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Abstract In this paper, we brought out a novel pedes-
trian detection framework for the advanced driver assistance
system of mobile platform under the normal urban street
environment. Different from the conventional systems that
focus on the pedestrian detection at near distance by inter-
fusing multiple sensors (such as radar, laser and infrared cam-
era), our system has achieved the pedestrian detection at all
(near, middle and long) distance on a normally driven vehicle
(1-40 km/h) with monocular camera under the street scenes.
Since pedestrians typically exhibit not only their human-
like shape but also the unique human movements gener-
ated by their legs and arms, we use the spatio-temporal
histogram of oriented gradient (STHOG) to describe the
pedestrian appearance and motion features. The shape and
movement of a pedestrian will be described by a unique fea-
ture produced by concatenating the spatial and temporal his-
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tograms. A STHOG detector trained by the AdaBoost algo-
rithm will be applied to the images stabilized by the struc-
ture from motion (SfM) algorithm with geometric ground
constraint. The main contributions of this work include:
(1) ground constraint with monocular camera to reduce
the computational cost and false alarms; (2) preprocess-
ing by stabilizing the successive images captured from
mobile camera with the SfM algorithm; (3) long-distance
(maximum 100 m) pedestrian detection at various velocities
(1-40km/h). Through the extensive experiments under dif-
ferent city scenes, the effectiveness of our algorithm has been
proved.

Keywords Spatio-temporal HOG - Pedestrian detection -
Onboard monocular camera - Structure from motion

1 Introduction

Due to the explosive increase of automobiles over the world
in the last two decades, the requirement for protecting both
the drivers and pedestrians has been kept on rising. Corre-
spondingly, many protection systems have been proposed to
improve the traffic safety, such as the seat belt, electronic sta-
bilization program and air bag. However, most of those sys-
tems only focus on protecting the drivers. The most serious
traffic accident vehicle-to-pedestrian accident still remains
as a challenging task.

To avoid the vehicle-to-pedestrian accidents, more intelli-
gent protection systems are required to anticipate accidents.
Such systems are usually called as the advanced driver assis-
tant systems (ADAS) which include the auto control, driver
monitoring and pedestrian protection, etc. In this paper, we
focus on the kernel task of ADAS—*pedestrian detection”
by applying the visible spectrum (VS) monocular camera to
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locate the pedestrians so as to avoid the vehicle-to-pedestrian
accidents.

With years of research and great efforts from both the aca-
demic researcher and manufactures, many onboard pedes-
trian detection systems have been brought out. Most of those
proposed systems mainly rely on combining the multiple sen-
sors (such as the radar, laser range finder, far/near infrared
camera and stereo camera) to locate the pedestrians. In 2008—
2009, the BMW 7 Series and Mercedes-Benz E-Class vehi-
cles were implemented with the pedestrian protection sys-
tem that could work at night. By combining the monocular
camera with radar, the Volvo S60 has achieved the collision
warning system that can detect the people and stop the vehi-
cle, automatically. Although, all these systems could work
efficiently under some conditions, detecting pedestrians at
long distance still remains as a difficult task. This is because
although the depth sensors could find an obstacle at long dis-
tance, the classification of detected obstacle still relies on the
pedestrian detection algorithms with VS camera. As men-
tioned in [1], most of the current detectors are designed for
near distance (which means that pedestrians are higher than
80 pixels in the image) and perform poor even at medium
distance (pedestrian height varies from 30-80 pixels).

The difficulties of onboard pedestrian detection with VS
monocular camera include:

e The detection must be performed under the highly
dynamic urban city scene. Here, the image quality from
VS camera is usually poorer than the surveillance scenes.
This is because both the illumination and weather condi-
tion are unpredictable, where the strong shadow or poor
contrast in the visible spectrum may dramatically degrade
the image quality.

e The appearance of both the pedestrian and background are
highly variable due to the various viewpoints. Since both
the pedestrian and camera are in motion, the pedestrian
detection at different view angles (front, lateral, rear) and
distance becomes extremely difficult, because the pedes-
trian appearance feature will become unclear or blurred at
the long distance. Since most current pedestrian detectors
require the clear pedestrian features, people at long dis-
tance remains as a challenging task for those algorithms
(detailed discussion could be found in [1]).

Since the conventional onboard pedestrian detection algo-
rithms mainly apply the appearance feature to describe the
human and require the clear target feature for discriminating
a pedestrian from background, they tend to suffer from the
huge human appearance variation (generated by the different
clothes, camera viewpoints, articulated pose, baggage, etc.)
and the blurred human image at long distance.

In this paper, to overcome such problems, the temporal
(or motion) features are introduced to improve the detec-

@ Springer

tion performance based on the fact that not only human
shape but also human motion makes a pedestrian different
from the surrounding environment. The pedestrian feature
is described by a spatio-temporal histogram of oriented gra-
dients which corresponds to his/her appearance and motion
features. To achieve the pedestrian detection at long distance
(which means the pedestrian height will be smaller than 30
pixels in the image), the images captured from the monocu-
lar VS camera are stabilized according to the SfM algorithm,
through which the appearance and motion features of pedes-
trians could be smoothly extracted from two adjacent frames.
The main contributions of our work include:

e Describing the pedestrian feature with a spatio-temporal
histogram of oriented gradients (STHOG). Since pedes-
trians will exhibit not only their human-like shapes but
also the unique human-like movements caused by their
arms/legs, a pedestrian’s appearance is described by the
HOG feature, and his/her motion is represented by another
histogram of temporal gradients computed from succes-
sive frames. Compared with the appearance features,
the STHOG feature is more invariant to the changes
of clothes and particularly powerful in discriminating
pedestrians from cluttered background, where some back-
ground objects happen to contain the human-like shape
but their motion is different from that of human.

e Geometric ground constraint according to the SfM algo-
rithm. Since it is reasonable to assume that a pedestrian
will only walking on the ground but not in the sky, the
geometric constraint of a planar ground will reduce not
only the computational cost but also the false alarms as
the region higher than the ground (like road mark or the
house roof). Here, the depth of each image pixel could be
computed from the SfM by estimating the camera motion
with RANSAC method. A constraint planar ground is
constructed by the pixels whose depth varies 10-100m
(explanation for selecting such values could be found in
Sec.3.2).

e Preprocessing for stabilizing the images captured from the
monocular camera. Since the camera on a vehicle may
move fast, the location of a pedestrian in two adjacent
images may be discontinuous. We brought a stabiliza-
tion system to estimate the pixel correspondence between
two images according to the vehicle velocity and camera
parameters. With the estimated pixel correspondence, we
could not only smoothly compute the temporal motion
from two frames but also predict the pedestrian position
in the next frame which can help us to reduce the compu-
tational cost and false alarms.

This paper is organized as follows: in Sect. 2, we provide
a brief review for related work about the onboard pedestrian
detection; in Sect. 3, there is a detailed introduction for the
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proposed system; Sect. 4 shows the comparative experimen-
tal results among the proposed system and other pedestrian
detectors.

2 Related work
2.1 Pedestrian detection by the VS camera

Geronimo et al. [2] split the architectures of onboard pedes-
trian detection into 6 modules as: preprocessing, foreground
segmentation, object classification, verification (or refine-
ment), tracking and application. In this paper, we roughly
simplify them into four main parts as: (1) preprocessing; (2)
geometric constraint; (3) pedestrian detection; and (4) refine-
ment. Although, the processing turn of pedestrian detection
and geometric filter can be reversed, applying geometric filter
after the pedestrian detection will be computational expen-
sive. Therefore, in our work, we refer to applying the geo-
metric constraint before pedestrian detection.

Since so much efforts and so many powerful algorithms
have been brought out for the task of onboard pedestrian
detection, covering all the related works has been beyond
this paper. Good survey on this topic could be found in [1-3],
where they compared the recent onboard pedestrian detection
algorithms in detail and described how to design the onboard
pedestrian detection system.

2.1.1 Preprocessing

The task of preprocessing may include the camera calibra-
tion (stereo camera) or adjusting the exposing time of cam-
era (both the stereo and monocular camera systems). The
motivation to applying preprocessing lies in the fact that:
when a vehicle moves in the city scene, some typical envi-
ronments may degrade the image quality dramatically, such
as the bridge tunnels, rapid motion of the vehicle itself or
background (other on-coming vehicles) and abrupt reflection
from the glasses. Without the preprocessing, the following
modules of pedestrian detection will suffer from the poor
images, which may lead to the collapse of the whole system.
The high dynamic range (HDR) method [4] can provide
the high contrast images from the aforementioned urban
scenes, it is reported that this method can also be applied
to the near infrared (NIR) cameras to work at night. As for
the stereo camera system, the camera calibration [5,6] is the
main task in preprocessing. They usually firstly compute the
intrinsic camera parameters and assume them to be fixed,
then the extrinsic parameters will be continuously updated.

