled up and hence a reference for comparison
is not available. In such a case, the objective quantification
of the video quality is based on no-reference video quality
assessment (NR VQA) metrics viz. blockiness, blurriness
and sudden local changes [13,36,37].

Blockiness gives the measure of spurious blocking arte-
facts usually present at the boundary of coding blocks. The
higher the value, the higher the strength of blocking arte-
facts. Blurriness gives a measure of blur in the frame. It is
estimated based on the average width of strong edges in the
frame. The more the blur, the higher the average width and
the higher the blurriness value. The blockiness and blurriness
are measured individually for each video frame. For a video
sequence, the blockiness and blurriness values are taken as
the average over all the frames. The calculation of blockiness
and blurriness metrics has been proposed in [13].

The sudden local changes across the video frames can
be measured using the technique given in [36,37]. Here, the
average value of the discrete cosine transform (DCT) coeffi-
cients of every coding block in the difference frame is calcu-
lated. Mean of the highest 10 % average DCT coefficients is
considered as the measure of sudden local change between
two frames. For a video sequence, these values are averaged
over all the pairs of adjacent frames.

The techniques described above estimate the video qual-
ity directly from the processed video, without considering
the unprocessed video. However, in an application like video
inpainting, some information from the unprocessed video
also can be used to quantify the quality of the processed video.
The temporal consistency measure between two videos that
we introduce here indicates similarity of between two videos
in terms of the optical flow. Intuitively, to obtain a temporally
plausible inpainted video, the optical flow of the input video
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(a) (b) (c)

Fig. 13 Optical flow between a pair of temporally adjacent frames in
a input video, b auto-inpainted video using proposed method, c video
generated by auto-inpainting every frame independently. The optical

flow in a and b appear to be similar while some haphazard orientations
in the optical flow are observed in (c)

should be maintained on inpainting, provided the objects to
be inpainted are stationary. In other words, the optical flow
between every pair of temporally adjacent frame in input and
corresponding pair of frames in the inpainted video should
be similar. The inpainting of only the stationary object is
a valid assumption for inpainting videos of heritage monu-
ments. With this cue, the optical flow between every pair of
adjacent frames in both input as well as inpainted video can
be estimated and used to quantify the quality of the inpainted
video. An example of temporal consistency in terms of opti-
cal flow is shown in Fig. 13. The optical flow can be estimated
using the classic method proposed by Lucas and Kanade [24].

Let L0(i) and D0(i) be the magnitude and direction,
respectively, of the optical flow between the i th and i + 1th
frames in the input video. Similarly, let L1(i) and D1(i) be
the magnitude and direction, respectively, of the optical flow
between the i th and i + 1th frames in the inpainted video.
Both L and D are vectorized using lexicographical order-
ing. Then, the temporal consistency between i th and i + 1th
frames is given by the Pearson’s correlation coefficient r(i)
as follows: [21]

r(i) = 1

l − 1

l∑
j=1

(K j
0 (i) − K̄0)(K j

1 (i) − K̄1)

σ0(i)σ1(i)
, (8)

where K can be the vector of magnitude (L) or direction (D),
K̄ and σ are mean and standard deviation of K , respectively,
and l represents the length of K . The value r(i) = +1 indi-
cates perfect positive correlation, r(i) = −1 indicates perfect
negative correlation while r(i) = 0 for un-correlated data.
The average value of r for all the pairs of adjacent frames
then gives the temporal consistency between the input and
the inpainted videos. A higher average value of r indicates
higher temporal consistency.

6 Experimental results

In this section, we present the results of our proposed tech-
nique for automatic detection and inpainting of crack-like

damaged regions, on images and videos captured by us, as
well as on images downloaded from various sources on the
Internet. These images and videos contain cracked regions in
the form of breaks splitting the objects/scene. The inpainted
results show the effectiveness of our proposed methods.

