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Abstract We present a plant identification system for auto-
matically identifying the plant in a given image. In addition
to common difficulties faced in object recognition, such as
light, pose and orientation variations, there are further dif-
ficulties particular to this problem, such as changing leaf
shapes according to plant age and changes in the overall
shape due to leaf composition. Our system uses a rich variety
of shape, texture and color features, some being specific to
the plant domain. The system has achieved the best overall
score in the ImageCLEF’12 plant identification campaign in
both the automatic and human-assisted categories. We report
the results of this system on the publicly available Image-
CLEF’12 plant dataset, as well as the effectiveness of indi-
vidual features. The results show 61 and 81 % accuracies in
classifying the 126 different plant species in the top-1 and
top-5 choices.

Keywords Plant identification · Leaf shape · Color image
segmentation · Mathematical morphology

1 Introduction

Plant taxonomy is a highly laborious task, consisting of the
scientific classification of our planet’s flora. In particular,
its crucial stage of plant identification is a veritable scien-
tific and technical challenge, due not only to the huge plant
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variety that is involved, but also to their highly specialized
and diverse taxonomic properties as well. For this reason,
manual plant identification is a demanding and slow process,
albeit imperative too, as botanists race against time to cata-
log plant species before they become extinct. Consequently,
there is a significant need for an automated plant identifica-
tion system that, when provided with raw visual plant data,
will extract a number of descriptive features and use them to
determine and output the corresponding plant species. In fact,
besides its obvious contribution to taxonomy, such a system
possesses a considerable commercial potential as well, as a
regular content-based image retrieval (CBIR) product; e.g. in
the form of a smartphone application it could be employed
in the wild for identifying hazardous or edible plants.

Motivated by this application potential and recent
advances in CBIR, the interest of the computer vision com-
munity in plant identification has been increasing steadily,
along with the number of proposed features and plant identi-
fication systems [1,2]. For instance, ImageCLEF, one of the
foremost visual image retrieval campaigns, has been orga-
nizing a plant identification track since 2011 [3].

Although botanists exploit all available plant character-
istics such as flowers, seeds and leaves while identifying a
plant, the vast majority of the approaches proposed so far
has been focusing exclusively on leaf-based plant identifica-
tion [4–8], both for limiting the problem’s complexity and
because leaves are easily accessible and highly discrimina-
tory through their color, shape and texture features. Never-
theless, even with this limitation the problem is challeng-
ing, since leaves of the same plant may vary significantly
both in terms of color and shape, depending on the sea-
son, plant condition and image acquisition settings. On the
other hand, some general-purpose content-based description
solutions have also been developed for this problem [9,10].
While they achieved good results, customized approaches to
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plant identification, exploiting domain-specific features and
approaches, have been shown to surpass general-purpose
methods [11].

In this paper, we address the problem of automatic plant
identification from photographs and present a new system
developed for this task. Our system that was a slightly earlier
version of the system presented in this paper has won the
ImageCLEF’2012 Plant Identification Competition, in both
the automatic and semi-automatic categories.

After presenting the state-of-the-art in plant identification
(Sect. 2), we elaborate on our system’s design and operation
details (Sect. 3). Next, we present the results of a series of
experiments (Sect. 4) studying the performance of several
descriptors in the context of leaf-based plant identification
as well as the overall performance results. Finally, Sect. 5 is
devoted to concluding remarks and future perspectives.

2 Related work

Until a few years ago, there was a limited number of publica-
tions concerning automatic plant identification, comprising
botanical applications targeting leaf-based plant identifica-
tion or agricultural applications, such as for detecting dis-
eased plants.

The plant identification campaign organized by Image-
CLEF in 2011, and repeated in 2012 and 2013, has marked
the turning point in this area [3]. The goal of the campaign
was to benchmark the progress in automatic plant identifi-
cation, addressing both isolated leaf and plant recognition
problems. With the participation of systems from around
the world, the campaign has successfully highlighted this
problem. Below, we provide a short summary of the past
technical achievements in botanical and agricultural identi-
fication/retrieval applications, followed by the summaries of
the systems that participated in the ImageCLEF’2012 plant
identification campaign.

In systems geared towards botanical applications seg-
mented leaf images are used to identify unknown plant vari-
eties, often using features obtained from the leaf contour.
Among these, Yahiaoui et al. proposed an image retrieval
system for identifying plants using contour-based shape fea-
tures in [5]. The extracted shape descriptors in this study
include the length histogram of contour segments in differ-
ent directions. Similarly, Wang and his group [12,13] focused
on the leaf image retrieval problem using features such as
centroid-contour distance curve, eccentricity and angle code
histograms, while later on investigating shape context and
SIFT [14]. Concentrating on shape, Neto et al. [15] extract
elliptic Fourier harmonic functions from the leaf boundary
and Nam et al. [16] use minimum perimeter polygons for
shape description in combination with a matrix of interest
points for similarity computation.

