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Abstract An approach is presented for estimating a set
of interdependent homography matrices linked together by
latent variables. The approach allows enforcement of all
underlying consistency constraints while accounting for the
arbitrariness of the scale of each individual matrix. The input
data is assumed to be in the form of a set of homography
matrices individually estimated from image data with no
regard to the consistency constraints, appended by a set of
error covariances, each characterising the uncertainty of a
corresponding homography matrix. A statistically motivated
cost function is introduced for upgrading, via optimisation,
the input data to a set of homography matrices satisfying
the constraints. The function is invariant to a change of any
of the individual scales of the input matrices. The proposed
approach is applied to the particular problem of estimating
a set of homography matrices induced by multiple planes in
the 3D scene between two views. An optimisation algorithm
for this problem is developed that operates on natural under-
lying latent variables, with the use of those variables ensur-
ing that all consistency constraints are satisfied. Experimen-
tal results indicate that the algorithm outperforms previous
schemes proposed for the same task and is fully comparable
in accuracy with the ‘gold standard’ bundle adjustment tech-
nique, rendering the whole approach both of practical and
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theoretical interest. With a view to practical application, it is
shown that the proposed algorithm can be incorporated into
the familiar random sampling and consensus technique, so
that the resulting modified scheme is capable of robust fitting
of fully consistent homographies to data with outliers.
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1 Introduction

Estimation of a single homography matrix from image mea-
surements is an important step in 3D reconstruction, mosaic-
ing, camera calibration, metric rectification, and other tasks
[24]. For some applications, like non-rigid motion detec-
tion [25,46] or enhanced image warping [20], a whole
array of homography matrices are required. The matrices
have to be intrinsically interconnected to satisfy consistency
constraints representing the rigidity of the motion and the
scene. Moreover, the matrices have to be collectively multi-
homogeneous—rescaling any individual matrix should not
affect the projective information contained in the whole
matrix set. A key problem in estimating multiple homography
matrices is to enforce the underlying consistency constraints
while accounting for the arbitrariness of the individual scales
of the matrices. The need to cope with scale indeterminacy
has not been particularly emphasised previously, but that it
is an important aspect of the problem will be apparent from
our study.

As a rule, the consistency constraints are available only in
implicit form. The conventional approach to cope with such
constraints is to evolve a derivative family of explicit con-
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straints. The new constraints are typically more relaxed than
the original ones. Adhering to this methodology, Shashua and
Avidan [40] have found that homography matrices induced
by four or more planes in the 3D scene between two views
span a four-dimensional linear subspace. Chen and Suter [4]
have derived a set of strengthened constraints for the case
of three or more homographies in two views. Zelnik-Manor
and Irani [46] have shown that another rank-four constraint
applies to a set of so-called relative homographies gener-
ated by two planes between four or more views. These latter
authors have also derived constraints for larger sets of homo-
graphies and views.

Once isolated, the explicit constraints can be put to use in
a procedure whereby first individual homography matrices
are estimated from image data, and next these matrices are
upgraded to matrices satisfying the constraints. Following
this pattern, Shashua and Avidan as well as Zelnik-Manor
and Irani used low-rank approximation under the Frobenius
norm to enforce the rank-four constraint. Chen and Suter
enforced their set of constraints also via low-rank approxima-
tion, but then employed the Mahalanobis norm with covari-
ances of input homographies. All these estimation procedures
involve input matrices coming with specific scale factors. The
underlying error measures are such that a change of scale
factors may a priori result in a different set of estimates.
Furthermore, the output matrices satisfy only the deriva-
tive constraints, so their perfect consistency is not guaran-
teed. Another limitation of the existing methods is that each
requires a certain minimum number of input homography
matrices and none can work with only two such matrices.

This paper presents an alternative approach to estimat-
ing interdependent homography matrices which ensures that
all implicit constraints are enforced and that the final esti-
mates are unaffected by any specific choice of individual
scale factors. A statistically motivated cost function is pro-
posed for upgrading, via optimisation, the input set of homog-
raphy matrices to a set satisfying all possible constraints. The
function is scale change insensitive. To achieve high estima-
tion accuracy, it incorporates the covariances of the input
matrices, and this yields, upon optimisation, a statistically
sound approximated maximum likelihood fit to the data. The
utility of the function is demonstrated in a specific appli-
cation, namely the problem of estimating a set of homog-
raphy matrices induced by multiple planes in a 3D scene
between two views. A variant of the Levenberg–Marquardt
algorithm for that problem is developed that is specifically
tailored to a parametrisation of the homography matrices via
natural underlying latent variables. The use of the parametri-
sation ensures that all consistency constraints are satisfied.
A notable contribution of this work is the development of
a procedure for determining initial values of the latent vari-
ables, so that the optimisation process seeded with these val-
ues converges to a useful local minimum. Importantly, the

procedure works already for two input homography matri-
ces, hence enabling the overall estimation scheme to work
for two input homography matrices or more. The initialisa-
tion procedure is in fact of wider interest, as it is suitable
for initialising other methods that operate on the same latent
variables, including the canonical bundle adjustment tech-
nique for maximum likelihood estimation. The results which
are contained in the experimental section of the paper val-
idate the approach and show that the proposed estimation
method outperforms existing schemes, achieving high levels
of accuracy on par with the ‘gold-standard’ bundle adjust-
ment technique. While the newly introduced method, like all
other aforementioned methods, is not truly robust to outliers,
it can—as it turns out—be made robust via incorporation into
a bigger robust fitting scheme. A particular scheme of this
kind forms a final contribution of the paper, and one of prac-
tical utility. It is a modification of the well-known random
sampling and consensus (RANSAC) technique specialised
to facilitate robust fitting of fully consistent homographies
to data with outliers. The proposed estimation method enters
the modified RANSAC as a computationally efficient tool
for generating fully consistent homographies.

Earlier results informing this work appeared in [15]. The
present findings are part of a broader, ongoing study, one of
whose recent contributions is [42].

2 Multi-projective parameter estimation and latent
variables

We first formulate the problem of estimating a set of inter-
dependent homographies as a problem in multi-projective
parameter estimation [14]. A general multi-projective para-
meter estimation problem involves a collection X1, . . . , XI

of k × l matrices envisaged as data points, and a collection
�1, . . . ,�I of k× l matrices treated as parameters. Each Xi

is assumed to be known only up to an individual multiplica-
tive non-zero factor. The �i ’s are subject to constraints and
are meant to represent improved versions of the Xi ’s. With
the k × I l matrix X = [X1, . . . , XI ] denoting the composite
datum and the k × I l matrix 2 = [�1, . . . ,�I ] denoting
the composite parameter, the problem under consideration is
to fit 2 to X so that the constraints on 2 are met. Exempli-
fying this general problem is the following specific problem
of interest:

Problem 1 Fit a set of 3 × 3 matrices, representing planar
homographies engendered by various planes in a 3D scene
under common projections on two images, to a given set of
3× 3 matrices.

To see how the multi-projective framework applies here,
consider a pair of fixed cameras with camera matrices
K1R1[I3,−t1] and K2R2[I3,−t2]. Here, the length-3 trans-
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lation vector tn and the 3×3 rotation matrix Rn represent the
Euclidean transformation between the nth (n = 1, 2) camera
and the world coordinate system, Kn is a 3× 3 upper trian-
gular calibration matrix encoding the internal parameters of
the nth camera, and, for each m = 1, 2, . . . , Im denotes the
m × m identity matrix. Suppose, moreover, that a set of I
planes in a 3D scene have been selected. Given i = 1, . . . , I ,
let the i th plane from the collection have a unit outward nor-
mal ni and be situated at a distance di from the origin of the
world coordinate system. Then, for each i = 1, . . . , I , the
i th plane gives rise to a planar homography between the first
and second views described by the 3× 3 matrix

Hi = wi A+ bv�i , (1)

where

A = K2R2R−1
1 K−1

1 , wi = n�i t1 − di ,

b = K2R2(t1 − t2), vi = K−�1 R1ni . (2)

We note that in the case of calibrated cameras when one may
assume that K1 = K2 = I3, t1 = 0, R1 = I3, R2 = R,
system (2) reduces to

A = R, wi = −di ,

b = t, vi = ni , (3)

with t = −Rt2, and equality (1) becomes the familiar direct
nRt representation

Hi = −di R + tn�i
(cf. [2,33]). We stress that all of our subsequent analysis
concerns the general case of possibly uncalibrated cameras,
with A, b, wi ’s and vi ’s to be interpreted according to (2)
rather than (3).

Let H = [H1, . . . , HI ] be the composite of all the
homography matrices in question. Then, with a = vec(A),
where vec denotes column-wise vectorisation [32], η =
[a�, b�, v�1 , . . . , v�I , w1, . . . , wI ]�, and

5(η) = [�1(η), . . . ,�I (η)], �i (η) = wi A+ bv�i , (4)

H can be represented as

H = 5(η). (5)

The components of η constitute latent variables that link all
the matrices �i (η) together and provide a natural parametri-
sation of the set of all H’s. Since η has a total of 4I + 12
entries, the set of all matrices of the form 5(η) has dimen-
sion no greater than 4I+12. A more refined argument shows
that the set of all 5(η)’s has in fact dimension equal to 4I +7
[12,13]. Since 4I + 7 < 9I whenever I ≥ 2, it follows that

H resides in a proper subset of all 3× 3I matrices for I ≥ 2.
Thus, the requirement that H take the form as per (5) when-
ever I ≥ 2 can be seen as an implicit constraint on H, with
the consequence that the Hi ’s are all interdependent. Suppose
that an estimate X = [X1, . . . , XI ] of H has been generated
in some way. For example, for each i , Xi might be an estimate
of Hi individually obtained from image data. The estimation
problem at hand is to upgrade X to 2 = [�1, . . . ,�I ] so
that 2 = 5(η) holds for some η and 2 is close to X in a
meaningful sense. The essence here is to find a criterion and
effective means for selecting an appropriate η.