For all our experiments to detect cracked region, we have
considered patches �p of size 3 × 3. Patches of larger sizes
did not significantly improve the detection. In calculation of
the tolerant edit distance, we have set the tolerance value
δt = 10 based on the following experimentation. We consid-
ered many patches at the boundary of known cracked regions
from a number of images, along with their corresponding
non-overlapping adjacent patches. For each of these patches,
we calculated the tolerant edit distances by varying values of
δt . Curves of tolerant edit distance versus normalized number
of patches, corresponding to every δt were plotted, as shown
in Fig. 14. Since the patches belonged to crack boundaries, we
have higher edit distance (i.e. δt = 0). Increasing the value of
δt reduces the sensitivity and, therefore, only large variations
can be detected. It is observed that for δt = 10, sufficiently
large variations were detected and further increasing δt did
not change the curve significantly.

The size of structuring element for morphological closing
used for filling in large gaps depends on the image size. For an
image of size M × N , the size of structuring element is taken
to be (max (M, N )/360+ min (M, N )/270). In the proposed
method for auto-inpainting in videos, the frames are of size
270 × 360. However, the method also works on videos with
larger frames at an expense of increased computations.

Detection of the reference frames is based on the transla-
tion threshold δr . For frames of size 270 × 360, we conducted
the following experiment. We manually selected two frames:

(1) the frame in which a cracked region has completely
appeared and

(2) the frame in which the next cracked region begins.

For every such pair of frames, translation was calculated.
Conducting the experiment on a number of videos revealed
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Fig. 14 Curves for varying
tolerance values δt
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that the average value of δr = 25 can be used to detect new
incoming cracked regions. However, the problem with this
threshold is that, while a part of the newly appearing cracked
region gets detected successfully, the remaining part which
appears in subsequent frames is never detected. For success-
ful detection of the complete cracked regions, a lower value
of threshold is required. By decreasing the threshold from
25 to 0, we found δr = 5 to be an appropriate threshold for
successful detection of the complete cracked regions. Also
note that the intensity change in corresponding pixels across
the frames within this small translation is negligible. This
enables a seamless copying of pixel values when propagat-
ing the already inpainted cracked regions across subsequent
frames. We have, therefore, set δr = 5.

We present the results of our experiments on heritage site
images in Figs. 15, 16, 17, 18, 19 and 20. The input images
shown in Figs. 15a, 16, 17, 18, 19a are of size 684 × 912,
while the image in Fig. 20a is of size 400 × 300. We also
show a comparison of the results obtained by our crack detec-
tion method with those obtained using the techniques pro-
posed by Amano [1], Turakhia et al. [43] and Padalkar et al.
[30]. It may be noted that the results for the technique in [1]
are the best possible, obtained after fine-tuning the parame-
ters.

The images considered for our experiments contain
cracked objects/scenes for which no ground truth is available
that would show how these objects/scenes existed in their
entirety. We, therefore, rely on the observations made by vol-
unteers and consider the regions selected by them as cracked
regions that need to be inpainted. In order to determine the
suitability of the resulting detection for the use by inpainting
algorithms, the popularly known recall and precision metrics
are considered. These are defined as follows [48]:

Recall =
∣∣Ref

⋂
Dect

∣∣
|Ref| ,

Precision =
∣∣Ref

⋂
Dect

∣∣
|Dect| . (9)

Here, Ref are the pixels declared to be in the cracked regions
by volunteers and Dect are the pixels detected by the algo-

rithm to be in the cracked regions. However, for providing
an insight into the robustness of our proposed algorithm,
we use a slightly different precision measure defined as
Precision = |Refconn|

|Dect| . Here, Refconn are those pixels detected
in Dect that are connected to cracked regions in Ref. Higher
value of Precision indicates that a large number of detected
pixels indeed belong to the cracked regions, while a higher
value of Recall indicates that a large number of cracked pix-
els have been detected. For a mask to be suitable for use in
an inpainting algorithm, it is, therefore, desired to have the
Recall value nearer to 1. On the other hand, a low value for
Precision indicates that pixels more than the desired ones
have been detected, which increases the area to be inpainted.
If a large number of pixels other than the desired target pixels
get detected, then many regions in the image get inpainted
unnecessarily, which may lead to undesired results. Never-
theless, if a mask with low Recall value is used for inpainting,
information from the undetected target regions may propa-
gate inside the detected regions, leading to poor inpainting
results.