2.1.2 Geometric constraint

The geometric filter/constraint could be performed by both
the monocular and stereo camera system to filter out the

unreasonable pedestrian candidates. In [7], the parameters of
monocular camera pose are obtained by the training results
from a set of labeled images, and such camera pose helps to
build the 3D geometry constraint. In [8], a V-Disparity space
is produced by accumulating the disparity from stereo camera
in the vertical direction to estimate the road slope and depth
of a point. Other works [9] use the Euclidean space for the
3D point fitting. Ess et al. [10—12] estimate the ground plane
from the Structure-from-Motion. The continuously estimated
ground plane can be used for updating the camera calibration
of stereo camera and filtering out the pedestrian candidates
which are out of the ground plane. Keller et al. [13] brought
out a novel onboard safety driving assistant system. From the
6D-Vision system, the optical flow computed from the stereo
camera can identify the moving pedestrian from static vehi-
cles at real time. Further object recognition is achieved by
the HOG/Linear SVM which will be discussed in detail later.
In [3], Gandhi et al. discuss about the way and the problems
in designing an onboard pedestrian protection system, where
they prove that the Omni cameras could also be applied for
producing the 3D disparity map.

2.1.3 Pedestrian detection

Since predicting the pedestrian candidates from the images is
the kernel of an onboard pedestrian detection system, many
efforts [14-20] have been appled to solve this problem. By
taking the silhouette shape as the pedestrian feature, Gavrila
[21,22] proposed a hierarchical shape classification system
based on the Chamfer matching algorithm. More recent
researches focus on using the appearance descriptors to repre-
sent the pedestrian feature. Papagergiou and Poggio [23] pro-
pose a Haar-like integral image to represent the local contrast
between the target object and its surrounding background,
and a Haar-feature-based detector is obtained by training this
feature with support vector machine (SVM). Viola and Jones
[24] further improve this feature with the AdaBoost cascade
structure, the motion information and Haar-like feature are
combined for the pedestrian detection with surveillance cam-
era. The success of this cascade-structure detector is based
on the assumption that the overwhelming majority of input
images are background.

The HOG [25] uses a normalized histogram to describe
the local shape and appearance of a target object (similar to
SIFT). Local gradients are binned according to their orienta-
tion and weighted by their magnitude within a spatial grid of
cells. The most discriminating HOG features for pedestrian
detection are selected using a linear SVM. Zhu et al. [26]
achieved almost real-time single-scale pedestrian detection
by training a cascade detector with an integral HOG fea-
ture, while keeping almost the same detection performance
as [25]. Further improvements by including the spatial co-
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occurrence within a single window for each region of the
HOG [27] have been reported.

Wau et al. [28] proposed the Edgelet feature for pedestrian
detection when partial occlusion occurs. The affinity func-
tion of the Edgelet is a variation of Chamfer matching that
can capture both the intensity and shape of the edge. With
prior knowledge of the camera position and ground plane,
the partial occlusion problem is solved by maximizing the
joint image likelihood with and without occlusion.

The interest-point-based pedestrian detector [29,30] han-
dles partial occlusion by integrating multiple hypotheses.
The pedestrian hypotheses obtained from the implicit shape
model detector are further verified by the 3D information
from stereo cameras, camera ego-motion flow, and ground
plane geometry constraints.

To reduce the effect of a noisy background and partial
occlusion, the HOG-LBP [31] detector introduces a local
binary pattern (LBP) histogram into the conventional HOG.
The histogram produced by the LBP is used to suppress ran-
dom background noise, while partial occlusion is detected
by checking the inner product of a cell in the SVM classifi-
cation. When partial occlusion occurs, the part-based HOG-
LBP detector is applied to find the occluded person.

By combining the ground plane assumption with multi-
resolution models, Park et al. [32] improved the HOG detec-
tor when dealing with a wide range of pedestrian appearance
changes in scales. Barinova et al. [33] presented a frame-
work for detecting objects by describing their feature using
Hough transformation. Object detection is achieved by max-
imizing the energy function of the log-posterior of the Hough
transformation results. Roth et al. [34] trained a separate grid
classifier for the target and background models. Object detec-
tion was achieved by comparing the similarity obtained by
these two classifiers. Online updating was also carried out for
the background classifier. Further improvement of this work
was reported in [35].

More recent work [36,37] shows that the combination of
deformable part and holistic models will greatly improve
the performance of traditional algorithms (HOG or Haar-
like features). By such combination of richer models and
more sophisticated learning techniques, they greatly improve
the detection rate under the complex datasets. In [1,38], it
has been proved that under the same framework, the richer
feature descriptor could outperform those simple descrip-
tors. In their work, the combination of HOG, motion (optical
flow) and self-similarity color histogram greatly increases
the detection rate. An interesting outcome from [39] was that
the virtual images can also be used for training a pedestrian
detector. Wang et al. [40] developed an automatic algorithm
to select new confident positive and negative samples for
re-training the appearance-based pedestrian detector under a
new unknown traffic scene. Rodriguez et al. [41] pay more
attention to counting the pedestrians under the crowd scene.
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They applied state-of-the-art detector of [36] to roughly
locate all the possible pedestrians and estimate the number
of pedestrians by minimizing the cost energy function that
evaluates the detection score, overlapping information and
penalizing the crowd density.

Other algorithms such as temporal tracking through detec-
tion results [29,42] have been reported. Based on the assump-
tion that, in the temporal space, the consistency of a correct
pedestrian is more robust than that of an abrupt false posi-
tive on the background, tracking the pedestrian trajectory can
further improve the detection rate and reduce the false alarm
rate.

As aforementioned, since most of the present pedes-
trian detection algorithms use the appearance information
to describe the pedestrian feature, they usually suffer from
the huge variation of pedestrian appearance and cluttered
background where some background objects may happen to
contain the human-like appearance. The normal solution is
to prepare the extensive positive/negative training datasets
to cover the pedestrian/background appearance variation as
much as possible. However, such extensive training dataset
usually leads to the over-training problem.

To overcome such problems, the temporal or motion fea-
tures [43] are introduced to improve the detection perfor-
mance based on the fact that is not only its appearance but also
its motion that makes a target object different from others. In
the case of pedestrian detection, a pedestrian is assumed to
have both human shape and a unique human movement such
as the periodic movement of arms and legs. Therefore, the
spatio-temporal features are considered to be more powerful
than appearance features in pedestrian detection. Such idea
has been proved to be useful in action recognition [44-51]
and patch-based image segmentation [27,52].

In this paper, we proposed a novel spatio-temporal HOG
pedestrian detector for discriminating a pedestrian from the
background (details in Sect. 3.4.1). The following related
spatio-temporal feature descriptors are proposed for action
recognition.

2.1.4 Related spatio-temporal feature descriptors

3DHOG feature descriptor

Klaser et al. [47,53] achieved action recognition under
complex background conditions using a 3DHOG feature
descriptor that can describe both shape and motion features
with a co-occurrence spatio-temporal vector. For a given 3D
patch that is divided into ny x ny x n; cells, the gradients cal-
culated in the x, y and 7 directions are combined to produce a
spatio-temporal vector (as illustrated in Fig. 1). The orienta-
tion of this co-occurrence spatio-temporal vector is quantized
by projecting it onto an icosahedron (20 sides, which means
the histogram has 20 bins) and identifying its nearest orien-
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Computed gradient

Bj: blcok j
Ci: cell i

Fig. 1 Tllustration of the 3DHOG descriptor from [47]. The orientation
of a computed spatio-temporal gradient will be calculated by projecting
it onto an icosahedron

Fig. 2 TIllustration of the histograms for optical flow [44,46]. The opti-
cal flow will be represented by a histogram according to their orientation

tations. The corresponding 3DHOG descriptor concatenates
gradient histograms of all cells and is normalized.

Since the 3DHOG descriptor uses a co-occurrence vector
to describe human shape and motion features, while train-
ing a 3DHOG descriptor, it always requires extensive train-
ing samples to cover all possible combinations of each gra-
dient. Otherwise, the 3DHOG features tend to suffer from
over-training. Moreover, since the orientation of this co-
occurrence 3D vector is determined by projecting it onto each
side of the icosahedron, any noise from x, y or ¢ will cause
it to be projected onto the wrong side. To reduce the effect
of noise, in [47], a 3DHOG descriptor was applied around
some robustly extracted feature points, instead of directly to
the full image. Our experimental results in Sect. 4 also prove
that applying the 3DHOG descriptor directly to the pedes-
trian detection task is unsuitable.