More recently, combination of shape features with color
and texture features is explored. In [17], plant leaves are
classified based on their texture features, using both LBP
and Gabor features, while in [6], leaf venation characteris-
tics are extracted through the curvature scale space (CSS)
corner detection algorithm. Beghin et al. [18] focused on the
combination of shape and texture, by employing contour sig-
natures along with edge gradient orientations, while Hussein
et al. [19] exploit texture by means of the discrete wavelet
transform. Similarly, Man et al. [20] combines color and tex-
ture features after rotating each leaf so as to align its central
axis with the horizontal. Moreover, both [21] and [22] rely
on simple geometric and morphological features, while [23]
additionally combines them with a powerful moving median
center hypersphere classifier.

Backes [24] and Bruno et al. [2] proposed a shape clas-
sification method relying on multi-scale fractal dimensions,
which they applied to the leaf identification problem. The
shape features are extracted using either segmented leaf out-
lines or leaf venations, to retrieve both internal and external
leaf characteristics. This approach is later used by the authors
in the IFSC/USP system that participated in the Image-
CLEF’2012 campaign [25]. Recently, Zhang et al. [26] have
developed a new leaf classification method using a supervised
locality projection analysis method based on label propaga-
tion.

Although the stage of feature extraction is highly impor-
tant for plant identification, it is also often dependent on a suc-
cessfully implemented segmentation. Hence, some authors
have focused specifically on this problem. For instance, Manh
et al. [27] propose a method of weed leaf segmentation
based on the use of deformable templates, while a marker-
controlled watershed transform is employed in [7,28]. Yet, a
hybrid method based on the morphological h-max transform
is elaborated in [29].

Furthermore, there are few systems that are fully devel-
oped plant identification solutions, often developed towards
a particular platform or user group. For instance, Belhumeur
et al. [1] have designed a leaf-based system for the National
Museum of Natural History, equipped with an expectation-
maximization-based segmentation and mostly with shape
context-based content description. Another plant identifi-
cation system has been developed by Kebapci et al. [30],
employing max-flow min-cut for semi-automatic segmenta-
tion and focusing on house plant identification from whole
plant images. Lastly, a tablet PC-oriented system named
LeafView has been developed by White et al. [31] employing
interactive segmentation and shape context for description.

In contrast to previous approaches concentrating on leaves
or plant foliage, some authors have chosen to work solely
with flowers. Assuming that a plant possesses them, their
color-rich appearance can be highly useful for plant iden-
tification. In particular, Nilsback and Zisserman [32] have
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Fig. 1 ImageCLEF plant
database: samples from scan and
scan-like categories [pubescent
oak (a, b), pedunculate oak (c,
d) and pin oak (e, f)]

(a) (b) (c) (d) (e) (f)

Fig. 2 ImageCLEF plant
database: samples from photo
category (gingko, sweet
chestnut, field maple, common
hazel, fig, honeylocust, from left
to right)

(a) (b) (c) (d) (e) (f)

developed a method specifically for flower segmentation,
using different color models for the foreground and back-
ground along with a Markov random field cost function opti-
mized using graph cuts. Saitoh et al. [33] also explored the
potential of flowers and developed a solution where a semi-
automatic segmentation is employed based on intelligent
scissors, followed by the computation of simple geometric
shape and color features.

Although multiple plant datasets have been available for
over a decade, such as the Swedish dataset [34], the ICL
dataset [35] and the Smithsonian dataset [36], it was in 2011
that a plant identification contest was organized for the first
time, as a track within the CLEF conference. The organiza-
tion of this task, which was funded by the French Pl@ntNet
project, led to the formation of a constantly growing plant
dataset; there were 71 plant species in 2011, that increased
to 126 species in 2012. The systems participating to the cam-
paign were evaluated based on their performances in three
image categories: scanned images of a leaf (scan), scan-like
photographs of a leaf (scan-like) and unconstrained pho-
tographs of plant leaf or foliage (photo), as shown in Figs. 1
and 2, respectively. The evaluation is done in terms of the
average inverse-rank metric.