3 Approximate maximum likelihood cost function and
scale invariance

The general problem of fitting 2 to X with constraints
imposed on 2 is best considered as an optimisation prob-
lem. Since the input matrices are known only up to individual
scales, the output matrices should also be determined only
to within individual scales. This can be achieved through the
use of multi-homogeneous cost functions. A function J is
multi-homogeneous if

J (×λ2) = J (2)

for each length-I vector λ = [λ1, . . . , λI ]� with non-zero
entries, where ×λ2 = [λ1�1, . . . , λI �I ]. It is clear that if
a function is multi-homogeneous, then it is minimised not
only at a single 2, but also at all composite multiples ×λ2.

To describe a multi-homogeneous cost function relevant
to our problem, for each i = 1, . . . , I , let

θ i = vec(�i ), xi = vec(Xi ),

with each vector having length kl. Referring to the Xi ’s via
their vectorisations, suppose that associated with each xi is a
kl × kl covariance matrix �xi . Our cost function will incor-
porate the �xi’s, assuming that they all take a specific form
that we elaborate on next.

If the parameters of a model are represented by a vector
to within a scale factor, then the covariance matrix of any
particular estimate of the parameter vector is not uniquely
determined. To see why, recall first that covariances are aver-
ages of squared perturbations of specific instantiations of a
model. If the model is over-parametrised, involving some
redundant parameters like an indeterminate scale, then the
parameter vector is not identified by the model and pertur-
bations in the model space do not translate unequivocally
into perturbations in the parameter space. A way of deal-
ing with this problem is to restrict the parameter space—that
is, to identify the model—by imposing equality constraints.
Such an imposition is known as gauge fixing, with the term
“gauge” referring to any particular set of constraints. The
covariances evolved with the aid of gauge-fixing rules are
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Fig. 1 Resolving scale and sign indeterminacy in the derivation of
homography covariances by imposing the normalisation constraint
‖x‖ = 1. The antipodal points x and −x encode one and the same
homography. The true perturbations �x and −�x of the homography
are approximated to the first order by their respective images �x′ and
−�x′ via the orthogonal projections onto the tangent space to the unit
sphere at x and −x. Information about the spread of varying �x is car-
ried by the restriction of the covariance matrix �x to the tangent space
at x. The restriction of �x to the orthogonal complement of the tangent
space at x, which is the space spanned by x, vanishes and carries no
information about the spread of the �x’s. Likewise for �−x. Since the
spread of the �x’s is the same as the spread of the −�x’s, it follows
that �x = �−x

gauge dependent—they can look very different for different
gauges [27,43]. In what follows, we eliminate the scale inde-
terminacy by imposing the normalisation constraint ‖x‖ = 1
(see Fig. 1). Under this condition, the covariance matrix of
an estimate x is such that �x = �±‖x‖−1x and, moreover,
�x = P⊥x �0

xP⊥x , where P⊥x is the kl × kl symmetric pro-
jection matrix given by P⊥x = Ikl − ‖x‖−2xx� and �0

x is
a kl × kl symmetric matrix that we shall refer to as a pre-
covariance matrix. An argument leading to the above asser-
tion, together with explicit expressions for �0

x in two spe-
cific cases, can be found in Appendices A and B; see also
[3,28]. As P⊥x x = 0 and x�P⊥x = 0�, the matrix �x satisfies
�xx = 0 and x��x = 0�, and, in particular, is singular.
In line with this, the companion information matrix associ-
ated with x, given by the Moore–Penrose pseudo-inverse �+x
of �x, also satisfies �+x x = 0 and x��+x = 0�, and is
singular.

We take for our approximate maximum likelihood (AML)
cost function the squared Mahalanobis distance between
any aggregate {εi‖θ i‖−1θ i }Ii=1, εi = ±1, of normalised,
arbitrarily signed variants of the θ i ’s and any aggregate
{ε′i‖xi‖−1xi )}Ii=1, ε′i = ±1, of similar variants of the xi ’s,
with the matrices �+xi

serving as weights

JAML(�) =
I∑

i=1

(
εi‖θ i‖−1θ i − ε′i‖xi‖−1xi

)�

×�+
ε′i‖xi‖−1xi

(
εi‖θ i‖−1θ i − ε′i‖xi‖−1xi

)
.

On account of �+xi
xi = 0, x�i �+xi

= 0�, and �xi
=

�±‖xi‖−1xi
, the expression for the function does not depend

on any particular choice of the signs εi and ε′i and reduces to

JAML(�) =
I∑

i=1

‖θ i‖−2θ�i �+xi
θ i .

Note that, for each i = 1, . . . , I , multiplying θ i by a non-
zero scalar λi results in θ�i �+xi

θ i being multiplied by λ2
i and

‖θ i‖−2 being multiplied by λ−2
i , so that ‖θ i‖−2θ�i �+xi

θ i

remains intact. As a result, the AML function is multi-
homogeneous.

The label “approximate” in the name of JAML refers to
the fact that JAML is an approximation—to within an addi-
tive constant—of another maximum likelihood-based cost
function, namely the exact maximum likelihood (EML) cost
function that underpins the bundle adjustment method for
estimating the θ i ’s directly from image data. The EML cost
function, encompassing the so-called reprojection error [24,
Sect. 4.2.3], has for its composite argument the principal
parameters θ i , i = 1, . . . , I , alongside some additional nui-
sance parameters. The approximation leading from the EML
cost function to the AML cost function involves, among
other things, the elimination of the nuisance parameters (cf.
[8,10,11,26,31,35]).

With the significance of the AML cost function elucidated,
when one now takes into consideration the constraints on 2,
the corresponding constrained minimiser of JAML can be
viewed as a statistically well-founded estimate of 2.

4 Rank-four constraint enforcement

This section will depart from the primary topic of the paper,
which is the upgrading of multiple homographies using
the AML cost function, to shed light on an earlier multi-
homography updating technique commonly known as rank-
four constraint enforcement. The material here is fairly tech-
nical and can be skipped without detriment to the under-
standing of the rest of the paper. The purpose of the depar-
ture is to reconcile an apparent contradiction: while we
stress the importance of explicitly modelling the estima-
tion process within a multi-projective framework, rank-four
constraint enforcement—which is known to work—appears
at first glance to be outside of this framework. The princi-
ple underpinning rank-four constraint enforcement is that a
collection of five or more interrelated homography matri-
ces resides in an at most four-dimensional subspace. In its
standard form, the technique enforces the rank-four con-
straint linearly via a singular value decomposition (SVD)
based projection on a linear space of lower dimension. The
standard form can naturally be extended to a whole family
of weighted variants. It is not immediately clear how all of

123



Multiple homography estimation 405

these, including the standard form, can fit into the category
of multi-projective techniques. Settling this question seems
necessary, given the multi-projective standpoint advocated in
this paper. Below, we reveal that all versions of the method,
despite their linear allure, are in fact fully compatible with
the multi-projectiveness paradigm.

Given a composite of homography matrices H =
[H1, . . . , HI ] satisfying (5), let H be the 9× I matrix given
by

H = [h1, . . . hI ], hi = vec(Hi ). (6)

Since, for each i = 1, . . . , I ,

hi = wi vec(A)+ vec(bv�i ) = wi a + (I3 ⊗ b)vi , (7)

where ⊗ denotes Kronecker product [32], it follows that

H = ST, (8)

where S is the 9× 4 matrix given by

S = [I3 ⊗ b, a]
and T is the 4× I matrix given by

T =
[

v1 . . . vI

w1 . . . wI

]
.

An immediate consequence of (8) is that H has rank at most
four. The requirement that H should have rank no greater than
four places a genuine constraint on H, and hence also on H,
whenever I ≥ 5. This constraint is exactly the rank-four con-
straint of Shashua and Avidan mentioned in the Introduction.
In accordance with what has already been pointed out, when
I ≥ 5, the rank-four constraint can be enforced linearly,
by employing SVD, in an infinite numbers of ways. Specif-
ically, with every length-I vector p = [p1, . . . , pI ]� with
non-zero entries, each having the meaning of an importance
weight, there is associated a specific enforcement procedure.
It needs to be immediately added that the procedures asso-
ciated with different p are not necessarily different. If p and
p′ are proportional up to individual signs of the entries of
p and p′, that is, if pi = λεi p′i with εi = ±1 for some
λ �= 0 and all i = 1, . . . , I , then the corresponding proce-
dures are equivalent in the sense that the sets of respective
output homographies (but not necessarily the sets of output
homography matrices) are equal. If p and p′ are not propor-
tional up to individual signs of the entries of p and p′, then
the respective procedures are, as a rule, different.

Before describing the enforcement procedures in detail,
we shall need to identify the inverse mapping r to the map-
ping H 	→ H defined in (6). It is readily verified that H can
be expressed in terms of H as

H = r(H) = (vec(H))(3)

Here, given an n × m matrix S and a positive integer r that
divides m, S(r) denotes the r -wise vector transposition of S,
that is, the n× (m/r) matrix obtained by performing a block
transposition on S, with blocks comprising length-r column
vectors [19].1 In MATLAB parlance,

H = r(H) = reshape(H, 3, 3I ).

With these preparations in place, given X = [X1, . . . , XI ]
with I ≥ 5, let Fp(X) be the 9× I matrix given by

Fp(X) = [p1‖x1‖−1x1, . . . , pI ‖xI ‖−1xI ].
Let Fp(X) = UDV� be the SVD of X, with D being a 9× I
diagonal matrix with main diagonal entries d11, . . . dqq , q =
min(9, I ), and, correspondingly, let Fp(X)4 = UD4V� be
the 4-truncated SVD of Fp(X), with D4 resulting from D by
replacing the entries d55, . . . , dqq by zero. Define the rank-

four correction ̂2rank4,p of X by

̂2rank4,p =
[
̂�rank4,p,1, . . . , ̂�rank4,p,I

]
= r

(
UD4V�

)
.

The procedure whereby X gets upgraded to ̂�rank4,p consti-
tutes the SVD-based method for enforcing the rank-four con-
straint associated with p. The default version of the method
corresponds to p having all entries equal to 1.