HOGHOF feature descriptor

The HOGHOF descriptor describes both the shape and
motion features of a target object with a concatenated his-
togram. Such a descriptor can be applied to pedestrian detec-
tion [54] and action recognition [44,46]. To characterize the
local motion and appearance, histograms of the oriented gra-
dient and optical flow accumulated in space-time are con-
catenated and normalized (as shown in Fig. 2). Walk et al.
[38] tried to combine the HOG with optical flow (HOF) [55]
and color self-similarity to set up a new feature descriptor,

where the gradient appearance, motion, and pairwise color
distribution of human parts are processed simultaneously.

The problem with the HOGHOF is that it is difficult to
extract the optical flow stably in a complex scene. The opti-
cal flow is easily changed as a result of different camera
viewpoints, walking directions, or variations in illumination.
Hence, for example, if the direction of the observation view-
point to the pedestrian in the test video is different from
that in the training samples, the HOGHOF may become very
unstable. In practice, the HOGHOF descriptor also requires
extensive training samples to cover the possible variations in
target features (viewpoints and walking directions).

STGGP descriptor

Liu et al. [56] proposed the spatial-temporal granularity-
tunable gradient partition (STGGP) descriptor for pedes-
trian detection. The orientation of spatial-temporal gradients
attributed to humans was described in a 3D Hough space,
while a generalized plane was produced to partition the gradi-
ents by a back-projection from the cubic region of 3D Hough
space to 3D gradient space. The generalized plane consist-
ing of nine parameters (such as gradient strength, position,
and shape of the plane) was trained by a linear SVM for
pedestrian detection. Since the authors tolerated image noise
by enlarging the cubic region in 3D Hough space, there was
a tradeoff between tolerance of noise and partition perfor-
mance in the 3D spatial-temporal space. This means that
enlarging the cubic region in 3D Hough space would lead to
a less generalized plane in 3D gradient space, which would
reduce the discriminability of this detector.

2.1.5 Refinement

As for the refinement, we usually require that one target per-
son only responds to his/her unique detection result. After
the detection process, the pedestrian detector will produce
a density map of correct detection results consist of their
score, scale and position over the whole image. Then, the
nonmaximum suppression algorithm will be applied to this
density map to find the peaks that correspond to pedestrians.
For such sake, mean shift [57] clustering is a good choice
to find the local maximum through the whole image. Other
work [33] uses the Hough transformation to describe object
shape and the local nonmaximum suppression is achieved by
minimizing an energy function in the Hough Forest image.

2.2 Pedestrian detection by the other onboard system

Besides the VS camera, other sensors (such as NIR, ther-
mal infrared (TIR) camera, radar and laser scanner) are also
applied for the onboard pedestrian detection task. The moti-
vation for using those extra sensors lies in that they can
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Ground constraint

Produce candidates

Refine candidates

A

Geometric constraint

[ Image Stabilization ] [ Object classification ] [

Refinement ]

Fig. 3 The architecture of our onboard monocular pedestrian detection system. The arrows refer to the function of next module. The object
classification will be performed after the image stabilization process. The output of object classification will be integrated into reasonable groups

by the refinement process

remove the inflexible noise that the VS camera suffers from
or can provide the useful 3D depth information to filter out
the unreasonable detection results (like the pedestrians in the
sky or on the roof of houses). Furthermore, the image analy-
sis with VS camera is far away from perfect, many factors
such as illumination, motion blur and clustering integration
will affect the final detection results.

However, the TIR or NIR images could also be affected by
the other hot objects (other vehicles or engines), weathers and
seasons (summer or winter). It is reported [58] that pedes-
trians could be either warmer or colder than the surrounding
background, according to different factors. The radar or laser
scanner can only find an obstacle but could not tell us what
itis.

Therefore, the fusion of VS camera with TIR/NIR or
others sensors becomes a natural and reasonable choice.
Fardi [59] applied the Kalman filter to combine the laser
scanner with TIR camera for pedestrian detection. In [60],
radar, velocity measurer, VS and TIR cameras are combined
together for producing and verifying the pedestrian shape
hypothesis.

In[61], the VS and TIR are combined for pedestrian detec-
tion, where the stereo VS camera produce the geometric con-
straint and the final detection results are refined in the TIR. In
[62], Radar, VS and TIR cameras are implemented together
for pedestrian detection. The accurate 3D ground plane is
produced by the radar data and the TIR helps to filter other
cold background, and the final detection results are verified
by the VS camera according to the histogram of oriented
edges.

3 Our onboard monocular pedestrian detection system
As shown in Fig.3, the architecture of our system is com-

posed of: geometric constraint, image stabilization, object
classification (STHOG pedestrian detection), and refine-
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The monocular camera
applied in this system

Construction of our real system.

A Honda normal vehicle and
the monocular pinhole camera.

Fig. 4 The camera setup of our system. The training and test images
are captured by a monocular PointGray Camera

ment. The camera setup of our system is shown in Fig.4,
where the PointGray camera and 47° HFOV lens are applied.
The video resolution is 800 x 600 pixels which is trimmed
from the 1280 x 960 pixel-size images, and the overall image
quality is lower than that of the images captured by the static
camera with the same resolution.

3.1 Structure from motion with monocular camera

As for an onboard pedestrian detection system, the real-world
3D information is always required not only for detecting the
pedestrians but also for braking the vehicle to avoid the colli-
sion. Besides the aforementioned range sensors (such as radar
or laser scanner), the Structure from Motion (SfM) algorithm
could also provide the rather accurate 3D information from
the 2D images with a monocular camera.

Figure 5 shows the flow chart of the SfM applied in our
system to estimate the 3D depth information and homography
matrix of image plane. Here, the Harris corner detector [63]
is applied to extract the feature point from the successive
frames and the optical flow of these feature points is estimated
by the Lucas—Kanade algorithm [64]. The camera motion is
estimated by the SfM of [65], where the epipolar constraint
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Computing the Optimizing the camera
Optical flow motion parameters

Estimate the pitch rate Computing the
by Kalman filter homography matrix
s
| Y )

Estimating the Estimating the 3D depth Estimating the projection of
camera motion

of an image pixel apixel in the adjacent frames
Fig. 5 The flow chart of SfM applied in our system

is set up by assuming the images captured by a monocular
camera at time ¢ and 7 4+ 1 as two independent frames. In
this way, a monocular camera can be considered as stereo
camera along the time direction, and the essential matrix E
about camera parameter could be computed by the RANSAC
[66] method. Here, the matrix E will satisfy:

Pl EP, =0, ¢y
P=(x, y, 1), ()

where Py, P, represent the projection point in frame ¢ and
t + 1. The optimization for the essential matrix is achieved
by the Bundle Adjustment [67] method to minimize Eq. (3),
where the Gauss—Newton method is applied to Eq. (4) (which
is the Taylor expansion of Eq. (3)).

1
fo = [E(PITEu)Pz)Z} . X = (R, trany), 3)

SxTHéx
2

where g is the derivation of f asg=V f and H is the Hessian
matrix of g as H = VV! f = Vg’ R and t;,, represent
the rotation and translation of camera. Details about how to
extract R and t,,s from an essential matrix could be found
in [68].

The camera pose (pitch rate #) is the included angle
between the camera optical axis and ground plane. Here, we
select the Kalman filter to estimate the camera translation
trans = (frans(x)» frans(y)» frans(z))» and the pitch rate 6 could be
computed as:

fx+8x) = f(x)+g"6x+ : )

| —lrans(y)

/42 2
trans(x) + trans(z)

As shown in Fig. 6, from the camera pitch rate 6, we can
estimate the depth information (D) of a given image pixel X;
= (x, y, t) as follows:

_ L 6)
" tan(e 4+ 6)’

— tan~! (y_)’c) 7
o = tan — 7

where H, is the height of camera, « means the depression
angle between the camera optical axis and image pixel X,

6 =tan—

(&)

Fig. 6 The illustration of estimating the depth from pitch rate accord-
ing to the SfM algorithm. The estimated depth will be applied for the
further image stabilization and object classification

yc is the height of image center and f is the optical focus
length of camera.