Among the fully automatic systems that participated in
the ImageCLEF’2012 plant identification campaign, the fol-
lowing groups and systems stood out by obtaining the best
results in at least one of the categories. The Inria/IMEDIA
group submitted three runs using distinct approaches [42]
and obtained an average inverse-rank score of 0.42 with
their best system (INRIA-Imedia-PlantNet-run-1). Their sec-
ond best overall system obtained the highest score on scan-
like images with a score of 0.59 (INRIA-Imedia-PlantNet-
run-2), using an advanced shape context descriptor combin-
ing boundary shape information and local features within a
matching approach. For photographs, local features around

constrained Harris points are employed to reduce the impact
of the background, but an automatic segmentation with a
rejection criterion was also attempted to extract shape fea-
tures when possible.

The LSIS/DYNI group obtained the best scores in the auto-
matic identification of plants in the photo category with an
inverse-rank score of 0.32 (LSIS-DYNI-run3) [10]. While
not using any segmentation at all, their system involved fea-
ture extraction coupled with Spatial Pyramid Matching for
local analysis and large-scale supervised classification based
on linear SVM with the 1-vs-all multi-class strategy. They
used a Multiscale and Color extension of the Local Phase
Quantization (MSCLPQ), dense Multiscale Color Improved
Local Binary Patterns (MCILBP) with Sparse Coding of
patches and dense SIFT features with sparse coding. In this
system, authors report to having obtained better results with
increased number of descriptors. This system obtained an
average overall score of 0.38.

The IFSC/USP group also submitted three systems [25].
In their work, the leaf contour was described with complex
network, volumetric fractal dimension and geometric para-
meters. Gabor filters and local binary patterns were also used
as texture descriptors. The scores obtained by their automatic
system (IFSC/USP-run3) for scan and scan-like images were
0.20 and 0.14, respectively.

The Zhao/HFUT group also developed a segmentation-
free system (ZhaoHFUT-run3), employing the flip SIFT
descriptor, along with a sparse representation [43]. Specif-
ically, they use the ScSPM model that uses a spatial pyra-
mid matching. Although their performance is moderate (0.23
overall score), their approach validates the potential of sparse
representation in this context.

The DBIS [44] team presents an uncommon approach,
which employs logical combinations of low-level features
expressed in a query language. In particular, they explored
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Table 1 Summary of previous
work in plant
segmentation/identification, in
chronological order

References Segmentation Features

[37,38] Interactive Curvature scale space (CSS)

[39] – Polygon approximation-based shape description

[40] Normalized difference index Morphological and geometric

[27] Deformable templates –

[12] Histogram based Contour-centroid distance, eccentricity, angle code histogram

[33] Intelligent scissors Geometric shape and basic color properties

[21,23] Adaptive threshold Morphological and geometric

[15] – Elliptic Fourier harmonic functions

[5] Fuzzy CA clustering Directional fragment histogram (DFH)

[31] Interactive Shape context

[1] Expectation-maximization Shape context

[6] – CSS corner detection

[7,28] Watershed transform –

[17] – Gabor filters and LBP

[20] – Color moments and wavelets

[16] – Minimum perimeter polygons

[32] Markov random fields –

[2,24] – Multi-scale fractal dimensions

[18] – Edge gradient orientations, contour signatures

[22] – Geometric and the leaf width factor

[30] Max-flow min-cut Gabor wavelet-based patches, geometric features

[29] H-max transform –

[14] – Shape context, SIFT

[19] – Discrete wavelet transform

[41] Interactive GrabCut Complex network, morphological, geometric features

[42] Custom pipeline Local features, DFH, shape context, etc.

[25] Mean shift, k-means Complex network, Gabor, LBP, fractal dimension, etc.

[10] – MSCLPQ, LBP variants, SIFT patches, etc.

[43] – Flip SIFT and sparse representation

[44] – Color structure descriptor, autocorrelogram, GPS, etc.

several of the MPEG-7 color and texture descriptors [45]
with the color structure descriptor performing the best among
them. They are one of the few participants that have addition-
ally exploited the availability of meta-data, specifically the
GPS coordinates of the acquired images. Their system has
obtained an average score of 0.21.

As the Sabancı-Okan team, we submitted only two runs to
ImageCLEF’2012 plant identification campaign: one for the
automatic category and another one for the semi-automatic
category where human assistance was allowed [46]. Our two
systems obtained the highest average scores in each cate-
gory. Specifically, our automatic system (Sabanci-Okan-run-
1) obtained the highest average score of 0.43 and the highest
score of 0.58 in the scan category, among automatic sys-
tems. For scan-like and photo categories, our system obtained
inverse-rank scores of 0.55 and 0.16, respectively, while the

best accuracies obtained in these categories were 0.59 and
0.32 (by different groups), as mentioned before.