We claim that, for any p, the mapping that sends X to
̂2rank4,p has the following property: If X is replaced by×λX
with λ being a length-I vector with non-zero entries, then
̂2rank4,p is replaced by ×σ̂2rank4,p for some length-I vec-
tor σ that depends only on λ. This property implies that the
homographies described by the ̂�rank4,p,i ’s are well defined
as functions of the homographies described by the Xi ’s,
providing thereby a desired reconciliation with the multi-
projectiveness paradigm.

It is clear that Fp(X) is multi-positively invariant: if
λ = [λ1, . . . , λI ]� has all entries positive, then Fp(×λX) =
Fp(X).Consequently, ̂2rank4,p is also multi-positively invari-

ant. We shall next show that ̂2rank4,p is multi-sign equivari-
ant: if ε = [ε1, . . . , εi ]� is such that εi = ±1 for each
i = 1, . . . , I , then

̂2rank4,p(×εX) = ×ε̂2rank4,p(X). (9)

1 The following examples illustrate the logic behind the definition of
vector transposition:

⎡

⎢⎢⎢⎢⎢⎣

a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62

⎤

⎥⎥⎥⎥⎥⎦

(2)

=

⎡

⎢⎢⎣

a11 a31 a51
a21 a41 a61
a12 a32 a52
a22 a42 a62

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎢⎢⎢⎣

a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62

⎤

⎥⎥⎥⎥⎥⎦

(3)

=

⎡

⎢⎢⎢⎢⎢⎣

a11 a41
a21 a51
a31 a61
a12 a42
a22 a52
a32 a62

⎤

⎥⎥⎥⎥⎥⎦
.
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To this end, we introduce E = diag(ε1, . . . , εI ). Note that
E� = E and E2 = II , so in particular E is orthogonal:
EE� = II . Note also that

Fp(×εX) =
[

p1ε1‖x1‖−1x1, . . . , pI εI ‖xI ‖−1xI

]
= Fp(X)E.

Clearly,

Fp(X)E = UDV�E = UDV�E� = UD(EV)�.

As V and E are both orthogonal, EV is orthogonal too, and
so UD(EV)� is the SVD of Fp(X)E. Consequently,

(Fp(X)E)4 = UD4(EV)�.

Taking into account that UD4(EV)� = UD4V�E� =
UD4V�E, we conclude that

r
(

UD4V�E
)
= ×εr

(
UD4V�

)
,

which establishes (9). Being multi-positively invariant and
multi-sign equivariant, the mapping X 	→ ̂2rank4,p has the
desired property—indeed, a moment’s reflection shows that
̂2rank4,p(×λX) = ×σ̂2rank4,p(X), where σ=[sgn(λ1), . . . ,

sgn(λI )]�. The claim is established.
We remark that the argument used above can be readily

employed to verify that if p and p′ are such that p′i = λεi pi ,
where λ �= 0 and εi = ±1 for each i = 1, . . . , I , then
the procedures X 	→ ̂2rank4,p and X 	→ ̂2rank4,p′ are equiva-
lent. Indeed, it is immediate that Fp′(X) = Fp(×ξX), where

ξ = [sgn(λ)ε1, . . . , sgn(λ)εI ]�. Hence ̂2rank4,p′(X) =
×ξ̂2rank4,p(X), and this in turn implies that the sets of homo-

graphies defined by ̂2rank4,p(X) and ̂2rank4,p′(X) coincide.
One consequence of the assertion just established is that to
parametrise the enforcement procedures X 	→ ̂2rank4,p(X),
it suffices to consider weighting vectors p with all positive
entries summing up to 1.

We finally point out that it is a separate question as to
what p should be chosen to get a statistically most accurate
enforcement procedure. A particular value of p, depending
on X, can be inferred from considerations contained in [46]
(reflecting the fact that interrelated homography matrices Xi

can always be brought to the form Xi = λi (A + bv�i ); see
below), but it is conceivable that alternative choices leading
to better results exist.

5 Cost function optimisation

After a detour into rank-four constraint enforcement, we now
turn our attention to the question of optimisation of functions
for which the AML cost function is a prototype—all this, of
course, with a view to optimising the AML cost function
itself.

Let J be a cost function for fitting 2 to X of the form

J (2) =
I∑

i=1

‖θ i‖−2θ�i Aiθ i ,

where, for each i = 1, . . . , I , Ai is a kl × kl non-negative
definite matrix. Clearly, the AML cost function conforms to
this profile. Suppose that the constraints on � take the form

2 = 5(η), 5(η) = [�1(η), . . . ,�I (η)],
where η is a length-d vector (we have d = 4I + 12 in the
case of the constraints given in (4)). Upon introducing the
function

J ′(η) = J (5(η)),

the constrained optimisation problem in question reduces to
that of optimising J ′, which is an unconstrained optimisation
problem.

One way of optimising J ′ is to use the Levenberg–
Marquardt (LM) method. The starting point is to re-express
J ′ as

J ′(η) =
I∑

i=1

∥∥f ′i (η)
∥∥2

,

where, for each i = 1, . . . , I ,

f ′i (η) = fi (π i (η)),

fi (θ i ) = ‖θ i‖−1Biθ i , π i (η) = vec(�i (η)),

with Bi a kl × kl matrix such that B�i Bi = Ai ; in particular,
Bi may be taken equal to the unique non-negative definite
square root of Ai .2 Let f ′(η) = [f ′�1 (η), . . . , f ′�I (η)]�. The
LM technique makes use of the I kl × d Jacobian matrix

∂ηf ′ represented as ∂ηf ′ = [∂ηf
′
1
�
, . . . , ∂ηf

′
I
�]�. For each

i = 1, . . . , I ,

∂ηf
′
i (η) = ∂θ i fi (π i (η))∂ηπ i (η)

with ∂θ i fi (θ i ) = ‖θ i‖−1Bi P⊥θ i
and P⊥θ i

= Ikl −‖θ i‖−2θ iθ
�
i .

The algorithm iteratively improves on an initial approxima-
tion η0 to the minimiser of J ′ by constructing new approxi-
mations with the aid of the update rule

ηn+1 = ηn − [H(ηn)+ λnId)]−1[∂ηf ′(ηn)]�f ′(ηn),

where H = (∂ηf ′)�∂ηf ′ and λn is a non-negative scalar that
dynamically changes from step to step. Details concerning
the choice of λn can be found in [38].

2 The non-negative definite square root C1/2 of a symmetric non-
negative definite matrix C is defined as follows: If C = UDU� is
the eigenvalue decomposition of C with U an orthogonal matrix and D
a diagonal matrix comprising the (non-negative) eigenvalues of C, then
C1/2 = UD1/2U�, where D1/2 is the diagonal matrix containing the
square roots of the respective entries of D.
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6 Multiple homography estimation

We now proceed to consider the LM-based estimation of
multiple homography matrices. We first describe the spe-
cific details of the relevant iterative scheme and then develop
a suitable initialisation procedure. This procedure will be
applicable not only to the LM scheme, but to any other iter-
ative method operating on the latent variable vector η (in
particular, to a bundle adjustment technique—see Sect. 7.2),
and as such is of interest in its own right.

6.1 LM scheme

In the setup described by (4) and (5), we have, in accordance
with (7),

π i (η) = vec
(
wi A+ bv�i

)
= wi a + vi ⊗ b

for each i = 1, . . . , I . Taking into account that vi ⊗ b =
(I3 ⊗ b)vi = (vi ⊗ I3)b, one readily verifies that

∂aπ i = wi I9, ∂bπ i = vi ⊗ I3,

∂vi π i = I3 ⊗ b, ∂v j π j = 0 (i �= j),
∂wi π i = a, ∂w j π j = 0 (i �= j).

Representing, for each i = 1, . . . , I , ∂ηf
′
i as

∂ηf
′
i =

[
∂af

′
i , ∂bf

′
i , ∂v1 f

′
i , . . . , ∂vI f

′
i , ∂w1 f

′
i , . . . , ∂wI f

′
i

]
,

one finds furthermore that

∂af ′i = wi‖π i‖−1Bi P⊥π i
,

∂bf ′i = ‖π i‖−1Bi P⊥π i
(vi ⊗ I3),

∂vi f
′
i = ‖π i‖−1Bi P⊥π i

(I3 ⊗ b), ∂v j f
′
i = 0 ( j �= i),

∂wi f
′
i = ‖π i‖−1Bi P⊥π i

a, ∂w j f
′
i = 0 ( j �= i).

With ∂ηf ′ thus determined, all that is now needed is a means
for determining a suitable initial value of η.

6.2 Initialisation procedure

To devise an initialisation procedure, we first consider the
following problem:

Problem 2 Given X = [X1, . . . , XI ] satisfying

Xi = λi Hi (10)

for each i = 1, . . . , I , where λi is a non-zero scalar and
Hi = wi A+ bv�i , solve for A, b, vi and wi in terms of X.

The essence here is to recover the structure of a set of matri-
ces which are known a priori to satisfy (1), but which are
identified only up to (unknown) scale factors.

Observe first that the solution of the problem cannot be
unique. Indeed, if Hi = wi A + bv�i for each i , then also
Hi = w′i A′ + b′v′�i for each i , where A′ = βA + bc�,
b′ = αb, v′i = α−1vi − α−1β−1c, and w′i = β−1wi , with α

and β non-zero numbers and c a length-3 vector c. Therefore,
we shall contend ourselves with a single specific solution.