To estimate the corresponding position of a given image
pixel X; inits adjacent frames 7+ 1 (or  — 1), we need to com-
pute the homography matrix Hyome of the camera movement
as:

n\T
Hhpomo = RT — Rtyans (E) s (8)

where n is the normal vector that is orthogonal to «, and d is
the distance from the camera center to the ground plane where
a pedestrian is assumed to stand in. Then, the corresponding
pixel )_(,H:(x(nxt), Yy, t+1)to X, could be calculated as:

Xx+1 _ Ht—)t—HXt. 9)

homo

Once the rotation matrix R and translation vector f.ans are
obtained, the pitch rate 9, depth D to the foot bottom point
of the target pedestrian standing on the ground plane and the
homography matrix Hpome could be computed according to
Eq. (5-9). The pitch rate 6 is used to compute the depth D
as well as to relate the two positions between two successive
frames via the homography matrix Hhomo in Eq.9.

3.2 Geometric constraint by SfM algorithm

The 3D depth distance estimated from Eq.(6) will be used
to construct our geometric ground constraint which will
not only reduce the computational cost but also filter out
the unreasonable pedestrian candidates. Since it requires a
long distance to stop a vehicle when it is moving fast (e.g.,
40km/h), we choose arange from 10 to 100 m to be the search
range of our detection system. The reason for setting up the
maximum depth range as 100m lies in the requirement of
our system, where 100m is the braking distance for stop-
ping a vehicle at the speed of 100km/h. While the distance
from a pedestrian to vehicle is less than 10m, it will be too
short to stop the vehicle (speed of 30 km/h). The image pixels
within such range are assumed to be on a simulated ground
plane, otherwise ignored (as the unreasonable area illustrated
in Fig. 7). The following modules of our system such as the
image stabilization and STHOG-based pedestrian detection
will be performed on this ground plane.
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Fig. 7 Geometric ground plane
constraint will reduce both the
computational cost and false
alarms on the background
regions. Like the right image,
the unreasonable sky area that
may look like human shape will
be ignored

(1) Only the ground plane will be scaned.

As illustrated in Fig.7, the advantages of applying this
ground plane constraint include:

e Reducing the computational cost (about only 40 % of the
image will be searched). Objects at the infinite depth dis-
tance (such as the vehicles or background regions too far
away from the camera) or in the sky (roof, windows, etc.)
will be ignored. Such assumption is reasonable, because
it is almost impossible for a pedestrian to walk in the sky
or on the roof of a house, and the pedestrian at the infinite
distance to the vehicle is not a threat to the safe driving.

e Reducing the false alarm. The background objects like
the telegraph pole or windows (right part of Fig.7) will
be ignored due to their geometric position is out of the
ground plane.

3.3 Image stabilization through three successive frames

Since the onboard camera will keep on moving, not only
the pedestrians but also the static background become mov-
ing due to the camera movement. In a video sequence, the
motion includes: movement of walking pedestrians, scale
changes of the static background objects and other moving
background like vehicles and the complex motion of all the
things in the image caused by the changes of camera view-
points. Therefore, it becomes difficult to directly identify the
human motion from the other cluttered motions as shown in
Fig.8.

To solve this problem, we set up an image stabiliza-
tion method for suppressing the background motion among
the successive frame and extracting the pedestrian motion
smoothly.

3.3.1 Height estimation from monocular camera

As shown in Fig. 9, when the camera optical focus length ( f)
is fixed, as for a pedestrian, his/her image height in the video
sequence can be expressed as:

_ S * Hped

h b
D

(10)
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|:| Ground Plane

Ignored human-like
background

Maximum 100m

Minimum 10m

Fig. 8 Failure sample of directly applying pedestrian detector to the
onboard moving video sequence without the image stabilization. Many
false alarms are produced at the unreasonable area such as the tower
and trees at extreme long distance

Fig. 9 Illustration of the scene geometry

where Hpeq is the pedestrian height in the real world, D is
his/her depth distance to the vehicle. Since, as for the same
person, f and Hpeg will not change in one video sequence,
his/her image height is in the inverse ratio to his depth dis-
tance to the vehicle. This equation will be correct only if the
pitch rate equals to 0°. In the case that the camera pitch rate
0 # 0, the wrongly estimated pedestrian height ' would be

/

h = %(9) , where £ is the true pedestrian height when 6 = 0.

!
In this way the estimation error rate Error(h) = hh—_h could

be translated into another format as Error(h) = lggs—o(se(f).

Therefore, the estimation error of pedestrian height will only



Monocular Pedestrian Detection 169
Fig. 10 From our City-Scene
dataset, the statistical analysis =y )
betvyeen the pedestriar} height in T |p . « Observed o . Observed
the image and depth distance 3 Dat 3 AN Data
from this person to the vehicle. E ata ,-E
Left graph: curve fitting to the z . Curve z _ Line
real data; Right graph: linear 5 fitting 5 -
i ; jun) ag ® as fitting
line fitting to real data o L T = o
5 " o
g z N - E z
= ear® F = Q
3 = ar — » Near
Depth distance to vehicle (m) 1/D

depend on the camera pitch error. Even when the pitch rate
error is 10°, the height estimation error could still remain
small as 1.54 %. When the pitch rate error is as big as over
20°, the height estimation error will be quite problematic as
being over 6.42 %.

To investigate the relationship between the pedestrian
image height and their depth distance to the vehicle, we
prepared a City-Scene dataset which consists of more than
10,000 pedestrians. Through the statistical analysis on this
dataset, we get the result of Fig. 10, where f * Hpeq could
be roughly considered as constant. As f is fixed throughout
all the sequences, such a constant f * Hpeg corresponds to
the average height of all pedestrians in our dataset as 1.53 m
(covering male, female, teenagers and adult). Similar result
has also been reported in [1].

On the consideration of such constant f * Hpegd, it will
be easy for us to estimate the pedestrian height according
to his/her depth distance from his/her foot point to the vehi-
cle. In this way, even a pedestrian is far from the vehicle,
we can still estimate his/her approximate height by Eq. 10.
Such estimated height will be used for the following image
normalization process.

3.3.2 Single-scale image normalization in three successive
frames

Although Eq.(10) could estimate the pedestrian height in
one single frame, since we use the spatio-temporal feature
descriptor (details in Sect. 3.4.1) to represent the pedestrian
feature, estimating the pedestrian height should be achieved
in three successive frames simultaneously, but not frame by
frame.

Given a ground point X, = (x, y, t) in the current frame
t, if a pedestrian is walking across this point, from Eq. (10)

. . . (t) __ const t
his height could be estimated as h( an = Dr_ where D )

is the 3D depth of this ground point.

The corresponding ground points to X; in the previous
and next frames could also be estimated from Eq.(9) and
expressed as X,_; and )_(,+ 1. As shown in Fig. 11, the esti-
mated height of a pedestrian around X, 1, )_(,H in the two
adjacent frames could be calculated as:

Ground point (x,y,t) Estimated ground

point (Xaxo,yax,t+1)

Estimated ground
point (Xere),yre),t-1)

Previous frame (t-1)

Current frame (t) Next frame (t+1)
Fig. 11 Illustration of single-scale image normalization in three
onboard successive frames. The foot points of one pedestrian in three
successive frames will be estimated according to the SfM algorithm and
the corresponding height will be computed by Egs. 11, 12

Dt
h(lil) — h(t) * (X,)’) 11
(pre) cur DEX nt Vel x At (1
Dt
AL — B0 e 12
(nxt) eur Dfx - Vel * At (12)

where Vel’ refers to the vehicle velocity in the current frame
t, At is the shutter speed of camera. According to the esti-
mated height (hg);l)), hg?ur), hE;;l))) and X,_1, X, XH—I in
three frames, we could select the normalization windows in
each frame with a fixed aspect ratio (here, 1/1.4) around each
ground point.

The advantages of this image normalization include:

e Attenuating the background movement. Since the three
normalization windows are extracted from the same foot
point in the successive frames and the window size also
correspond to the same object in the real world, the cam-
era motion in the normalized windows will be attenuated.
From such windows, we could easily compute the pure
foreground motion which will be further categorized by
the STHOG pedestrian detector (as Sect. 3.4.1).

e Automatic adjustment according to the distance and
velocity. According to Eq. (9), (12), since the normaliza-
tion windows are determined according to the depth dis-
tance and vehicle velocity, our system could automatically
stabilize the image windows through various speeds.
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Fig. 12 Illustration of the
multiscale image normalization.
In this way, even multiple
pedestrians with various heights
are at the same distance to a
vehicle, the proposed algorithm
can still deal with such condition

Pedestrians with the same depth
distance may still contain multiple

(a) Image normalization should be
performed with multiple scales.