The performance of the proposed method in comparison
with the techniques suggested by Amano [1], Turakhia et al.
[43] and Padalkar et al. [30] in terms of Recall, Precision and
execution time, for input images in Figs. 15, 16, 17, 18, 19
and 20 is given in Table 1. The results in Figs. 15, 16, 17, 18,
19 and 20 show that the cracked detection results obtained
using our proposed technique are similar to the detection
performed manually by volunteers. This is also evident from
the performance Table 1 where we observe that both Recall
and Precision values for the detected cracked regions in most
of these images are nearer to 1, indicating that the desired
crack pixels have been detected with high accuracy.

On the other hand, the technique proposed in [1] results
in detection of either

(a) pixels that do not correspond to the desired cracked
regions or

(b) too many pixels around the desired cracked regions.

The later leads to unnecessary inpainting of many regions,
modifying the large undamaged regions in the image, which
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(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 15 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 16 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 17 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively
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(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 18 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 19 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively

(a) Input (b) Amano [1] (c) Turakhia et al. [43] (d) Padalkar et al. [30] (e) Proposed method

(f) Selection by volun-
teers

(g) Inpainting of (b) (h) Inpainting of (c) (i) Inpainting of (d) (j) Inpainting of (e)

Fig. 20 Detection and inpainting of cracked regions in images. The detected regions in b–e and the manual selection by volunteers in f are shown
in red colour. Results of inpainting the regions detected in b–e are shown in g–j, respectively
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Table 1 Performance comparison in terms of Recall, Precision and execution time

Input # Crack pixels Amano [1] Turakhia et al. [43] Padalkar et al. [30] Proposed technique

Recall Precision Time (sec) Recall Precision Time (sec) Recall Precision Time (sec) Recall Precision Time (sec)

Fig. 15a 3,494 0.000 0.000 109.0 0.988 0.887 21.65 0.953 0.743 04.51 0.990 1.000 03.62

Fig. 16a 3,819 0.918 0.370 13.02 0.970 0.390 22.22 1.000 0.422 14.54 0.969 1.000 03.32

Fig. 17a 5,162 0.046 0.068 302.3 0.749 0.678 23.29 0.863 0.392 12.77 0.840 0.997 05.02

Fig. 18a 2,997 0.783 0.737 12.06 0.999 0.728 25.16 0.921 0.678 04.80 0.990 0.997 03.49

Fig. 19a 5,435 1.000 0.579 19.01 0.974 0.974 29.92 0.987 0.857 04.89 0.985 0.996 04.77

Fig. 20a 2,276 0.966 0.949 1500 0.932 0.949 13.64 0.808 0.898 05.23 0.952 0.989 07.44

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n) (o)

Fig. 21 Inpainting a newly appearing reference frame fi . a, b, c
show frames fi−2, fi−1 and fi , respectively, while the cracked regions
selected by volunteers corresponding to these frames are shown in d,
e, f ; the cracked regions corresponding to a, b, c tracked from detected
cracks in previous frames are shown in g, h, i; independent crack detec-
tion in fi is shown in j, while the newly appearing cracked pixels in

j with respect to i are displayed in k; the inpainted versions of fi−2,
fi−1, fi obtained by copying pixels from respective previous inpainted
frames are shown in l, m, n; final inpainted version of fi obtained after
inpainting the newly detected pixels given in k is shown in o. Note that
the crack visible near the right side in n is filled in o by independently
inpainting the pixels shown in k

is not desirable. Moreover, it slows down the inpainting as
the inpainting process is computationally expensive. The
cracked regions are clearly visible in the inpainted results
shown in Figs. 15f, 17g and 18g, while the results shown
in Figs. 16g, 19g and 20g display poor inpainting. Although
the technique in [1] is good for detecting any alteration to
the photograph (like overlay text), our proposed method is
fast and more suitable when it comes to detection of cracked
in the photographed scene/object. The results of our crack
detection method are at par with and in some cases better
than those obtained using the techniques in [30] and [43].
Yet, our method is significantly faster, more accurate and the
inpainted results are convincing.