Note that Xi = λi (wi A+bv�i ) implies Xi = λ′i (A+bv′�i )

with λ′i = wiλi and v′i = w−1
i vi . Thus, without loss of

generality, we may assume that wi = 1 for each i . Now,
system (10) becomes

Xi = λi (A+ bv�i ). (11)

Select arbitrarily i and j with i �= j . Taking into account that
v�i (vi × v j ) = v�j (vi × v j ) = 0, we see that

λ−1
i Xi (vi × v j ) = A(vi × v j ) = λ−1

j X j (vi × v j )

and further

X−1
i X j (vi × v j ) = λ−1

i λ j (vi × v j ). (12)

Consequently, λ−1
i λ j is an eigenvalue of X−1

i X j . Note that if
c is any length-3 vector, then (11) holds with A replaced by
A+bc� and with bv�i replaced by b(vi − c)�. Accordingly,
(12) holds with (vi − c)× (v j − c) substituted for vi × v j .
It is easily seen that as c varies, the vectors

(vi − c)× (v j − c) = (c − v j )× (vi − v j )

fill out a two-dimensional linear space, namely the space of
all length-3 vectors orthogonal to vi − v j . Thus λ−1

i λ j is
in fact a double eigenvalue of X−1

i X j , which, generically, is
unique. Denoting this eigenvalue by μi j and observing that

λ−1
i λ j Xi − X j = λ j (λ

−1
i Xi − λ

− j
j X j ) = λ j b(vi − v j )

�,

we next see that b can be identified, up to a scalar factor, as
the unique left singular vector of μi j Xi −X j corresponding
to a non-zero singular value.

Having made these observations, we now fix i0 arbitrarily.
For each i �= i0, let μi i0 be the double eigenvalue of X−1

i Xi0 .
Then, for each i �= i0,

μi i0 Xi = λ−1
i λi0 Xi = λi0

(
A+ bv�i

)
.

Relabelling λi0 A as A and λi0 b as b, the last relation simpli-
fies to

μi i0 Xi = A+ bv�i (13)

and the i0th defining equation becomes

Xi0 = A+ bv�i0
. (14)
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Take for b the left singular vector of the 3 × 3(I − 1)

matrix obtained by juxtapositioning (concatenating horizon-
tally) the matrices μi i0 Xi − Xi0 , i �= ii0 , corresponding to
a single non-zero singular value. Now, by subtracting (14)
from (13), we find, for each i �= ii0 ,

μi i0 Xi − Xi0 = b(vi − vi0)
�

whence

vi = vi0 + ‖b‖−2(μi i0 Xi − Xi0)
�b.

To fully solve our problem, it remains to determine vi0 and
A. The only constraint that we now have to take into account
is (14). One simple solution is

A = Xi0 , vi0 = 0.

With our problem successfully solved, we are now in posi-
tion to furnish a desired initialisation procedure. Based on a
noisy data set X, a seed η̄ = [ā�, b̄�, v̄�1 , . . . , v̄�I , w̄1, . . . ,

w̄I ]� for any iterative method operating on η is obtained
by modifying the specific solution given above. The modi-
fication reflects the fact that X admits only an approximate
representation as in (10). The steps of the initialisation pro-
cedure are detailed in Algorithm 1.

Algorithm 1: Initialisation- Procedure

Input: Xi , i = 1, . . . , I
Output: ā, b̄, v̄i and w̄i , i = 1, . . . , I

1 For each i = 1, . . . , I , let w̄i = 1.
2 Select i0 arbitrarily from the range between 1 and I .

3 For each i �= i0, determine two closest eigenvalues μ
(1)
i i0

and μ
(2)
i i0

of X−1
i Xi0 , and set μi i0 = (μ

(1)
i i0
+ μ

(2)
i i0

)/2.

4 Take for b̄ a left singular vector of the 3× 6(I − 1) juxtaposition

(horizontal concatenation) of the matrices μ
(1)
i i0

Xi − Xi0 and

μ
(2)
i i0

Xi − Xi0 , i �= ii0 , corresponding to the biggest singular
value.

5 For each i �= i0, replace μi i0 with the real part of μi i0 . Also
replace b̄ with the vector comprising the real parts of the
elements of b̄.

6 Let ā = vec(Xi0 ) and v̄i0 = 0.
7 For each i �= ii0 , set v̄i = v̄i0 + ‖b̄‖−2(μi i0 Xi − Xi0 )

�b̄.

It is noteworthy that for the above procedure to work, just
two different input homographies suffice. This is in contrast
with the initialisation proposed by Chen and Suter [4] which
requires at least three different homographies.

7 Experimental verification

The method was tested on both synthetic and real data. Syn-
thetic data were used to quantify the effect of noise on the
method. Real data were used to evaluate the performance of
the method in a real-world situation.

ᵝ

α

op�cal axis

up vector

Fig. 2 Synthetic data generation procedure

7.1 Synthetic data

Synthetic data were created by generating true correspond-
ing points for some stereo configuration and adding random
Gaussian noise to these points. Many configurations were
investigated. Any specific instantiation of true image points
was developed as follows. First, we chose a realistic geo-
metric configuration for two cameras. Next, we applied a
random rotation and translation to a plane that is parallel to
the first camera’s image plane (see Fig. 2). Repeating this
last step several times, we generated several planes in the 3D
scene. Finally, between 25 and 50 points in each plane were
randomly selected in the field of view of both cameras, and
these were projected onto two 640 × 480 pixel images to
provide true image points.

7.2 Synthetic simulation procedure

Each synthetic true image point was perturbed by indepen-
dent homogeneous Gaussian noise at a preset level. For
different series of experiments, different noise levels were
applied. This resulted in I groups of noise-contaminated
pairs of corresponding points {mn,i , m

′
n,i }Ni

n=1, i = 1, . . . , I ,
corresponding to I different planes in the 3D scene, with
I ∈ {2, 4, 5, 6, 7, 8} for different experiments; here, Ni is
the number of feature points in the i th plane.

The estimation methods considered were:

• DLT direct linear transform,
• FNS fundamental numerical scheme,
•WALS weighted alternating least squares,
• AML approximate maximum likelihood,
• BA bundle adjustment.

DLT [24] is a linear method for estimating a single homogra-
phy and FNS [8,39] is an iterative method for the same pur-
pose, the two methods optimising two different, yet related
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cost functions. For the small noise levels utilised in our study,
FNS produces the same results as single homography bundle
adjustment, and to all intents and purposes may be regarded
as the gold standard single homography estimation method.
Both DLT and FNS were run on suitably normalised data.
For each i = 1, . . . , I , two data-dependent normalisation
matrices Ti and T

′
i were applied to {mn,i , m

′
n,i }Ni

n=1 using
the rule

m̃n,i = Ti mn,i and m̃
′
n,i = T

′
i m
′
n,i

to produce individually normalised corresponding points
{m̃n,i , m̃

′
n,i }Ni

n=1 à la Hartley [7,9,23]. These normalised
groups were used as input to DLT and FNS to pro-

duce two sets of I homography matrices {̂̃�DLT,i }Ii=1 and
{�̂FNS,i }Ii=1. The final estimates 2̂DLT = {�̂DLT,i }Ii=1 and

2̂FNS = {�̂FNS,i }Ii=1 were obtained by applying, for each
i = 1, . . . , I , the back-transformation �i 	→ T′−1

i �i Ti to
̂̃
�DLT,i and ̂̃

�FNS,i , respectively.
WALS is Chen and Suter’s method of weighted alternating

least squares with weights derived from the covariances of
input estimates. Both WALS and our proposed AML method
use as input, in one version, the estimates produced by FNS
and, in another version, the estimates produced by DLT. For
reasons of numerical stability, both WALS and AML required
data normalisation as a pre-processing step. A common data
normalisation procedure was employed to both methods,
namely we combined all the points together to produce two
global normalisation matrices T and T′. These matrices were
used to produce globally normalised corresponding points

{ ◦mn,i ,
◦
m
′
n,i }Ni

n=1, i = 1, . . . , I , defined by

◦
mn,i = Tmn,i and

◦
m
′
n,i = T′m′n,i .

The input of the FNS-initialised versions of WALS and AML,
WALS-FNS and AML-FNS, took the form of the FNS esti-
mates based on { ◦mn,i ,

◦
m
′
n,i }Ni

n=1, i = 1, . . . , I . Likewise, the
input of the DLT-initialised versions of WALS and AML,
WALS-DLT and AML-DLT, took the form of the DLT esti-
mates based on { ◦mn,i ,

◦
m
′
n,i }Ni

n=1, i = 1, . . . , I . For each ini-
tialisation, a specific prescription, described below, was used
to generate the pre-covariance matrix �0

xi
for the vectorisa-

tion xi of Xi for each i = 1, . . . , I . The matrices Xi and
pre-covariances �0

xi
were next used as input to the WALS

and AML methods to produce estimates which, upon apply-
ing the back-transformation � 	→ T′−1�T, were taken to be
2̂WALS = {�̂WALS,i }Ii=1 and 2̂AML = {�̂AML,i }Ii=1, respec-
tively

In the case of the FNS-initialised methods, the pre-
covariance matrix for the vectorisation xi of Xi , based on

{ ◦mn,i ,
◦
m
′
n,i }Ni

n=1, was taken to be

�0
xi
= (Mxi )

+
8 , (15)

Mxi = ‖xi‖2
Ni∑

n=1

U(
◦
zn,i )(�(

◦
zn,i , xi ))

+
2 U(

◦
zn,i )

�. (16)

Here,
◦
zn,i = [◦un,i ,

◦
vn,i ,

◦
u
′
n,i ,
◦
v
′
n,i ]� is the result of combin-

ing
◦
mn,i = [◦un,i ,

◦
vn,i , 1]� and

◦
m
′
n,i=[

◦
u
′
n,i ,
◦
v
′
n,i , 1]� into a

single vector; U(
◦
zn,i ) and �(

◦
zn,i , xi ) are defined by

U(z) = −m⊗ [m′]×,

B(z) = ∂zvec(U(z))�z
[
∂zvec(U(z))

]�
,

�(z, x) = (I3 ⊗ x�)B(z)(I3 ⊗ x)

with z = [u, v, u′, v′]� derived from m = [u, v, 1]� and
m′ = [u′, v′, 1]�, and with x a length-9 vector; for a length-
3 vector a, [a]× is the 3 × 3 anti-symmetric matrix given
by

[a]× =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ ;

and A+r denotes the rank-r truncated pseudo-inverse of the
matrix A (see [26] or Appendix A for the definition). The
image data covariance matrices �◦

zn,i
, incorporated in the

matrices �(
◦
zn,i , xi ), were all chosen to be in their default

form diag(1, 1, 1, 1), corresponding to isotropic homoge-
neous noise in image point measurement. The details of for-
mula (15) are given in Appendix A.