This section has presented an overview of the existing
approaches for plant identification, while a summary of the
related approaches is provided in Table 1.

3 Proposed system

We present a plant identification system to recognize the
plant species in a given image, addressing two sub-problems
of plant identification: identifying the plant from a single
leaf image or from an unconstrained photograph of the plant
(Figs. 1, 2, respectively). As these two sub-problems are quite
different from one another, we handle them in two separate
sub-systems. The two sub-systems employ parallel stages
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for segmentation, preprocessing, and recognition steps, but
in the case of unconstrained photographs of plant foliage,
the preprocessing and segmentation stages are more aggres-
sive, so as to isolate a single leaf in the image. Currently, the
diversion of the input into one of the sub-systems is realized
by analyzing the meta-data of the image files; however, we
foresee that this can also be realized automatically if such
information had been unavailable.

The proposed system employs a rich variety of shape,
texture and color features, some being specific to the plant
domain. It relies on mathematical morphology for quasi-
flat zone-based color image simplification and reliable leaf
extraction from complicated backgrounds. Recognition is
accomplished through powerful classifiers that are trained
with generalization performance in mind, given the large
variability and relatively small amount of data.

Variants of the presented system have participated in the
ImageCLEF Plant Identification Competitions in 2011, 2012
and 2013 and achieved good results (best overall result in
both automatic and semi-automatic categories in 2012; best
results in isolated leaf images in 2013). The evaluation results
reported in this paper are obtained with the ImageCLEF’2012
plant dataset that is publicly available.

3.1 Segmentation

Considering the two sub-problems addressed by the system,
one can easily remark that the segmentation of an isolated
leaf on a simple background should be easy, while that of
foliage photographs should be rather difficult. Indeed, for
the majority of leaf images, segmentation is very successful
even by means of basic techniques such as Otsu’s adaptive
threshold [47], except for a small subset of leaf images con-
taining shadows.

As for foliage images, although there are approaches
avoiding segmentation altogether by describing the image
content through local invariants [9], we have taken an alter-
nate approach in this work: given a foliage image, the system
aims to obtain a single leaf using an aggressive segmentation;
thereafter, the foliage recognition problem is reduced to leaf
recognition. We believe that this approach is complemen-
tary to recognizing plants using local invariants or global
descriptors obtained from the whole image, and is especially
suitable for photographs containing a single leaf on natural
background, as in Fig. 4a–f.

Unfortunately, segmentation of a leaf in a plant photo-
graph with natural background is a complex problem due
to an ill-posed nature; if no a priori knowledge is available
on the image acquisition settings or content, leaf segmenta-
tion becomes equivalent to unconstrained color image seg-
mentation, where the various leaves can be located within
an equally immense variety of backgrounds, such as those
shown in Fig. 2. In our approach, we make a simple assump-

tion that the object of interest dominates the center of the
photograph, as explained in the next section.

Furthermore, one might argue at this stage that the plant
background can provide information facilitating the recog-
nition of the leaf/plant in the foreground. For instance, if the
image has been acquired in a wild forest, then there is already
some chance that it contains a non-domesticated plant.
However, although it is a theoretically sound idea, exploit-
ing the background information additionally involves the
description and recognition of the background, which given
its diversity increases the complexity of an already challeng-
ing problem. Moreover, even if one insisted on exploiting the
background, separating it from the foreground may still be
necessary.

3.1.1 Automatic segmentation

Plant image segmentation largely depends on the image
acquisition method: namely, scanning an isolated leaf, pho-
tographing an isolated leaf, photographing a plant leaf
or foliage on a complex background. In particular, the
ImageCLEF’2012 dataset has three categories, namely scan,
pseudo-scan and photos, where the scan and pseudo-scan
categories correspond respectively to leaf images obtained
through scanning and photography over a simple background
(Fig. 1); and photo category (Fig. 2) corresponds to plant leaf
or foliage photographed on natural background.

From a segmentation viewpoint, isolated leafs that are
scanned or photographed on a simple background are sim-
ilar; in other words, they both possess a mostly noise-free,
spectrally homogeneous background, occasionally contain-
ing some amount of shadow. Consequently, in our system,
automatic segmentation has been trivially resolved through
Otsu’s adaptive threshold [47] as it is both efficient and effec-
tive.