In videos, an example of inpainting whenever a new refer-
ence frame is encountered is shown in Fig. 21. We present the
results of the proposed automatic crack inpainting method on
videos captured by us from the heritage site at Hampi, Kar-
nataka, India. These results are shown in Figs. 22, 23, 24
and 25. Although the videos were captured at only one her-

itage site, the proposed method is generic and should work for
other heritage site videos. As an example, we show one more
result on a video of the McConkie Ranch Petroglyphs near
Vernal, Utah, USA, in Fig. 26 that demonstrates the effec-
tiveness of the proposed method. This video was uploaded
by an enthusiast on the popular streaming site YouTube [38].

From the reported results, we can observe that by using
the proposed method the detected cracked regions are effec-
tively tracked and plausibly inpainted to get a seamless video.
Although there exist approaches for semi-automatic inpaint-
ing of unwanted elements in videos [46] and video inpaint-
ing under constrained camera motion [32], it may be noted
that, to the best of our knowledge, there does not exist any
approach that demonstrates automatic video inpainting under
unconstrained camera motion with no moving objects. Our
approach handles these cases and we, therefore, do not show
any comparison with the approaches in [32,46]. However,
we do compare the proposed approach with auto-inpainting
done in a frame-by-frame fashion. The results of the proposed
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Fig. 22 Result of
auto-inpainting cracked regions
in video frames. a Input frame
sequence, left most frame is the
reference frame; b cracked
regions auto-detected in the
reference frame tracked using
SIFT and homography; c
inpainted frames corresponding
to frames in b; d cracked regions
auto-detected independently in
each frame; e inpainted frames
corresponding to frames in d

(a)

(b)

(c)

(d)

(e)

Fig. 23 Result of
auto-inpainting cracked regions
in video frames. a Input frame
sequence, left most frame is the
reference frame; b cracked
regions auto-detected in the
reference frame tracked using
SIFT and homography; c
inpainted frames corresponding
to frames in b; d cracked regions
auto-detected independently in
each frame; e inpainted frames
corresponding to frames in d

(a)

(b)

(c)

(d)

(e)

method, along with auto-inpainting performed individually
on every frame are shown in Figs. 22, 23, 24 and 25.

An objective comparison of the proposed method with
frame-by-frame auto-inpainting is presented in Table 2. A
video with higher blockiness and blur has higher value of the
blockiness and blurriness metrics [13], respectively. For a
temporally plausible video, the sudden local change [36,37]
is less while the temporal consistency measure has a higher
value. From Table 2 we observe that the proposed method
performs better in terms of blockiness, sudden local change
and temporal consistency, which is in accordance with the
results in Figs. 22, 23, 24 and 25.

The implementation details along with the timing infor-
mation are presented as follows: for images, the calculation
of tolerant Edit Distance which involves comparison of many
patches is implemented in C (Matlab MEX) while the rest of

the method is implemented in Matlab. For a 684 × 912 sized
image, the initial detection takes about 1.5 s on a Windows
7 Professional operating system with 32 bit Intel Core i5,
2.5GHz CPU and 3 GB RAM. The remaining detection time
is spent on refinement, which again is a C (Matlab MEX)
implementation. However, in the same setup, the process
for inpainting (for example the regions detected in Fig. 15e)
requires about 37 s, which is also a C (Matlab MEX) imple-
mentation. Therefore, at present the implementation does not
execute in real-time and needs to be performed offline. In
future, if a faster inpainting method is developed, the imple-
mentation could run in nearly real-time.