The DLT-initialised methods employed the raw covari-
ance matrix for the vectorisation xi of Xi , based on

{ ◦mn,i ,
◦
m
′
n,i }Ni

n=1, in the form

�0
xi
= (Mxi )

+
8 Dxi (Mxi )

+
8 . (17)

with Mxi given in (16) and

Dxi = ‖xi‖−2
N∑

n=1

U(
◦
zn,i )�(

◦
zn,i , xi )U(

◦
zn,i )

�.

Formula (17) relies on the material presented in Appendix B.
BA is a method for calculating maximum likelihood esti-

mates and is regarded as the gold standard for performing
optimal parameter estimation. It is the same as what is called
joint bundle adjustment in [42]. The qualifier “joint” serves
to emphasise the fact that this variant of bundle adjustment,
using the latent variables, enforces full homography consis-
tency constraints. In contrast, naive separate bundle adjust-
ment minimises the gold standard geometric error, but does
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not enforce consistency constraints. In this paper we do not
explicitly consider separate bundle adjustment, and therefore
we label joint bundle adjustment simply as BA. However,
separate bundle adjustment enters implicitly into our con-
siderations through FNS, as, in accordance with our earlier
remark, FNS applied to estimate each individual homography
separately yields results indistinguishable from those pro-
duced by separate bundle adjustment for the levels of noise
employed in our experiments.

The BA method was used in two variants, BA-FNS and
BA-DLT, which differed in the way the method’s itera-
tive process was initialised. In both variants, a BA estimate
2̂BA = {�̂BA,i }Ii=1 was generated directly from all the image

data {{ ◦mn,i ,
◦
m
′
n,i }Ni

n=1}Ii=1 by minimising the reprojection
error

I∑

i=1

Ni∑

n=1

(
d

( ◦
mn,i , mn,i

)2 + d
( ◦

m
′
n,i ,�i (η)mn,i

)2
)

over all choices of parameter vectors η and 2D points
{{mn,i }Ni

n=1}Ii=1, with the minimum attained at the composite

of η̂ and {{m̂n,i }Ni
n=1}Ii=1 resulting in �̂BA,i = �i (̂η). Here,

d(m, n) denotes the Euclidean distance between the points
m and n dehomogenised at the last, third entry. The initial

value of each mn,i was taken to be
◦
mn,i in both variants, and

the initial value of η was obtained from the result of AML-
FNS for BA-FNS, and from the result of AML-DLT for BA-
DLT. Upon initialisation, η and the mn,i ’s were recomputed
iteratively by an LM scheme adapted to the task of minimis-
ing the error given above. With ÂBA, b̂BA, v̂BA,i ’s, ŵBA,i ’s
derived from the terminal value of η, the estimates �̂BA,i

were finally obtained by applying the back-transformation
� 	→ T′−1�T to ŵBA,i ÂBA + b̂BAv̂�BA,i .

7.3 Real data

To investigate the performance of the proposed method on
real data, we utilised the Model House sequence from the
Oxford dataset,3 the Lady Symon and Old Classics Wing
scenes from the AdelaideRMF dataset4 [45], and additionally
two traffic scenes from the Traffic Signs dataset5 [30].

We generated corresponding points for the Oxford and
Traffic Signs datasets using correlation-based matching
on Harris corner points. Because the matching of corner
points was done without manual intervention, the resulting
set of corresponding points included pure outliers (incor-
rect matches). Corresponding points for the AdelaideRMF
dataset were generated in a different manner, but also

3 http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.
4 http://cs.adelaide.edu.au/~hwong/doku.php?id=data.
5 http://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
download/.

included pure outliers. The curator of the AdelaideRMF
dataset detected key points using SIFT and generated true
correspondences by manually matching only a subset of key
points. The remaining key points were randomly matched
and labelled as pure outliers.

To make the experiments on real data as realistic as pos-
sible, we did not manually group data points into different
planar regions. Instead, we took advantage of recent progress
in robust hypothesis generation for multi-structure data [6]
and sampled a thousand candidate homographies based on
four-element sets of matched correspondences. For each pair
of corresponding points, we computed the symmetric trans-
fer error [24, Sect. 4.2.2] for all 1,000 homographies and
ranked the homographies according to this error. This means
that each correspondence had an associated preference list
that ranked the homographies. Making use of the ordered
residual kernel method [5] which defines a distance between
rankings, together with an agglomerating clustering scheme,
we grouped the pairs of corresponding points into several
clusters. The clustering scheme that we applied does not
guarantee that all final clusters belong to different planes
in the scene. In fact, frequently correspondences are frag-
mented into two different clusters even though visually they
should belong to the same plane. This means that effectively
the same planar region may have more than one homogra-
phy associated with it. Such is the case with the Model House
sequence where clustering led to the appearance of six homo-
graphies (corresponding to six clusters), even though there
are only four actual planes in the scene. The fragmentation
effect is not unique to our clustering scheme and was also
observed by Fouhey et al. [18], who used a different algorithm
(J-linkage) to group planar data points together. The empiri-
cal fact that fragmentation occurs so frequently serves as an
affirmation that it is important to exploit consistency con-
straints as a means for enhancing coherency between homo-
graphies derived from logically linked clusters.

7.4 Real data experiment procedure

After automatically grouping the data points into several
clusters, we estimated homographies using DLT for each
group. To compare and contrast the stability and accuracy
of the consistency enforcing estimation methods, we used
the same initialisation procedure (Algorithm 1) on the DLT
estimates of each group to seed AML-DLT, WALS-DLT, and
BA-DLT.

7.5 Quantitative comparison of methods

On synthetic data, for 2̂ = {�̂i }Ii=1 generated by the DLT,
FNS, WALS, AML, and BA methods, the common distance
used to quantify data–model discrepancies was the mean
root-mean-square (RMS) reprojection error from truth
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Fig. 3 Comparison of homography estimation methods on synthetic
data. The results are based on averaging the reprojection error over all
planes in the scene. The DLT and FNS estimators do not enforce con-
sistency constraints, while WALS, AML, and our variant of BA do.
The results show that enforcing consistency constraints can result in

considerable denoising. The typical performance of AML and BA is
virtually indistinguishable. The poor performance of WALS in (b) is
due to the instability of the method. On some occasions it converges to
a very poor solution with high reprojection error. This adversely affects
its mean RMS score.
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(b) Improvement over FNS for estimation
methods enforcing consistency constraints,
expressed in terms of percentage reduction in
reprojection error. Results are based on 1500
trials, with 50 data points per trial and the
noise level of σ = 2pixels.
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Fig. 4 Evaluating homography estimation methods on synthetic data
by: (a) comparing how often the consistency constraint enforcing meth-
ods yield lower reprojection errors than separate FNS homography esti-

mation; (b) quantifying the expected percentage reduction in reprojec-
tion error, and (c) measuring their running times

1

I

I∑

i=1

√√√√ 1

4Ni K

K∑

k=1

min
m(k)

n,i

Ni∑

n=1

(
d(m(k)

n,i , m(k)
n,i )

2 + d(m′(k)
n,i , �̂i m

(k)
n,i )

2
)
,

where K is the number of experiments, and, for each
k = 1, . . . , K , {{m(k)

n,i , m′(k)
n,i }Ni

n=1}Ii=1 are noiseless data and

{{m(k)
n,i }Ni

n=1}Ii=1 are arbitrary 2D points over which the min-
imum is taken in the kth experiment. A comparison of the
methods on synthetic data is shown in Figs. 3 and 4. The
results indicate that the proposed algorithm outperforms

DLT, FNS, WALS-DLT, and WALS-FNS, and is practically
indistinguishable in performance from the BA method for
small noise levels. For larger noise levels all algorithms that
enforce consistency constraints become susceptible to con-
verging to a poor local minimum, resulting in homography
estimates that are worse than separately estimated homogra-
phies. Figure 4a shows comparatively how often the algo-
rithms that enforce consistency homographies managed to
improve upon the (separately) FNS-estimated homographies.
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While the likelihood of converging to a superior solution
decreased as the noise level increased, our method still fared
better than WALS. With σ = 2 pixels our algorithm con-
verged to a superior solution in more than 90 % of the tri-
als. The deterioration of the algorithm at higher noise lev-
els can be attributed to Algorithm 1 which is used to find
initial values for the latent variables. For high noise levels,
Algorithm 1 yields latent variables that are associated with
high cost function values, which means that the optimisa-
tion methods are initialised far from the optimal solution and
have a greater chance of stopping at a poor local minimum.
In Fig. 4b, we display the percentage reduction in reprojec-
tion error that enforcing consistency constraints can produce
when compared with separate homography estimation. The

results show that one can expect approximately 23 % reduc-
tion for four homographies, and up to approximately 30 %
reduction for eight homographies. Even when there were
only two planes in the scene, we still observed an approxi-
mately 10 % reduction in reprojection error. These findings
evidence that upgrading a set of inconsistent homographies to
a fully consistent set can yield considerable practical benefits
and constitute the raison d’être of our algorithm. In Fig. 4c,
we present the median running time of BA, WALS, and our
method. Our algorithm is orders of magnitude faster than
all other options, requiring on average only four iterations
to converge. It is thanks to our algorithm’s remarkable and
unique computational efficiency that it can be incorporated
into a random sampling and consensus framework to filter out
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(c) Reprojection error for view 0 and 1.

(d) view 2. (e) view 3.
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(f) Reprojection error for view 2 and 3.

(g) view 4. (h) view 5.
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(i) Reprojection error for view 4 and 5.

Fig. 5 Comparison of consistency enforcing estimation methods on
the Model House sequence. The first two columns show the feature
points (inliers) associated with various homographies on the model
house views. The third column compares the reprojection error of AML-

DLT, WALS-DLT, and BA-DLT for each homography. Note that in some
figures the errors associated with particular homographies are so close
to zero that the bar graphs are barely visible
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(j) view 6. (k) view 7.
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(l) Reprojection error for view 6 and 7.