Photos of plant foliage or leaf taken on an arbitrary back-
ground offer a far greater challenge for the overall system
and the segmentation module. To attack this problem, we
adopted a combination of spectral and spatial techniques.
Specifically, we start with a weak assumption that the object
of interest, i.e. the leaf, is located roughly at the center of the
image and possesses a single dominant color. The image is
first simplified by means of marginal color quasi-flat zones
[48], a morphology-based image-partitioning method based
on constrained connectivity, that creates flat zones based on
both local and global spectral variational criteria (Fig. 3a).
Next, we compute its morphological color gradient in the
LSH color space [49], taking into account both chromatic
and achromatic variations (Fig. 3b), followed by the appli-
cation of the watershed transform. Hence, we obtain a first
partition with spectrally homogeneous regions and spatially
consistent borders, albeit with a serious over-segmentation
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Fig. 3 Stages of automatic
photo segmentation a color
quasi-flat zones, b color
gradient, c watershed transform
and removal of small basins, d
grayscale distance, e grayscale
mask, f hue distance, e hue
mask, h mask intersection and i
mask superposition on the
original

(a) Color quasi flat zones (b) Color gradient (c) Watershed transform &
removal of small basins

(d) Grayscale distance (e) Grayscale mask (f) Hue distance

(g) Hue mask (h) Mask intersection (i) Mask superposition on
the original

ratio which is compensated for by merging basins below a
certain area threshold (Fig. 3c).

At this point, our initial assumption about central loca-
tion of the object of interest is used, as we employ the cen-
tral 2/3 area of the image to determine its dominant color,
obtained by means of histogram clustering in the LSH color
space. Assuming that the mean color of the most signifi-
cant cluster (i.e. reference color) belongs to the leaf/plant,
we then switch to spectral techniques, so as to determine its
watershed basins. Since camera reflections can be problem-
atic due to their low saturation, we compute both the achro-
matic, i.e. grayscale distance image from the reference gray
(Fig. 3d) and the angular hue distance image (Fig. 3f) from
the reference hue href [50]:

∀ h, href ∈ [0, 2π ],
dθ (h, href) =

{ |h − href | if |h − href | < π

2π − |h − href | otherwise
(3.1)

We then apply Otsu’s method on both distance images, pro-
viding us with two masks (Fig. 3e, g), representing spectrally
interesting areas with respect to the reference color. The inter-
section of the two masks is used as the final object mask after
minor post-processing (e.g. hole filling, etc.) (Fig. 3h). As
seen in Fig. 3i, spectral and spatial techniques indeed com-
plement each other well, while the use of both chromatic
and achromatic distances increases the method’s robustness.

However, the main weakness of this approach is the accurate
determination of the reference or dominant color, which can
easily corrupt the entire process if computed incorrectly or
if the leaf under consideration has more than one dominant
color.

We have measured the segmentation accuracy visually,
counting the number of cleanly segmented images among the
483 test photos in the ImageCLEF’2012 dataset. According
to these results verified by two people, 104 out of 483 images
(21.5 %) are cleanly segmented (having a segmentation mis-
take) and another 10 % are nearly cleanly segmented (image
contains a single leaf but with a substantial missing section
or attached background). Since these categories are difficult
to define and identify, we give sample output in Fig. 4 show-
ing clean segmentations (a,b,d,e) and near-clean ones (c). For
the images that are not well-segmented (f, g), which amount
to about 69 % of all photographs, the leaf was significantly
over- or under-segmented.

3.1.2 Human-assisted segmentation

We have also developed a semi-automatic system to explore
the effects of some simple human assistance, also based on
a segmentation technique using mathematical morphology.
This semi-automatic system has also achieved the highest
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 4 Sample results of the automatic segmentation algorithm, showing segmentation results together with the original images

overall accuracy in ImageCLEF’2012 plant identification
campaign, in the human-assisted category.

In terms of human assistance, ideally, we would like the
user/expert to provide some amount of high-level knowledge,
spending no more than a few tens of seconds per image.
Assuming that the provided knowledge is valid, we chose
to use the marker-based watershed transform [51] to best
exploit it. Specifically, the marker-based watershed transform
is a powerful, robust and fast segmentation tool that, given a
number of seed areas or markers, results in watershed lines
representing the skeleton of their influence zones.

To accomplish this we need a suitable topographic relief
as the input, where object borders are denoted as peaks and
flat zones as valleys; this is why we employ the morpho-
logical color gradient of the input image [49] (Fig. 5b).
We then require at least two markers provided by the
user/expert: one denoting the background and another rep-
resenting the foreground. Both of these markers can eas-
ily be provided for instance through the touchscreen of a
smartphone, by indicating the leaf and the background suc-
cessively (Fig. 5c). Next, having superposed the markers
on the gradient, the marker-based watershed transform pro-
vides the binary image partition (Fig. 5d). Although both
efficient and effective, this method depends utterly on the
quality of the provided markers, since if they are too small
they can lead to partial leaf detection and conversely if they
are excessively large, the leaf will be confounded with its
background.