3.3.3 Multiscale image normalization

As in Fig. 12, despite containing the same depth distance to
the vehicle, the height of pedestrians may vary greatly due to
the age (child or adult) or sex (male or female). The pedestrian
height estimated by Eqs. 10 and 12 should also be flexible to
follow such height variance. Therefore, the estimated heights
(h (pre)/(cur)/(nxt)) is changed to B *h(pre)/(cur)/(nxt) where 8 =
0.7—1.3. Therefore, Eq. 10 could be considered as a specific
case as B = 1.0. As the average pedestrian height estimated
in Eq. 10 is 1.53 m, such multiple scale image normalization
could follow the variation of real pedestrian height from 1 to
2m. Here, by changing B, this normalization could deal with
wilder variation of people’s height.

In this way, at a given ground point, the multiple normal-
ization window will be set up according to the scale varia-
tion. The appearance and motion information computed from
these multiscale windows will be used as the input for the fol-
lowing pedestrian detection process.

3.4 Object classification
3.4.1 Spatio-temporal HOG feature

Spatio-temporal gradient

Usually, a video can be considered as a 3D space consist-
ing of x, y and ¢, as illustrated in Fig.13. When a pedes-
trian’s walking is captured, his/her movement will produce
a unique spatio-temporal gradient vector VI whose orienta-
tion can be represented by the spatial (¢) and temporal (1)
orientation in the x, y image plane and ¢ direction. Since the
pedestrian movement caused by the periodic movement of
the arms (or legs) and the pedestrian shape are the unique
features, it is reasonable to consider that only a pedestrian
can display a human-like shape and motion. This is because
the static background will only contain the spatial shape but
not the temporal movement, and the moving background sel-
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(b) Illustration of the multiple scale image
normalization at one ground point.

spatial-temporal gradient caused by the pedestrian movement

Y “’j time 1 ;VI
_.-S_. g Frame t+n . 1,
Yy ¢ I
vl : spatial-temporal gradient

X 2 orientation of the temporal gradient
¢ : orientation of the spatial gradient

Fig. 13 Relationship between spatial and temporal gradients in
STHOG

dom simultaneously appears to be human with the periodic
movement of people. Therefore, the spatial and temporal gra-
dient orientations are considered to be helpful in detecting
pedestrians in a video.

At frame ¢, as an image is represented as /(x, y, t), the
orientation of the spatial (¢) and temporal gradients (¢) at
(x, v, t) will be computed as:

VI = Iy, Iy, I], (13)
¥ = tan~! (1,/ 2+ 1;) , (14)
¢ = |tan" (1, /1)l (15)

where the gradients Iy, Iy, I, are simply calculated as:

Li=Ix+1,y,t)—I(x—1,y,1), (16)
Li=1(x,y+1L0)—1(x,y—11), (17)
Il=I(x1y’t+1)_1(x’y’t_1)' (18)
Construction of STHOG

The statistical histogram structure is used to represent the
STHOG features, because a histogram can both describe the
distribution of the STHOG features and suppress any abrupt
random noise. The computed gradient orientation ¢ and ¥ are
identified in the spatial and temporal histograms to describe
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Fig. 14 Construction of the STHOG features from three successive
frames

both the pedestrian shape and motion. The STHOG feature
is produced by concatenating the spatial and temporal his-
tograms, which means the STHOG feature will be a single
concatenated feature vector.

The implementation of STHOG is very similar to the well-
known HOG (as shown in Fig. 14), where ¢ (0-180°) and
(—90 — 90°) are computed from three successive frames and
oriented in nine directions. For normalization, each block
contains 3 x 3 x 1 cells, where each cell is composed of
6 x 6 x 3 pixels. The spatial and temporal histograms in each
block are normalized with the L1 norm. A STHOG feature is
set up by concatenating the two histograms, where 9 spatial
and 9 temporal bins are separately established by the STHOG
feature.

A detection window contains 6 x 9 blocks, that is 48 x 66
pixels by three frames, and the detection step is 6 pixels.
We determined the size of a cell, a block and detection win-
dow experimentally so as to roughly fit to the minimum size
of pedestrians in the test datasets that we used. Regarding
voting the gradients into histograms, a simple distribution
scheme like voting for the nearest neighbor bin could reduce
the robustness to noise. To retain this robustness, an inter-
polation is applied linearly between the two neighbor bins
nearest to a computed gradient in both the spatial and tem-
poral histograms.

Let @ be the magnitude of the gradient at pixel (x, y),
with ¢ the orientation of its spatial gradient. Then ¢; and
¢ represent the orientations of the corresponding two near-
est neighbor bins to ¢ in the histogram. The interpolation
computation distributes the magnitude w into two parts as:

g2 — ol
_ 19
= e —anll (19
_ e =gl 0
162 — o1

The interpolated magnitudes w; and w; are accumulated
for all pixels within the cell to create the spatial histogram in

One set of negative samples

One set of positive samples

Fig. 15 Illustration of the positive and negative training samples for
STHOG features. Each set of training samples is composed of three
successive image patches

the STHOG feature. The temporal histogram can be set up
by interpolation in the same manner.

Unlike in the 3DHOG descriptor, in the STHOG descrip-
tor, since the spatial and temporal gradients are represented
separately as independent histograms, orientation noise in
spatial (or temporal) gradients does not affect the orientation
of the temporal (or spatial) gradients, respectively. In addi-
tion, the effect of such noise can be further suppressed using
statistical binning in the histogram.

Moreover, since the HOGHOF descriptor constructs a his-
togram of motion direction, that is, the direction of the optical
flow, and the STHOG descriptor constructs a histogram of
the length of the normal flow, which is defined as the optical
flow projected onto the orientation of the spatial gradient (or
normal vector to the contour), the STHOG is relatively invari-
ant to changes in the viewpoints. This makes the STHOG
descriptor superior to the HOGHOF descriptor in dealing
with changes in viewpoints or walking directions.

3.4.2 STHOG pedestrian detection

Training

Because of the lack of an explicit pedestrian model,
machine learning is always required for finishing the pedes-
trian detection task, where the implicit representation can be
learned from the extensive training samples. In this paper, the
simple yet efficient AdaBoost algorithm described in [69] is
selected to train our STHOG pedestrian detector.

Each set of positive/negative samples is composed of three
successive pedestrian/background images, where both the
shape and motion information are included (as in Fig. 15).
The STHOG features are extracted from such successive
frames. The STHOG pedestrian detector obtained from
AdaBoost will be applied to the video sequence to locate
the pedestrian.

During the AdaBoost training process, each bin of the
STHOG is considered as a weak classifier. Because each
detection window is composed of 6 x 9 blocks, a block con-
sists of 3 x 3 cells and each cell has 18 bins, totally 8,748
weak classifiers are prepared in one detection window. A
weak classifier is defined as:
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Fig. 16 Examples of initial detection results by the STHOG detector
with the proposed detection system

f,~(b,~)={ Lif P — ) 2 0, on
—1 else

where P;, n; and b; are the parity, bias and bin value of
the ith weak classifier. A strong classifier is constructed by
linearly combining Ny = 600 weak classifiers selected via
AdaBoost:

NU)C

Fb) ="y fi(b), (22)
i=1

where y; is the weight for ith weak classifier, where the weak
classifier is selected by the AdaBoost algorithm according to
the value of P;, b;, n;.

Detection

After the AdaBoost training process, a STHOG pedestrian
detector will scan the image from all the positions which
satisfy the geometric constraint—their depth distance to the
vehicle is in the range 10-100m. To follow the height vari-
ation caused by the different pedestrians, as aforementioned
in Sect. 3.3.3, at a given ground point, the images will be nor-
malized as multiscale from three frames. The STHOG feature
computed from unified multiscale images will be verified by a
STHOG pedestrian detector. Running over those multiscale-
normalized windows will guarantee all pedestrians with dif-
ferent heights to be checked by the STHOG detector.

The initial detection results like Fig. 16 will be further
integrated by the following refinement process.