(m) view 8. (n) view 9.
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(o) Reprojection error for view 8 and 9.

Fig. 5 continued

(a) Lady Symon building view 0. (b) Lady Symon building view 1.
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(c) Reprojection error for view 0 and 1 of Lady
Symon building.

(d) Old Classics Wing building view 0. (e) Old Classics Wing building view 1.
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(f) Reprojection error for view 0 and 1 of Old
Classics Wing building.

Fig. 6 Comparison of consistency enforcing estimation methods on
the AdelaideRMF sequence. The first two columns show the feature
points (inliers) associated with various homographies on the Lady

Symon and Old Classics Wing buildings. The third column compares
the reprojection error of AML-DLT, WALS-DLT, and BA-DLT for each
homography
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(a) Traffic scene A view 0. (b) Traffic scene A view 1.
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(c) Reprojection error for view 0 and 1 of Traffic
scene A.

(d) Traffic scene B view 0. (e) Traffic scene B view 1.
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(f) Reprojection error for view 0 and 1 of Traffic
scene B.

Fig. 7 Comparison of consistency enforcing estimation methods on
the Traffic Signs sequence. The first two columns show the feature
points (inliers) associated with various homographies on two traffic
scenes. The third column compares the reprojection error of AML-

DLT, WALS-DLT, and BA-DLT for each homography. Note that in
some cases, the errors associated with particular homographies are so
close to zero that the bar graphs are barely visible

sets of putative homographies that are mutually incompatible
(see Sect. 7.6).

On real data, we evaluate the performance of AML-
DLT, WALS-DLT, and BA-DLT against each other by com-
paring the quality of each estimated homography separately.
The comparisons are made by plotting bar graphs of the RMS
reprojection error from data

√√√√ 1

4Ni
min
mn,i

Ni∑

n=1

(
d

(
mn,i , mn,i

)2 + d
(

m
′
n,i , �̂i mn,i

)2
)

,

where {{mn,i , m
′
n,i }Ni

n=1}Ii=1 are the original corresponding

points and {{mn,i }Ni
n=1}Ii=1 are arbitrary 2D points over which

the minimum is taken. By plotting the error for each homog-
raphy separately, it is possible to gain a deeper insight into
the performance of each method. A comparison on real data
is given in Figs. 5, 6, and 7. The results show that WALS is
inferior to both AML and BA, frequently displaying much
higher errors in at least one of the homographies. On the other
hand, our proposed scheme produces results which are often
a very good approximation to BA.

We defer a deeper discussion of the results to Sect. 8.

7.6 Application: robust consistent homography estimation

Our experiments have shown that the scope of consistency
enforcing algorithms is not limited to synthetic data—when
the algorithms are applied to homographies estimated on real-
world scenes, full consistency can still be achieved. However,
neither AML, nor WALS, nor BA is truly robust to outliers
and it may be the case that if consistency constraints are
imposed on a collection of homographies where one of the
homographies is an outlier, then all of the methods may fail
to produce accurate estimates. That is because each method
employs a non-robust error measure and relies on an initial-
isation which in its current form is not robust. One possi-
ble way to circumvent any robustness issues is to incorpo-
rate the consistency constraints directly into the well-known
RANSAC estimation loop [24, Sect. 4.7.1], so that the homo-
graphies returned by a RANSAC procedure are by construc-
tion fully consistent. This can be achieved by a simple modifi-
cation of the canonical RANSAC procedure, and the pseudo-
code for the modification is given in Algorithm 2.

Algorithm 2 makes use of several functions, namely f ,
g, h, and ρ. The function f can be any standard method for
estimating a single homography, such as DLT or FNS. The
function g serves to determine a set of inliers consistent with
a given homography estimate. It utilises a cost function ρ

123



Multiple homography estimation 415

Algorithm 2: Robust- Consistent- Homography- Estimation

Input: • S = {mn, m′n}Nn=1 — a set of N corresponding pairs of points
• m — the minimum number of point correspondences needed to compute a homography
• f : s 	→ X — the function estimating a homography matrix X from a sample s of m point correspondences
• I — the user-specified number of desired homographies
• ρ(X, {m, m′}) — the cost function measuring the discrepancy between a point correspondence {m, m′} and a homography X
• t — the threshold for determining inliers
• g : (X, ρ, S, t) 	→ κ — the function identifying a set of inliers κ within a set of data points S relative to a homography X, based

on a cost function ρ and a threshold t for determining inliers
• h : ([X1, . . . , X j ], [�x1

, . . . ,�x j
]) → [�1, . . . ,� j ] — the function h that takes a collection of homographies X1, . . . , X j

together with their covariances �x1
, . . . ,�x j

and produces a new set of fully consistent homographies �1, . . . ,� j

• L — the maximum number of iterations (it is best to select L adaptively—see [24, Sect. 4.7.1] for details)

Output: [�1, . . . ,�I ]— fully consistent homographies

1 [�1, . . . ,�I ] ← ∅ and [�θ1
, . . . ,�θ I

] ← ∅
2 for i ← 1 to I do
3 k ← 0, C∗ ← ∞, �∗i ← ∅, and κ∗i ← ∅
4 repeat
5 select a subset sk of S of m point correspondences at random
6 estimate parameters Xk = f (sk) and compute covariance �xk

7 compute cost Ck =∑
{m,m′}∈S min

(
t, ρ(Xk , {m, m′}))

8 if C∗ > Ck then
// Enforce consistency constraints on a candidate homography

9 [�̂1, . . . , �̂i−1, �̂
k
i ] ← h([�1, . . . ,�i−1, Xk ], [�θ1

, . . . ,�θ i−1
,�xk ])

10 compute cost Ck∗ =∑
{m,m′}∈S min

(
t, ρ(�̂

k
i , {m, m′}))

11 compute inliers κk∗
i ← g(�̂

k
i , ρ, S, t)

12 if |κ∗i | < |κk∗
i | then

13 C∗ ← Ck∗, �∗i ← �̂
k
i , �

θ∗i
← �xk , and κ∗i ← κk∗

i

14 end if
15 end if
16 k ← k + 1
17 until k = L

// Enforce consistency constraints on selected homographies
18 [�1, . . . ,�i−1,�i ] ← h([�1, . . . ,�i−1,�

∗
i ], [�θ1

, . . . ,�θ i−1
,�

θ∗i
])

19 �θ i
← �

θ∗i
and S← S \ κ∗i

20 end for

that computes an error between a point correspondence and
a homography, and declares a particular correspondence to
be a member of the set of inliers for the given homography
estimate if the value of ρ for that correspondence falls below
a user-specified threshold t . Typically, the cost function ρ

is chosen to be the symmetric transfer error. The function h
represents a procedure that takes as input a set of homography
matrices together with covariances and produces a new set
of fully consistent homographies. In our implementation, we
take for h the AML algorithm proposed in this paper.

When faced with multiple planar structures in a set of
correspondences, researchers and practitioners using stan-
dard RANSAC frequently resort to the following strategy:
(1) search for the homography with the largest number of
inliers and (2) from all considered homographies, choose the
homography with the largest number of inliers, remove its
inliers from the set of correspondences and repeat the whole
process to find the next plane [29,44]. The essence of Algo-

rithm 2 is the same, except that we modify step (2) so that
from all considered homographies, we choose the homogra-
phy that has the largest number of inliers and at the same time
is fully consistent with any planar structures found so far. We
then remove its inliers from the set of correspondences and
repeat the whole process to find the next plane.

Since computational efficiency is crucial for algorithms
like RANSAC that are intended to be practical, our modifi-
cation of RANSAC is an excellent example of where one
would prefer to impose consistency constraints using our
AML algorithm, which is relatively fast, instead of BA, which
is slower. As a proof of concept of our idea, we show in Fig. 8
the inliers associated with fully consistent homographies on
various real data taken from the Oxford dataset, which were
produced by running our modified RANSAC algorithm. The
results demonstrate that finding numerous visually pleasing
inliers related to fully consistent homographies is fundamen-
tally possible.
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(a) Feature points (inliers) associated with four
fully consistent homographies on Merton College
III.

(b) Feature points (inliers) associated with three fully
consistent homographies on Raglan Castle.

(c) Feature points (in-
liers) associated with two
fully consistent homo-
graphies on Valbonne
Church.

Fig. 8 Inliers associated with fully consistent homographies found using Algorithm 2. The results on real data indicate that finding fully consistent
homographies using our AML cost function is tractable

8 Discussion

We have identified several important factors that may help
explain the success of our method. Firstly, the error covari-
ance matrices associated with the individual homography
estimates are absolutely crucial. Without covariance infor-
mation we are unable to produce meaningful results. Sec-
ondly, our scale-invariant cost function captures the projec-
tive nature of the parameters that are being estimated, and
ensures that the optimisation method always takes a step in
a meaningful direction. The scale invariance is not properly
accounted for in the method of Chen and Suter, and this
partially explains why their method tends to produce worse
results. Furthermore, the Levenberg–Marquardt optimisation
method is better suited for solving non-linear optimisation
problems than for example the bilinear approach followed
by Chen and Suter.

Our modification of RANSAC serves to emphasise the
practical utility of our research outcome. There are, of course,
many other modifications to the original RANSAC algo-
rithm, each claiming to be the best. Usually, the modifica-
tions are based on improvements to the sampling scheme.
Although they may be faster than the original RANSAC,
none can produce fully consistent homographies. We leave it
to future work to decide which modern variant of RANSAC
to couple with our full consistency constraints to achieve
maximum computational efficiency.

We also wish to point out that our algorithm need not be
incorporated into a sampling procedure such as RANSAC
to be of practical use. One could, for example, utilise the
recently proposed generalised projection based M-estimator
[36] to estimate a set of inconsistent homographies, and then
upgrade them to a fully consistent set using our method.
Since enforcing consistency constraints leads to a reduction

in reprojection error and hence an improvement in the quality
of the homographies, it always makes sense to do so.