(a) The original image (b) The markers

(c) Color gradient (d) Result

Fig. 5 Stages of human assisted segmentation. a The original image,
b the markers, c color gradient and d result

3.2 Preprocessing

Having located the object of interest at the segmentation
stage, we apply a minimal amount of preprocessing. Specif-
ically, we bring the leaf’s major axis in line with the vertical
and normalize the height to 600 pixels, while preserving the
aspect ratio. Apart from these, the relatively high acquisition
quality of the data did not warrant any image enhancement
operations.
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Fig. 6 Rotation normalization of a segmented leaf uses the longest
two-segment line passing through the mean of the contour points

For rotation normalization, we adopt a simple approach.
The image is rotated to bring the longest two-segment line,
passing through the mean and connecting two contour points.
For this, we first compute the distance from each contour
point to the geometric mean of the contour points. Then, we
find the largest two-segment line, rather than the largest line
connecting two contour points, to allow some flexibility in
the major axis. The computation is illustrated in Fig. 6.

Formally, we first compute the distance di and angle qi

of all the points on the contour with respect to mean. Then,
we find the corresponding quantized bin for all points using
bi = qi/F where F is the binning factor, set to F = π/18 in
our system. Then, the maximum distance observed for that
angle (bin) is calculated using

B[bi ] =
{

di , di > B [bi ]

B[bi ], otherwise.
(3.2)

Then, we find the two bins that are half of the length of
B away from each other and have the maximal sum. Finally,
we rotate the image so that the bin that contains one of the
points is the first bin.

For the ImageCLEF’2012 plant database, the images of
isolated leaves are mostly in upright position already; how-
ever, this is obviously not true for leaves segmented from
plant foliage photos. Doing a visual inspection of cleanly
segmented photos, we observed that about 54 % of leaves
are correctly oriented such that its major axis is aligned with
the vertical (±15◦) and its tip is at the top. Note that the
suggested method only tries to align the major axis of the
leaf with the vertical; the upside-down leaves are counted as
correct, the accuracy increases to 81 %.

A more advanced rotation normalization would require
more advanced features, such as vein orientations and the
stem location of the leaf. Alternatively, one can use only
rotation-invariant features for classification. We believe that
the former may be more promising in our case, given the cur-
rent success of the algorithm and the fact that many powerful
features used in this work are not rotation invariant.

3.3 Feature extraction

Our plant identification system employs a wide range of
features for describing effectively the huge variety of plant
images. Most of the considered features are commonly used
for general-purpose content-based image description, while
others have been specifically designed for the task under con-
sideration. Furthermore, special care has been taken to ensure
translation, rotation and if possible scale-invariant descrip-
tions. In this section, we review each feature family (shape,
texture, color) in detail.

3.3.1 Shape features

Shape is evidently of prime importance when it comes to
distinguishing leaves, and has been treated accordingly by
employing a rich array of both region- and contour-based
shape descriptors. Specifically, we use well-known statistical
and convexity-based global geometric descriptors, as well
as Fourier coefficients that aim to capture fine leaf border
nuances. In addition, lesser known yet effective approaches
are also included that focus on localized image parts.

Given the mask image produced at the segmentation step,
whenever required the leaf contours are computed by means
of the morphological internal gradient operator using a 3 × 3
square-shaped structuring element.

The shape features evaluated in this work and used in our
system are described briefly.

Perimeter convexity (PC) or simply convexity is defined
using the binary segmentation mask, as the ratio of perimeter
of the convex hull over that of the leaf contour:

PC = PerimeterCH

Perimeter
(3.3)

Area convexity (AC) is also computed on the binary seg-
mentation mask and describes the normalized difference of
the image areas (in pixels) between the convex hull and the
original mask:

AC = AreaCH − Area

Area
(3.4)

Compactness (Comp) is a basic global shape descriptor com-
puted on the binary mask as the ratio of the square of the
perimeter over the object area:

Comp = Perimeter2

Area
(3.5)

Elongation (Elong) is a morphological shape measure com-
puted once again on the binary segmentation mask and
defined as

Elong = Area

2d2 (3.6)

where d represents the maximum number of binary mor-
phological erosions before the shape disappears completely.
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Fig. 7 Example of leaf decomposition into 14 strips [22]

The structuring element in this case has been chosen as a
3 × 3 square.