3.5 Refinement

To integrate the initial detection results, the nonmaximum
suppression method is usually applied. As shown in Fig. 16,
this process becomes a classic clustering initialization prob-
lem: we need to identify the number and position of clus-
ters (here, corresponding to pedestrians.) from an unknown
dataset. Compared with the fixed-bandwidth mean shift algo-
rithm that suffers from the fixed kernel window, the adaptive
mean shift clustering is a smarter method, where the band
width to each data is determined by the distance from it to its
K -Nearest Neighbor (K N N). Since the variation of cluster
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Fig. 17 Examples of the refinement results with the relative adaptive
mean shift clustering

size is huge in the detection results of an onboard scene (like
the big pedestrians who are close to the vehicle and small
pedestrians being far from the camera), it becomes difficult
to priory choose the proper value of K. Here, we choose
a relative adaptive mean shift clustering method (similar to
[40]), where the bandwidth is determined as 5/6, and § is
the mean value of the height of all initial detection results in
the current image. In this way, the bandwidth of mean shift
clustering in each frame will be adaptive. Figure 17 shows
the refinement results with the proposed clustering method.

4 Experimental results
4.1 Benchmarks and datasets

The comparative experiments were taken on the dataset
(described in Table 1) among HOG, HOGHOF, 3DHOG and
STHOG pedestrian detectors which were the standard bench-
marks for pedestrian detection. After the proposed geometric
constraint process and multiscale image stabilization, the sta-
bilized images were used as the input for each detector and
the initial detection results of each detector will be integrated
by the same refinement algorithm. Although we notice the
other onboard pedestrian detection systems, we focused on
the above four benchmarks in this paper due to the unavail-
ability of open source codes for those systems.

As shown in Table 1, we prepared a City-Scene test dataset
composed of 11 different test scenes with various background
scenes, velocity and road conditions, and the dataset was
accompanied with velocity information recorded for each
frame. The resolution of test image is 800 x 600 pixels.
Totally, 2,390 frames and 11,272 ground truth bounding
boxes are prepared in our test dataset. The pedestrian height
varies from 23 to 518 pixels and the vehicle velocity changes
between 1-41km/h. The training dataset was selected from
the other videos captured by the same vehicle. In our training
dataset, every three successive samples (like forementioned
in Sect. 3.4.2) are used as one positive/negative training set.
To contain the necessary shape and motion information, the
training samples were also selected from different viewpoints
at various velocities. Totally, 12,024 positive and 53,130 neg-
ative samples are selected for training, and all the compared
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g:tl:sztls Source of the test Total Total Min height Max height Velocity Road
frames bounding (pixel) (pixel) (km/h) condition
boxes

CityScene-01 149 241 33 365 35-38 Straight
CityScene-02 139 139 23 183 35-41 Straight
CityScene-03 163 163 23 231 741 Straight
CityScene-04 72 72 40 119 40-41 Curve
CityScene-05 98 201 40 296 37-38 Straight
CityScene-06 362 1,353 36 249 8-13 Straight/curve
CityScene-07 319 2,801 56 518 1-20 Straight/curve
CityScene-08 442 4,386 33 468 1-20 Straight/curve
CityScene-09 165 268 30 422 26-32 Straight
CityScene-10 160 384 40 404 23-27 Straight
CityScene-11 100 164 35 367 39-40 Straight

Table 2 Pedestrian height
distribution of the test datasets

Total number

Pedestrians at

Pedestrians at

Pedestrian at

of pedestrians short distance middle distance long distance
(1-30m) (30-70m) (70m-)

CityScene-01 241 92 (38.2%) 142 (58.9 %) 7 (2.9 %)
CityScene-02 139 24 (17.2 %) 70 (50.4 %) 45 (32.4 %)
CityScene-03 163 29 (17.8 %) 57 (35.0%) 77 (47.2 %)
CityScene-04 72 15 (20.8 %) 57 (79.2 %) 0(0%)
CityScene-05 201 98 (48.8 %) 103 (51.2%) 0(0%)
CityScene-06 1,353 1,013 (74.9 %) 339 (25.0%) 1(0.1%)
CityScene-07 2,801 1,887 (67.4 %) 914 (32.6 %) 0(0%)
CityScene-08 4,386 3,246 (74.0 %) 1,139 (26.0 %) 1 (0%)
CityScene-09 268 71 (26.5 %) 168 (62.7 %) 29 (10.8 %)
CityScene-10 384 188 (49.0%) 196 (51.0%) 0(0%)
CityScene-11 164 61 (37.2%) 100 (61.0 %) 3(1.8%)

pedestrian detectors are trained by the same samples with
the AdaBoost algorithm. Although we notice other public
dataset for onboard pedestrian detection such as ETH, TUD-
Brussels and Caltech datasets, they were unavailable to test
our algorithm due to the lack of velocity information, which
is essential for our image stabilization technique with the
SfM algorithm. Only the Daimler Stereo Dataset [70] is suit-
able for our system due to the vehicle velocity is included in
this dataset, and we performed the comparative experiment
with this public dataset.

In Table 1, the limitation of vehicle velocity in our dataset
is set up as 40km/h due to the consideration that our vehicle
is assumed to mainly move in the urban residential street.
According to the traffic laws all over the world (such as USA
U | apan 2 and other countries 3), in the residential area, the

1 http://en.wikipedia.org/wiki/Speed_limits_in_United_States.
2 http://www.web-pbi.com/speed.htm.
3 http://en.wikipedia.org/wiki/Category:Speed_limits_by_country.

maximum velocity of vehicles is usually limited to 40km/h
to reduce the risk of traffic accidents according to the nor-
mal road condition. Therefore, on consideration of the global
traffic laws, we limit the vehicle velocity in our test dataset
as 40km/h. However, we would like to argue that such limi-
tation is not the performance limitation of proposed system,
as shown in the latter Sect. 4.2.2 our system could detect a
pedestrian at the distance of 100m to our vehicle and such
a distance could be enough to brake a vehicle moving at the
speed of 100km/h.

The detailed pedestrian height distribution of the test
datasets is described in Table 2. Here, we define that if the
distance from a pedestrian to the vehicle is 1-30m, such a
distance will be considered as short distance, when that dis-
tance is between 30m and 70m as middle distance, and if
such a distance is over 70m as long distance. Among all the
test datasets, seven datasets mainly contain the pedestrians
at middle distance (CityScene-01, 02, 04, 05, 09, 10 and
11), one dataset mainly contains the pedestrians at long dis-
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tance (CityScene-03), and the rest 3 ones mainly focus on
the pedestrians at short distance (CityScene-06, 07, 08).

4.2 False positive per image (FPPI) evaluation

Although the receiver operator characteristic (ROC) is a pop-
ular evaluation measurement for the pedestrian detection
task, the ROC can only describe the performance of a clas-
sifier but not a detector. As for an onboard pedestrian detec-
tion, since the performance evaluation is always performed
across the full images but not within the detection windows,
we selected the false positive per image (FPPI) evaluation
measurement to describe the performance of each pedestrian
detector.

During the FPPI evaluation, in the current frame 7, when
50% size of one ground truth intersects with a predicted
bounding box , such bounding box is counted as a true posi-
tive (TP), otherwise a false positive (FP). The detection rate
(DR) and FFPI of a detector through one test sequence will
be computed as

I’l_ N[
DR = —z;—‘ Lr. (23)
2.i=1 NGt
n_ N[
FPPI — @’ (24)
n

where Njp, Nip and N, are the numbers of ground truth,
true positive and false positive at rth frame and n is the
total number of frames in a test sequence. Figure 18 and 19
show the FPPI evaluation of HOG, HOGHOF, 3DHOG and
STHOG detectors on each test dataset with/without the pro-
posed image stabilization.

4.2.1 FPPI evaluation without image stabilization

In the case of onboard pedestrian detection, image stabi-
lization is a key-important preprocess to improve the sys-
tem performance. To evaluate the performance of proposed
image stabilization method, we first evaluated the FFPI of
four detectors without image stabilization.

The four kinds of detectors were directly applied to the
image pyramid structure, where the scales of input images
will vary from 0.35 to 1.0 and the scale factor is 0.05 (it
means 14 layers in this structure). In such image pyramid, all
detectors will scan over all test images at all positions and
scales.

Figure 18 shows the detection performance of all detectors
was quite poor without the image stabilization process. That
is because we could not include all the possible variations
(such as illumination, vehicle velocity and road condition)
into the training dataset, those pedestrian detectors could
not directly distinguish the shape/movement of a pedestrian
from that of the moving background (which is related to the
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vehicle velocity). Meanwhile, too many unnecessary back-
ground regions (that may contain human-like regions) were
also scanned, which lead to too many false alarms in the
unreasonable area (like the sky or the house roof). In this
experiment, among the compared four kinds of detectors,
STHOG and HOGHOF detectors are superior to the rest two
detectors, and HOGHOF detector seems to get much better
results. That is because the STHOG feature captures a sort of
motion magnitude (temporal gradient) which will be greatly
affected by the vehicle movements with different velocities.
Since what the HOGHOF feature captures is not the motion
magnitude but the motion orientation, it may be insensitive to
the velocity changes to some extent. However, note that none
of the compared four features could get good results without
image stabilization, in other words, the image stabilization
process in essential to get good results. Meanwhile, the rank-
ing of each pedestrian detector is also unstable, which means
that their detection results were more like to depend on the
test scene and such results were unreliable.