In the case of videos also the implementation is done
in Matlab. Here, the cracked region detection in reference
frames and independent inpainting of newly detected cracked
pixels are achieved with the C (Matlab MEX) implementa-
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Fig. 24 Result of
auto-inpainting cracked regions
in video frames. a Input frame
sequence, left most frame is the
reference frame; b cracked
regions auto-detected in the
reference frame tracked using
SIFT and homography; c
inpainted frames corresponding
to frames in b; d cracked regions
auto-detected independently in
each frame; e inpainted frames
corresponding to frames in d

(a)

(b)

(c)

(d)

(e)

Fig. 25 Result of
auto-inpainting cracked regions
in video frames. a Input frame
sequence, left most frame is the
reference frame; b cracked
regions auto-detected in the
reference frame tracked using
SIFT and homography; c
inpainted frames corresponding
to frames in b; d cracked regions
auto-detected independently in
each frame; e inpainted frames
corresponding to frames in d

(a)

(b)

(c)

(d)

(e)

tion used above for images. For frames of size 270 × 360 (for
example the video corresponding to Fig. 22), the inpainting
of reference frames takes nearly 1.5–2 s. This includes the
time required for tracking and inpainting from previously
detected cracked regions (about 0.6 s) followed by initial
detection, refinement and inpainting of the newly detected
cracked pixels. The first frame, however, required about 4.5
s for initial detection, refinement and inpainting. Note that
the size of the frame here is 270 × 360. Subsequent (non-
reference) frames take about 0.08 s to complete tracking and
inpainting from previously detected cracked regions, which
is very fast when compared to independent inpainting of each
frame. In this case, a considerable amount of time is required
for the inpainting operation in reference frames. In real-time,
this introduces a lag in the video.

Although major computational steps are implemented in
C (Matlab MEX), our implementation is not an optimized
version but a proof of concept of the proposed method. Hav-
ing said that, we are optimistic about an implementation for
mobile phones to use the method directly at heritage sites.
This is because of the quick inpainting of subsequent (non-
reference) frames. A real-time on-the-fly inpainting of the
video frames could be possible with an implementation opti-
mized for the hardware of mobile phones.

7 Conclusion

In this paper we have presented a technique that can auto-
matically detect cracked regions and use these regions for
inpainting. By comparing non-overlapping patches using the
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Fig. 26 Result of
auto-inpainting cracked regions
in video frames. a Input frame
sequence, left most frame is the
reference frame; b cracked
regions auto-detected in the
reference frame tracked using
SIFT and homography; c
inpainted frames corresponding
to frames in b; d cracked regions
auto-detected independently in
each frame; e inpainted frames
corresponding to frames in d

(a)

(b)

(c)

(d)

(e)

Table 2 Comparison of proposed method with frame-by-frame auto-inpainting, in terms of blockiness (A), blurriness (B), sudden local change
(C) and temporal consistency in optical flow’s direction (D) and magnitude (E)

Proposed method Frame-by-frame auto-inpainting

Video A B C D E A B C D E

Video 1 (Fig. 22) 0.1125 5.1020 1.0737 0.9529 0.7501 0.1296 5.1073 1.3126 0.5064 0.2496

Video 2 (Fig. 23) 0.1034 4.1261 1.5459 0.6671 0.9604 0.1270 4.2057 1.9463 0.1978 0.4148

Video 3 (Fig. 24) 0.2975 4.3382 1.2908 0.9979 0.5424 0.2292 4.3666 1.5322 0.1862 0.6134

Video 4 (Fig. 25) 0.1453 4.6306 1.8454 0.8173 0.9678 0.1473 4.7223 2.0858 0.2009 0.8946

Video 5 (Fig. 26) 0.1582 3.1264 2.0559 0.5821 0.9654 0.1662 3.1586 2.7768 0.2301 0.9381

tolerant edit distance measure introduced here, our method
initially localizes the cracked regions. Further, using an
active contour-based segmentation, the results are refined
to accurately detect the cracked regions. Based upon this
crack detection method, we build up a method that can be
used to automatically detect and inpaint cracked regions in
videos captured at heritage sites. The new cracked pixels
detected in the reference frames are inpainted independently.
The homography estimated between two temporally adjacent
frames is used to track and the cracked regions in subsequent
frames. The reported results suggest that the method can be
used to auto-inpaint the cracked regions captured in heritage
site videos. In future, we aim to extend this detection method
to perform simultaneous on-the-fly detection and inpainting,
which can be used to build an immersive walk-through sys-
tem.
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