Basic shape statistics (BSS) provides contour-related
information by computing basic statistical measures from
the distance to centroid curve. In particular, once the image
centroid is located, we compute the contour pixels’ Euclidean
distance to the centroid, obtaining a sequence of distance val-
ues. After sorting the said sequence, we extract the following
basic measures from it:

BSS = {max, min, median, variance} (3.7)

Area width factor (AWF) is computed on grayscale and con-
stitutes a slight variation of the leaf width factor introduced
in [22]. Specifically, given an isolated leaf image, it is first
divided into n strips perpendicular to its major axis, as shown
in Fig. 7. For the final n-dimensional feature, we compute
the volume (Vol, i.e. sum of pixel values) of each strip (Voli )
normalized by the global volume (Vol):

AWF = {Voli/Vol}1≤i≤n (3.8)

Regional moments of inertia (RMI) is relatively similar
to AWF. It requires an identical image subdivision sys-
tem, differing only in the characterization of each strip. To
explain, instead of using the sum of pixel values, each strip is
described by means of the mean Euclidean distance between
its centroid and contour pixels [52].

Angle code histogram (ACH) has been used in [12] for
tree leaf classification. Given the binary segmentation mask,
it consists in first subsampling the contour points, followed
by computing the angles of successive point triplets. The
final feature is formed by the normalized histogram of the
computed angles.

Contour point distribution histogram (CPDH) is a vari-
ation of the generic shape descriptor recently presented in
[53]. It consists in first drawing n concentric circles at regular
intervals around the image centroid. Then for each concentric
circle, we compute the number of contour points it contains,
thus leading to a numerical sequence of length n. The nor-
malization of the said sequence with the object’s perimeter
provides the final feature vector.

Fourier descriptors (FD): we used the Fourier descriptors
that are widely used to describe shape boundaries, as the
main shape feature in our system. We first extract the eight-
directional chain-code from the boundary of a leaf. Then,

the discrete Fourier transform is applied on the chain-code,
to obtain the Fourier coefficients. The Fourier transform coef-
ficients of a discrete signal f (t) of length N is defined as

Ck = 1

N

N−1∑
t=0

f (t)e− j2π tk/N , k ∈ {0, . . . , N − 1} (3.9)

In our case, f (t) is the eight-directional chain-code of the
plant, N is the number of points in the chain-code and Ck is
the kth Fourier coefficient. The coefficients computed on the
chain-code are invariant to translation since the chain-code is
invariant to translation. Rotation invariance is achieved using
only the magnitude information in the coefficients, ignoring
the phase information. Scale invariance is achieved by divid-
ing all the coefficients by the magnitude of the first compo-
nent.

We used the first 50 coefficients to obtain a fixed-length
feature and to eliminate the noise in the leaf contour.

3.3.2 Texture features

Although texture is often overshadowed by shape as the dom-
inant feature family for leaf recognition, it is nevertheless of
high significance as it provides complementary information.
In particular, texture features capture venation-related infor-
mation as well as any eventual directional characteristics,
and more generally specialize in describing the fine nuances
at the leaf surface. The most frequently encountered texture
descriptors in this context appear to be Gabor features [17],
fractal dimensions [2] as well as local binary patterns [17].

Although one might be tempted to use state-of-the-art tex-
ture description tools such as the recently introduced mor-
phological texture descriptors [54,55], they will probably
not be optimal in this context, since the primary concern
there is to obtain translation, rotation and scale-invariant fea-
tures. Whereas in this context, the leaves have already been
centered and rotation normalized. Hence, a simpler and an
anisotropic descriptor can be of interest, since it does not
compromise its description capacity for the sake of invari-
ance. As far as our system is concerned, after experimenting
extensively with morphological texture descriptors that had
previously performed relatively well [56], we decided not to
employ them in the current system for the aforementioned
reason; we employed the following instead.

Orientation histogram is computed on grayscale data.
After computing the orientation map using a 11 × 11 edge
detection operator for determining the dominant orientation
at each pixel, the feature vector is computed as the normal-
ized histogram of n bins of dominant orientations.

Gabor features: Gabor wavelets, which are commonly
used for texture analysis [57,58], are obtained through the
multiplication of a Gaussian function and a harmonic func-
tion. The basic 2D Gabor function can be stated as follows:
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Fig. 8 Color variations of
“Eurasian Smoketree”

g(x, y) = 1

2πσxσy
e− 1

2 (x2/σ 2
x +y2/σ 2

y ) × e2π i f x (3.10)

Gabor filters in different orientations and scales are used
to detect textures in different orientations and scales, respec-
tively. They can be derived from the basic Gabor function.
The response of a Gabor filter on an image I (x, y) is the
convolution of the image and the Gabor filter:

Rsu(x, y) =
C/2∑

m=−C/2

C/2∑
n=−C/2

I (x − m, y − n)gsu(m, n)

(3.11)

where gsu(m, n) denotes the Gabor function at scale s and
orientation u, and m and n are variables that are use to sum
the response over the Gabor filter window’s size, C .