It has been reported in [71] that the STHOG feature out-
performs the other features with static background, and such
conclusion has also been proved in the latter Sec.4.2.2.

4.2.2 FPPI evaluation with image stabilization

We did another experiment, where the detectors and test
sequences were the same as described in Sect. 4.2.1. After the
geometric ground constraint and multiscale image normal-
ization, the four kinds of pedestrian detectors will be applied
to the normalized image window, where at the same depth
distance the window size will grow from 0.7 to 1.3 with the
scale step of 0.1 (as described in Sect. 3.3.3).

Figure 19 shows the FFPI evaluation of all compared
detectors with the proposed image stabilization process.
Since the detection windows through three frames were nor-
malized in multiple scales, both the scale changes and camera
motion among frame were compressed. With such stabiliza-
tion, the performance of all detectors was greatly improved.
The STHOG pedestrian detector outperformed other detector
through almost all sequences, the HOGHOF ranked the sec-
ond, HOG ranked the third and 3DHOG detector lost almost
all the sequences. Such stable ranking of all detectors across
different sequences implies that the comparative experiments
were quite fair and the ranking is independent of the test
sequences.

The main reason for the missed detection of STHOG lies
in the occlusion problem. As described in [1], in a test scene,
most pedestrians (over 70 %) are occluded in at least one
frame. Since we only use the holistic pedestrian model for
detection, when occlusion happens, the detection rate of all
detectors is insufficient. Detailed discussion about the false
positive and missed detection of STHOG could be found
in the following Sect. 4.3. In CityScene-07 scene, except
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Fig. 18 FPPI of the HOG, HOGHOF, 3DHOG and STHOG pedes-
trian detectors without our image stabilization method through the test
dataset. Here, the performance of all detectors is too poor to be applied

the 3DHOG, the performance of other pedestrian detectors
seems to be the same. That is because, besides the STHOG
detector, the rest detectors tend to predict extensive large
bounding box all over the search area. Since the FPPI evalu-
ation will consider a prediction a true positive as long as its
intersection with the ground truth is over the threshold, their
detection rate will look like that of STHOG detector. How-
ever, as shown in the bottom row of Fig. 20, the performance
of STHOG detector is more accurate than the other detectors.

Figure20 shows the comparative experimental results
among the four kinds of pedestrian detectors with the pro-

False Positive per Image

False Positive per Image

into the real test scene. This result indicates that directly applying the
pedestrian detectors to the test image is improper

posed onboard system under different conditions. The top
two rows (CityScene-01, 02 test sequences) show the exam-
ples of detecting the pedestrians at long distance where the
pedestrian height was 65 and 28 pixels (in Row two, the
distance is close to 100m). In such cases, the HOG and
HOGHOF detectors became insensitive to the objects that
were far from the vehicle, because the shape and optical
flow motion of those objects became unclear in the images,
and this would lead to the missed detection. The STHOG
achieved the most robust and good performance under such
condition because it directly combined the spatial and tem-
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Fig. 19 FPPI of the HOG, HOGHOF, 3DHOG and STHOG pedestrian
detectors with our image stabilization method through the test dataset.
Here, the STHOG detector won most sequences, HOGHOF, HOG and

poral gradients to describe the pedestrian feature (shape and
motion). The 3DHOG failed in these two sequences because
the co-occurrence 3D gradient was susceptible to the unpre-
dicted image noises. (such as the illumination changes or the
unexpected vehicle movement).

The third row corresponds to CityScene-06 scenes, where
the yaw rate of vehicle was high and there were a lot of human
shadows in the glass. The HOG and 3DHOG detectors gave
false alarms on the background objects looked like human
(like the pillar or signpost) which we failed to include into the
training dataset. The HOGHOF detector produced the false
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3DHOG detectors rank 2, 3 and 4. The stable ranking of all detectors
indicates that this evaluation is reasonable and independent on the test
scene

alarm on background due to the same reason and missed a
person where the reflection from glass behind the pedestrian
made it difficult to compute the correct optical flow from the
real pedestrian.

The bottom row of Fig.20 corresponds to the complex
CityScene-07, where many human-like background objects
made the pedestrian detection task difficult. The HOG detec-
tor produced many false alarms on the background region
and failed to locate some true pedestrians with new appear-
ance such as carrying bag or umbrella. The HOGHOF and
3DHOG pedestrian detectors found almost all pedestrians at
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(b) Detection results
of HOGHOF detector

(a) Detection results
of HOG detector

Fig. 20 Comparative experimental results of HOG, HOGHOF,
3DHOG and STHOG pedestrian detectors on the proposed onboard
monocular detection system on different test sequences (correspond-
ing to CityScene-01,02,06,07 of Table 1) under complex conditions.
Column a HOG detector; b HOGHOF detector; ¢ 3DHOG detector;

the cost of producing many false alarms on the background
regions which was caused by the changes of camera view-
points. The STHOG detector was superior to the other detec-
tors by producing the least false alarms while keeping high
detection rate.

4.3 Analysis of false alarms and missed detection

Figure21 shows some examples of the false positives (FP) or
miss-detected (MD) pedestrians from the proposed STHOG
detector under different scenes. In the top row, FP-(a) shows
some examples that our system wrongly took the human
shadow reflected in the glass as a pedestrian. That is because
in the STHOG feature there is no difference between a real
pedestrian and his reflected moving vertical shadow. In FP-
(b), since a static seated person was not a pedestrian, our
evaluation system considered such detection result as false

(d) Detection results
of STHOG detector

(¢) Detection results
of 3DHOG detector

d STHOG detector. Here, STHOG detector won all sequences by pro-
ducing the maximum true positive and minimum false alarms. The per-
formance of HOGHOF and HOG looks similar and 3DHOG detector
produced the maximum false alarms

positive. In FP-(c), the camera motion parameters changed
rapidly as: previous frame (yaw rate = —0.57; pitch rate =
—1.24; roll rate = 0.3; current frame (yaw rate = 0.32; pitch
rate= —4.7; roll rate = 0.44). Therefore, the SfM became
unstable as the pitch rate changed too rapidly in two frames,
the image stabilization also worked poor as the motion of
some background became strong and our STHOG detector
wrongly took such area as the pedestrian because their shape
also looked like person (containing many vertical gradients).
As for FP-(d), there is an example that the background area
was a combination of periodically waving flag and a sup-
porter whose angle happened to look like people’s leg. In
such case, such background happened to simultaneously sat-
isfy our assumption in STHOG feature: the periodically wav-
ing flag produced some shape and motion features like the
human torso and arms, the below supporter gave strong spa-
tial gradient like our leg. Therefore, it is a relatively reason-
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MD-(a)

MD-(b)

MD-(c) MD-(a) & (¢)

Examples of false positive and missed detection

Fig. 21 Examples of false positive and missed detection. The red rec-
tangle means the false positives or missed pedestrians. FP-(a): false pos-
itive on the human shadow reflected in the glass; FP-(b): static seated
human is not marked as the ground truth; FP-(c): when the pitch rate
of camera changed greatly, the SfM becomes unstable; FP-(d): flag

able failure mode that the STHOG detector took such area
as the human.

In the bottom row, MD-(a) shows the example that the
pedestrian is out of the image, and such a pedestrian could
be considered as being occluded because only part of his body
is visible. Our detection system failed in such case because
only the holistic detection model was applied. MD-(b) gives
an example that multiple persons are located inside one detec-
tion window. Our STHOG detector failed to detect such per-
sons because as for our detector it looks like one person with
two heads, which has been beyond our assumption that one
person only has one head. MD-(c) refers to the examples that
the contrast of a person is extremely low, where the person in
dark clothes was walking in the shadow. Since we use the VS
camera, when the pedestrian is almost invisible, the STHOG
detector failed to find such person.