9 Conclusion

Our principal contribution within this paper has been to for-
mulate the problem of estimating multiple interdependent
homographies in a manner that enforces full consistency
between all constituent homographies. A key feature of this
formulation is the exploitation of latent variables that link
together different homographies. The resulting solution strat-
egy has a natural translation into a full-blown BA procedure
and into the computationally more efficient AML estimation
procedure. Since both BA and AML are non-linear optimi-
sation techniques, they both require a suitable initialisation
to produce meaningful results.

In this connection, our second important contribution has
been the derivation of a novel compact initialisation proce-
dure which can be applied when there are two or more planes
in the scene. In contrast, the initialisation procedure of Chen
and Suter is more involved and requires at least there planes
before it can be utilised.

The third notable contribution of our work has been to
show that our scale-invariant AML cost function frequently
produces estimates that are an accurate approximation of BA.
Compared to the WALS algorithm of Chen and Suter, our
method has the advantage that it consistently converges to a
better minimum. This is evidenced by experimental results on
both real and synthetic data. Furthermore, we have furnished
a derivation of suitable homography covariance matrices for
both DLT and FNS estimates, to be found in Appendices A
and B, and our final formulas are tailored to facilitate easy
implementation.
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Drawing on the experimentally confirmed validity of our
approach, we have proposed a modification to the celebrated
RANSAC algorithm to robustly estimate fully consistent
homographies. Since in RANSAC computational efficiency
is vital, the modified algorithm serves as a noteworthy exam-
ple of where our AML scheme is preferable to BA.

Finally, we conclude by pointing out that once recovered,
the latent variables encoding the fully consistent homogra-
phies can be immediately utilised to provide a projective
reconstruction of the scene.

The source code for our experiments can be found at http://
sites.google.com/site/szpakz/.

Acknowledgments This research was supported by the Australian
Research Council.

Appendix A. Covariance of the AML estimate

Here, we derive a formula for the covariance matrix of the
AML estimate of a vectorised homography matrix based on a
set of image correspondences. It will be convenient to estab-
lish first an expression for the covariance matrix of the AML
estimate of a parameter vector of a certain general model.
This model will comprise, as particular cases, models whose
parameters describe a relationship among image feature loca-
tions. Once the general formula for a covariance matrix is
established, we shall then evolve a specialised formula for
the case of the homography model.

A1. General model

The data–parameter relationship for the general model will
be assumed in the form

f(z,β) = 0,

where z is a length-k vector describing an ideal (noiseless)
data point, β is a length-l vector of parameters, and f(z,β)

is a length-m vector of constraints of the form

f(z,β) = U(z)�β,

where U(z) is an l × m matrix—the so-called data car-
rier matrix—with entries formed by smooth functions in z.
Details on how this formulation applies to the homography
model are given in Appendix A.2. It will be further assumed
that the observed data points z1, . . . , zN come equipped with
covariance matrices �z1

, . . . ,�zN
quantifying measurement

errors in the data. Under the assumption that the errors
are independently sampled from Gaussian distributions with
covariances of the form �zn

, n = 1, . . . , N , the relevant
AML cost function to fit the model parameters to the data is
given by

JAML(β) =
N∑

n=1

f(z,β)��(zn,β)−1f(z,β),

where

�(zn,β) = ∂zf(zn,β)�zn
[∂zf(zn,β)]�

(cf. [8,10,11,26,31,35]). Importantly, when m, the com-
mon length of the f(zn,β)’s, surpasses the codimension r
of the submanifolds of the form {z ∈ R

k | f(z,β) =
0} with β representing parameters under which the data
might have been generated, the inverses �(zn,β)−1 in the
above expression for JAML must be replaced by, say, the
r-truncated pseudo-inverses �(zn,β)+r [17,26]. Recall that
the r -truncated pseudo-inverse of an m × m matrix A, A+r ,
is defined as follows: If A = UDV� is the SVD of A, with
D = diag(d1, . . . , dm), and if Ar = UDr V� with Dr =
diag(d1, . . . , dr , 0, . . . , 0) is the r -truncated SVD of A, then
A+r = VD+r U� with D+r = diag(d+1 , . . . , d+r , 0, . . . , 0),
where d+i = d−1

i when di �= 0 and d+i = 0 otherwise. The
AML estimate of β, β̂AML, is the minimiser of JAML. As a
consequence of JAML being homogeneous of degree zero,
β̂AML is determined only up to scale. The estimate β̂AML
satisfies the necessary optimality condition

[∂β JAML(β)]β=β̂AML
= 0�, (18)

which is the basis for all what follows. Using the formula

U(z)�β = (Im ⊗ β�) vec(U(z)), (19)

one readily verifies that

[∂β JAML(β)]� = 2Xββ,

where Xβ =Mβ − Nβ is an l × l symmetric matrix with

Mβ =
N∑

n=1

Un�−1
n UT

n , (20a)

Nβ =
N∑

n=1

(
η�n ⊗ Il

)
Bn(ηn ⊗ Il), (20b)

Un = U(zn), (20c)

Bn = ∂zn vec(Un)�zn
[∂zn vec(Un)]�, (20d)

�n =
(

Im ⊗ β�
)

Bn(Im ⊗ β), (20e)

ηn = �−1
n U�n β. (20f)

Accordingly, Eq. (18) can be rewritten as

X
β̂
β̂ = 0, (21)
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where β̂AML is abbreviated to β̂ for clarity. Hereafter, β̂ =
β̂(z1, . . . , zN ) will be assumed normalised and smooth as a
function of z1, . . . , zN .

To derive an expression for the covariance matrix of β̂,
we use (21) in conjunction with the covariance propagation
formula

�
β̂
=

N∑

n=1

∂zn β̂�zn

(
∂zn β̂

)�
(22)

(cf. [16,22]). Differentiating ‖β̂‖2 = 1 with respect to zn

gives (∂zn β̂)�β̂ = 0. This together with (22) implies that

β̂
�
�

β̂
= �

β̂
β̂ = 0

so that �
β̂

is singular, and further yields

P⊥
β̂
�

β̂
= �

β̂
P⊥

β̂
= �

β̂
, (23)

where, of course, P⊥
β̂
= Il − ‖β̂‖−2β̂β̂

�
. Letting zn =

[zn1 . . . znk]� and β̂ = [β̂1, . . . , β̂l ]�, and differentiating
(21) with respect to zni , we obtain
⎡

⎣[∂zni Xβ ]β=β̂
+

l∑

j=1

[∂β j Xβ ]β=β̂
∂zni β̂ j

⎤

⎦ β̂ + X
β̂
∂zni β̂ = 0.

Introducing the Gauss–Newton approximation, i.e., neglect-

ing the terms that contain β̂
�

u(zn), we reduce this equality
to the equality

Un�−1
n (∂zni Un)T β̂ +M

β̂
∂zni β̂ = 0.

Now, in view of (19) and the fact that

(∂zni Un)T β̂ = vec((∂zni Un)T β̂) = vec(β̂
T
∂zni Un)

=
(

Im ⊗ β̂
�)

∂zni vec(Un),

we have

M
β̂
∂zni β̂ = −Un�−1

n (∂zni Un)T β̂

= −Un�−1
n

(
Im ⊗ β̂

�)
∂zni vec(Un)

and further

M
β̂
∂zn β̂ = −Un�−1

n

(
Im ⊗ β̂

�)
∂zn vec(Un).

Hence,

M
β̂
∂zn β̂�zn

(∂zn β̂)�M
β̂

= Un�−1
n (Im ⊗ β̂

�
)

×∂zn vec(Un)�zn
[∂zn vec(Un)]�(Im ⊗ β̂)�−1

n U�n .

But, by (20d) and (20e),
(

Im ⊗ β̂
�)

∂zn vec(Un)�zn
[∂zn vec(Un)]�(Im ⊗ β̂)

=
(

Im ⊗ β̂
�)

Bn

(
Im ⊗ β̂

)
= �n

so

M
β̂
∂zn β̂�zn

(∂zn β̂)�M
β̂
= Un�−1

n �n�−1
n U�n

= Un�−1
n U�n .

Therefore, in view of (20a),

M
β̂

[
N∑

n=1

∂zn β̂�zn
(∂zn β̂)�

]
M

β̂
=

N∑

n=1

Un�−1
n U�n =M

β̂
,

or equivalently, on account of (22),

M
β̂
�

β̂
M

β̂
=M

β̂
. (24)

At this stage, one might be tempted to conclude that �
β̂
=

M−1
β̂

, but this would contravene the fact that �
β̂

is singular.

To exploit (24) properly, we first note that, in view of (23),

P⊥
β̂
�

β̂
P⊥

β̂
= �

β̂
, (25)

so we can rewrite (24) as

M
β̂

P⊥
β̂
�

β̂
P⊥

β̂
M

β̂
=M

β̂
.

Pre- and post-multiplying the last equation by P⊥
β̂

and letting

M⊥
β̂
= P⊥

β̂
M

β̂
P⊥

β̂

yield

M⊥
β̂
�

β̂
M⊥

β̂
=M⊥

β̂
.

Pre- and post-multiplying this equation by (M⊥
β̂
)+ further

yields

(
M⊥

β̂

)+
M⊥

β̂
�

β̂
M⊥

β̂

(
M⊥

β̂

)+ =
(

M⊥
β̂

)+
M⊥

β̂

(
M⊥

β̂

)+
.