Currently, we run the proposed detection system (basically
composed of two systems: image stabilization and STHOG
detection system) on a normal desktop PC whose CPU is an
Intel C2D 3.16 GHZ and 4GB memory. It will take 10 s to
obtain the multiscale detection results from an 800 x 600
pixel-sized image by scanning over the calculated ground
plane at all positions and scales. The image stabilization sys-
tem will take approximately 8 s and the STHOG detection
process takes the rest 2 s The main reason for such a slow
processing speed lies in: (1) the applied SfM is not real time.
We just applied the normal SfM for testing the performance
of proposed system; (2) only a single-layer AdaBoost was

@ Springer

periodically waves like a person is walking. MD-(a): occluded pedes-
trian; MD-(b): multiple pedestrians in one detection window; MD-(c):
extremely low contrast pedestrian. In FP-(d) a pedestrian was missing
due to: (1) his depth distance to vehicle was shorter than 10m; (2) his
foot was invisible and he could be considered as being occluded

used; (3) only one thread of the CPU was applied while run-
ning our system, the other threads were wasted. Therefore, to
tackle the aspect of computational cost of our system, more
recent advanced online SfM algorithms (such as [7,72]),
cascade-structured AdaBoost algorithm for early rejection
and the parallel processing software such as OpenMP should
be applied.

4.4 Comparative experiment with public dataset

Besides the dataset listed in Table 1, we also compared the
performance of aforementioned four pedestrian detectors
by the public Daimler Stereo Dataset [70], where useful
vehicle parameters are included such as the velocity, pitch
rate and steering. To compare the performance of proposed
framework with the other systems conveniently, we choose
the well-known Recall-Precision Curve (RPC) metric to
describe their ability to detect pedestrians. In the RPC eval-
uation, each ground truth will only response to one predic-
tion box. When the overlap rate between one ground truth
and prediction box is over 50 %, such prediction will be
considered as a true positive, otherwise false alarm. When
multiple prediction boxes intersect with one ground truth,
only one prediction that satisfy the RPC metric will be con-
sidered as true positive, the others will be treated as false
alarms.

Figure 22 shows the RPC of compared four kinds of pedes-
trian detectors by the Daimler Stereo Dataset. Here, the
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Fig. 22 The RPC evaluation of HOG, 3DHOG, HOGHOF and
STHOG pedestrian detectors by the Daimler Stereo Dataset. In this
experiment, the performance of STHOG detector is much superior to
the other detectors. Corresponding experimental results could be found
in Fig.23

STHOG detector achieved the best performance and won the
entire test. The HOGHOF detector got better performance
than that of HOG detector. The performance of 3DHOG
detector obtained the last ranking. The RPC ranking of this
experiment is also consistent with that in Sect. 4.2.2, which
implies that such ranking depends on the detection ability of
compared algorithms but not the test scene.

The corresponding experimental results of Fig.22 are
shown in Fig.23, where the STHOG detector achieved the
best result by keeping the high recall rate with the least false
alarm. The performance of HOG and HOGHOF detectors is
quite similar and the 3DHOG detector produced the maxi-
mum false alarms.

To evaluate the performance of proposed system with the
conventional baseline pedestrian detector, given the same
Daimler Stereo dataset, we also compared the proposed
STHOG onboard pedestrian detector with the well-known
HOG LinearSVM (hereafter called as HOG LinSVM) [25]
detector which is illustrated in [13]. The HOG LinSVM
detector was implemented by the OpenCV and trained with
the same training samples as the proposed STHOG onboard
detector. Through the RPC evaluation of compared detec-
tors in Fig. 24, it is clear that the proposed STHOG onboard
detection system outperforms the HOG LinSVM detector
greatly. That is because that the proposed ground constraint
and image stabilization process could help the proposed sys-
tem to reject the unreasonable background area and com-
press the motion of static background objects caused by the
camera movement. In this way, the background movement is
greatly reduced and only the moving object could produce
the meaningful motion information, which guarantees the

STHOG detector to efficiently locate the pedestrians. While
the HOG LinSVM detector directly scans the input images
at all position and scales, which will lead to the massive false
alarms on the moving background area due to the fact that
we could never prepare a training set to cover all the possible
background variation.

4.5 Detection rate and pedestrian height

As well known, there is always a tradeoff between the detec-
tion rate and pedestrian height in a pedestrian algorithm. We
investigate this tradeoff by analyzing the detection result of
STHOG detector with the CityScenel 1 dataset. As shown in
Fig.25 (here the total recall and precision of test images are
90 and 92.6 %), the detection rate will increase as the pedes-
trian height becomes higher and higher. When the pedes-
trian height becomes higher than 46 pixels, the detection
rate will be increased up to 100 %. Its detection rate slightly
decreases to 90 % due to the rapid pitch changes of vehicle
in this scene. This experiment proves that it is difficult for a
pedestrian detector to find the people at very long distance.
Similar conclusion has also been reported in [1].

However, compared with the results in [1], this experi-
ment has also proved that the image stabilization can greatly
improve the detection rate of whole system. Such stabiliza-
tion will help the vehicle to detect the walking pedestrians at
longer distance, which means saving more time to avoid the
collision with pedestrians.

5 Conclusion and future works

In this paper, we brought out a novel onboard pedestrian
detection system which can work under the normal urban
scene with a monocular camera. From the SfM, the geometric
constraint process is applied for reducing not only the com-
putational cost but also the false alarms in the unreasonable
areas. To compress the motion of static background caused
by the camera motion, a novel multiscale image stabiliza-
tion method was also brought out according to homography
transformation and camera geometry. The stabilized images
are classified by the STHOG pedestrian detector which can
separate a pedestrian from the background according to their
shape and motion feature, simultaneously. Extensive exper-
iments under various conditions proved the effectiveness of
the proposed system.

The limitation of proposed system includes: (1) since the
proposed pedestrian height estimation assumes the pitch rate
of camera to be 0, when the pedestrian is at long distance to
the vehicle (for example, 100 m), small pitch rate may still
affect the estimation result, because at long distance the real
pedestrian height in the image will be quite small and even
small estimation error could still affect the accuracy of our
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(a) Detection results of
HOG detector

(b) Detection results of
3DHOG detector

Fig. 23 Experimental results of HOG, 3DHOG, HOGHOF and
STHOG pedestrian detectors with the Daimler Stereo Dataset. Column
a: results of HOG detector; Column b: results of 3DHOG detector;
Column ¢ results of HOGHOF detector; Column d results of STHOG

Recall Precision Curve with Daimler Stereo Dataset
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Fig. 24 The RPC evaluation of proposed STHOG pedestrian detectors
and HOG LinSVM detector [25] by the Daimler Stereo Dataset. The
performance of STHOG detector is much superior to the HOG LinSVM
method. It illustrates that without the proposed stabilization system,
directly applying pedestrian detector to the mobile camera could not
achieve desirable detecting performance
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(d) Detection results of
STHOG detector

(¢) Detection results of
HOGHOF detector

detector. Here, STHOG detector gets the best results with the least false
alarms, the performance of HOGHOF and HOG is quite similar by pro-
ducing almost the same true positive and false alarms. To keep high
detection rate, 3DHOG detector produced the maximum false alarms

Detection Rate & Pedestrian Height

Detection rate (%)
W
(=}
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Pedestrian Height (pixel)
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139-217

Fig. 25 The investigation of tradeoff between detection rate and pedes-
trian height of STHOG detector with the CityScenell dataset. This
experiment has proved that the combination of image stabilization and
detection algorithm can greatly improve the detection rate of whole
system when the pedestrian height is low
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system; (2) detecting the occluded pedestrian still remains as
a challenging task in our system due to the fact that only the
holistic detector is applied to detect the pedestrians; and (3)
how to accurately identify a standing people at long distance
is also one open issue to our system.

Therefore, the future works of our system should include:

e More accurate stabilization and geometric constraint.
Although the SfM algorithm [65] applied in this paper
requires high computational cost, it could be possible to
realize a good tradeoff between the computational cost and
false alarm by introducing more recent advanced online
StM algorithm such as [72]. Since this paper pays more
attention on the aspect of precision and false alarm, we
would like to tackle the aspect of computational cost in
our future research. Meanwhile, other physical stabiliza-
tion systems (e.g., gyroscope) that could reduce the cam-
era pitch movement could also be helpful in improving
the geometric constraint of proposed method.

e Occlusion problem. As occlusion always happens in the
images captured from a vehicle, part-based or other flexi-
ble pedestrian models like [36] are good choice for solving
this problem.

e Temporal tracking through the detection results. Based
on the fact that the consistency of a pedestrian is stronger
than that of an abrupt false positive, the after-process to
track pedestrians through the detection results will greatly
improve the detection rate and reduce the random false
alarms. And this method has been proved to be useful and
effective in [29,30]
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