(26)

The matrix M⊥
β̂

is symmetric and its null space is, generically,

spanned by β̂, so

M⊥
β̂

(
M⊥

β̂

)+ = (M⊥
β̂
)+M⊥

β̂
= P⊥

β̂

(cf. [1, Cor. 3.5]). We also have (M⊥
β̂
)+M⊥

β̂
(M⊥

β̂
)+ =

(M⊥
β̂
)+ by virtue of one of the four defining properties of the
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pseudo-inverse [1, Thm. 3.9]. Therefore (26) can be restated
as

P⊥
β̂
�

β̂
P⊥

β̂
=

(
M⊥

β̂

)+
,

which, on account of (25), implies

�
β̂
= (M⊥

β̂
)+. (27)

We now derive an alternate formula for the covariance
matrix of β̂, namely

�
β̂
= P⊥

β̂
(M

β̂
)+l−1P⊥

β̂
. (28)

In this form, �
β̂

is explicitly expressed as �
β̂
= P⊥

β̂
�0

β̂
P⊥

β̂
,

with the pre-covariance matrix �0
β̂
= (M

β̂
)+l−1. We start by

noting that, in view of (21), β̂ is in the null space N (X
β̂
) of

X
β̂

. Generically, we may assume that N (X
β̂
) is spanned by

β̂. As X
β̂

is symmetric, the column space of X
β̂

is equal to
the orthogonal complement of N (X

β̂
). In particular, X

β̂
has

rank l−1. This together with X
β̂

being equal to M
β̂

to a first-
order approximation implies that X

β̂
is in fact approximately

equal to the (l−1)-truncated SVD of M
β̂

, (M
β̂
)l−1. Since the

function A 	→ A+ is continuous on the set of all l×l matrices
of constant rank l−1 [21,34,37,41], we have, approximately,

X+
β̂
= (M

β̂
)+l−1.

Taking into account that X+
β̂
= P⊥

β̂
X+

β̂
P⊥

β̂
, which immedi-

ately follows from (21), we see that, again approximately,

X+
β̂
= P⊥

β̂
(M

β̂
)+l−1P⊥

β̂
. (29)

As a consequence of M
β̂

being approximately equal to X
β̂

,

M⊥
β̂

(= P⊥
β̂

M
β̂

P⊥
β̂

) is approximately equal to P⊥
β̂

X
β̂

P⊥
β̂
= X

β̂
.

Both M⊥
β̂

and X
β̂

have rank l − 1, so their pseudo-inverses

are also approximately equal,

(
M⊥

β̂

)+ = X+
β̂
,

by the aforementioned continuity property of the pseudo-
inverse. Hence, (29) can be restated as
(

M⊥
β̂

)+ = P⊥
β̂
(M

β̂
)+l−1P⊥

β̂
,

and this in combination with (27) yields (28).
In the case that the matrices �(zn,β)−1 are replaced by

the matrices �(zn,β)+r in the expression for JAML, a similar
change also affects the matrices M

β̂
, N

β̂
, and X

β̂
. With M

β̂

suitably modified, formulae (27) and (28) continue to hold.

A.2. Homography model

If a planar homography is represented by an invertible 3 ×
3 matrix H and if m′ = [u′, v′, 1]� is the image of m =
[u, v, 1]� by that homography, then

m′ � H m,

where � denotes equality up to scale. This relation can
equivalently be written as

[m′]×Hm = 0. (30)

With β = vec(H), z = [u, v, u′, v′]�, and U(z) = −m ⊗
[m′]×, we have

[m′]×Hm = U(z)�β,

and so (30) can be restated as

U(z)�β = 0. (31)

The last relation encapsulates the homography model (for
image motion) in the form conforming to the framework
of Appendix A.1. Since the 9 × 3 matrix U(z) has rank
2, the three equations in (31) are linearly dependent and
can be reduced—by deleting any one of them—to a sys-
tem of two equations. For β �= 0, the reduced system
gives two functionally independent constraints on z, and this
has the consequence that the set of image correspondences
{z ∈ R

4 | U(z)�β = 0} is a submanifold of R
4 of codimen-

sion 2.
Let {mn, m′n}Nn=1 be a set of image correspondences based

on which an AML estimate of a homography is to be evolved.
For each n = 1, . . . , N , write mn = [un, vn, 1]� and
m′n = [u′n, v′n, 1]� and let zn = [un, vn, u′n, v′n]�. Sup-
pose that each pair mn , m′n comes equipped with a pair of
2×2 respective covariance matrices �un ,vn

, �u′n ,v′n . For each
n = 1, . . . , N , let

�zn
=

[
�un ,vn

0
0 �u′n ,v′n

]
.

Since {z ∈ R
4 | U(z)�β = 0} has codimension 2, the appro-

priate AML cost function is given by

JAML(β) =
N∑

n=1

β�U(zn)[�(zn,β)]+2 U(zn)�β,

where

�(zn,β) =
(

I3 ⊗ β�
)

B(zn)(I3 ⊗ β),

B(zn) = [∂zvec(U(z))]z=zn �zn

[[∂zvec(U(z))]z=zn

]�
,
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and, explicitly,

∂zvec(U(z)) = −
[

vec(e1 ⊗ [m′]×), vec(e2 ⊗ [m′]×),

vec(m⊗ [e1]×), vec(m⊗ [e2]×)
]
,

with e1 = [1, 0, 0]� and e2 = [0, 1, 0]�. Now, on account
of (28), the covariance matrix of the AML estimate β̂AML =
vec(ĤAML) can be explicitly expressed as

�
β̂AML

= P⊥̂
βAML

�0
β̂AML

P⊥̂
βAML

,

where the pre-covariance matrix �0
β̂AML

is given by

�0
β̂AML

= (Mβ̂AML
)+8 ,

Mβ̂AML
= ∥∥β̂AML

∥∥2
N∑

n=1

U(zn)
[
�(zn, β̂AML)

]+
2 U(zn)�.

Appendix B. Covariance of the DLT estimate

We finally derive the formula for the covariance matrix of the
DLT estimate of a vectorised homography matrix under the
assumption that the estimate is evolved from a normalised
image data set.

Let T and T′ be two transformations for normalising the
coordinates of 2D image points,

m̃ = Tm and m̃′ = T′m′.

The maps T and T′ induce the corresponding transformation
of homographies given by

H̃ = T′HT−1.

A defining characteristic of this latter transformation is that
m′ � Hm holds precisely when m̃′ � H̃m̃. With β =
vec(H) and β̃ = vec(H̃), the transformation of homogra-
phies becomes

β̃ = (T−� ⊗ T′)β.

Let {m̃n, m̃′n}Nn=1 be a set of corresponding normalised 2D
points. Set z̃n = [ũn, ṽn, ũ′n, ṽ′n]� for each pair m̃n =
[ũn, ṽn, 1]� and m̃′n = [ũ′n, ṽ′n, 1]�, and let

Ã =
N∑

n=1

U(z̃n)U(z̃n)�.

The DLT estimate of β̃, ̂̃
βDLT, based on {m̃n, m̃′n}Nn=1 is

defined as the minimiser ̂̃
βDLT of the cost function

J̃DLT(β̃) = β̃
�

Ãβ̃

‖β̃‖2

and coincides with the eigenvector of Ã corresponding to
the smallest value. The function J̃DLT is similar in form to
the function JAML—the scalar quantity ‖β‖2 plays in J̃DLT

the role of the matrices �n in JAML. Exploiting this observa-
tion, one can immediately put forward an argument along the

lines of Appendix A.1, showing that ̂̃βDLT has the covariance
matrix in the form

�̂̃
βDLT
= P⊥̂

β̃DLT
�0

̂̃
βDLT

P⊥̂
β̃DLT

,

where the pre-covariance matrix �0
̂̃
βDLT

is given by

�0
̂̃
βDLT
=

(
M̂̃

βDLT

)+
8

D̂̃
βDLT

(
M̂̃

βDLT

)+
8

,

D̂̃
βDLT
=

∥∥∥∥
̂̃
β
�
DLT

∥∥∥∥
−2 N∑

n=1

U(z̃n)�
(

z̃n,
̂̃
βDLT

)
U(z̃n)�.

The details of the calculation leading to the above expression
for �̂̃

βDLT
, analogous to those presented in Appendix A.1, are

omitted.
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in Warsaw. He is concurrently
a senior research fellow in the
School of Computer Science at

the University of Adelaide working on a range of problems in computer
vision. His research interests include differential equations, mathemat-
ical foundations of computer vision, functional analysis, and harmonic
analysis.

123



422 W. Chojnacki et al.

Zygmunt L. Szpak received
his Ph.D. degree in computer
science from the University of
Adelaide, Australia, in 2013, and
his M.Sc. degree in computer
science from the University of
KwaZulu-Natal, South Africa, in
2009. He is a senior research
associate in the School of Com-
puter Science at the Univer-
sity of Adelaide working on a
broad range of practical com-
puter vision problems. The over-
arching theme of his research
is constrained parameter estima-

tion, with an emphasis on applications in multiple view geometry.

Michael J. Brooks received
his Ph.D. degree in computer
science in 1983 from the Uni-
versity of Essex. He holds the
Chair in Artificial Intelligence
in the University of Adelaide’s
School of Computer Science
and is presently Deputy Vice-
Chancellor and Vice-President
(Research) at the University of
Adelaide. His research interests
include structure from motion,
statistical parameter estimation,
and video surveillance.

Anton van den Hengel received
a Ph.D. degree in computer sci-
ence in 2000, a Master of Com-
puter Science degree in 1994, a
Bachelor of Laws degree in 1993,
and a Bachelor of Mathematical
Science degree in 1991, all from
the University of Adelaide. He is
the founding Director of the Aus-
tralian Centre for Visual Tech-
nologies (ACVT), an interdisci-
plinary research centre focusing
on innovation and education in
the production and analysis of
visual digital media. At more

than 40 members, the ACVT is Australia’s largest computer vision
research group.

123


	Enforcing consistency constraints in uncalibrated multiple homography estimation using latent variables
	Abstract 
	1 Introduction
	2 Multi-projective parameter estimation and latent variables
	3 Approximate maximum likelihood cost function and scale invariance
	4 Rank-four constraint enforcement
	5 Cost function optimisation
	6 Multiple homography estimation
	6.1 LM scheme
	6.2 Initialisation procedure

	7 Experimental verification
	7.1 Synthetic data
	7.2 Synthetic simulation procedure
	7.3 Real data
	7.4 Real data experiment procedure
	7.5 Quantitative comparison of methods
	7.6 Application: robust consistent homography estimation

	8 Discussion
	9 Conclusion
	Acknowledgments
	Appendix A. Covariance of the AML estimate
	A1. General model
	A.2. Homography model

	Appendix B. Covariance of the DLT estimate
	References