In our case, we applied the Gabor filter to the grayscale
version of the segmented plant images using eight orienta-
tions and five scales. The mean response obtained at each ori-
entation and scale is then used as the 40-dimensional Gabor
texture features.

3.3.3 Color features

Color is not expected to be as discriminative as shape or
texture for leaf recognition, since most plants are already
in some shade of green, while illumination variations vary
greatly. In addition to the low inter-class variability of color,
another issue is its high intra-class variance: even the colors
of leaves belonging to the same plant can present a very wide
value range (Fig. 8) depending on the season and the plant’s
overall condition.

Regardless of the aforementioned complications, color
can still contribute to plant identification, considering leaves
that exhibit an extraordinary hue or especially in case of
flower presence. We tested the effectiveness of some well-
known color descriptors, specifically the RGB histogram, the
LSH histogram, the saturation-weighted hue histogram [59],
and color moments [60].

Color moments [60] are used for characterizing planar
color patterns, irrespective of viewpoint or illumination con-
ditions and without the need for object contour detection.
They consist of 27 moments of powers of the intensities in the
individual color bands and combinations thereof. In detail,
they describe the shape, the intensity and the color distribu-

tion of a given pattern. Moreover, they are invariant to both
affine deformations as well as linear intensity changes.

The saturation-weighted hue histogram that was deemed
as the most promising is described here. It aims to address
the issue of indeterminate hue with weakly saturated pixels.
In this histogram, the total value of each bin Wθ , θ ∈ [0, 360]
is calculated as

Wθ =
∑

x

Sxδθ Hx (3.12)

where Hx and Sx are the hue and saturation values at position
x and δi j the Kronecker delta function. As far as the color
space is concerned, we have employed LSH [50] since it pro-
vides a saturation representation independent of luminance.

3.4 Classification

Plant identification is a challenging machine learning prob-
lem. The main difficulty is that many plant species are very
similar to one another while one can observe a large variation
within one species, due to seasonal or plant maturity changes.
Other sources of variation common to many object recogni-
tion problems, such as pose, scale and lighting variations,
also apply to plant identification problem.

The most important component of a classification sys-
tem is using efficient and robust features that can be used
to differentiate between the classes. In this work, we use a
large set of powerful features, most of which are well-known
and widely used in various object recognition problems (e.g.
Fourier descriptors, moment invariants, Gabor features), as
described in Sect. 3.3. Some other features (e.g. area width
factor) are added as a result of our previous work in this area.

Of course there are a multitude of different features used
in object recognition literature, so the problem may be more
of a feature selection to reduce dimensionality and prevent
over-fitting, especially since there are a relatively few num-
ber of samples per species. Findings are mixed in regard to
feature selection: while in our previous work we found that
some form of dimensionality reduction is needed [3], others
have found that the more features they added the more the
performance increased [10]. This issue is especially relevant
since plant image databases are rather limited in size; for
instance quite a few species in the ImageCLEF’2012 plant
database contain only a few (less than 10) samples.
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To evaluate feature effectiveness and deal with the poten-
tial over-fitting problem, we evaluated the effectiveness of
each feature individually and in groups, during system devel-
opment. For this, we used support vector machine (SVM)
classifiers trained using a portion of the available training
data (development set) and only the considered feature(s).
For evaluation, we used the remaining samples from the
training set (validation set), as discussed in Sect. 4. Some
of the mentioned features in Sect. 3.3 are added as a result of
this evaluation, after noticing frequent errors between sim-
ilar classes. In this process, we also excluded the morpho-
logical texture features that we had used in our previous
work [56].

After the feature selection phase, we trained our classifiers
using the selected features and all of the available training
data. Then, we tested these classifiers using the separate test
set of the ImageCLEF’2012 plant database. The full set of
our final features, along with their effectiveness on this test
set, is given in Table 2.

The SVM classifiers used in this work employ the radial
basis function kernel whose parameters were optimized using
cross-validation and grid search on the training set. The train-
ing samples for this classifier only consist of isolated leaf
images (scan and scan-like categories of the training set), so
as to obtain cleanly extracted features.

4 Experimental results

We used the test portion of the publicly available Image-
CLEF’2012 plant identification campaign database to eval-
uate different features for their effectiveness in this problem
and to measure the overall system performance.

Since the ImageCLEF plant database contains separate
subsets for isolated leafs on simple backgrounds and plant
foliage on complex background, we report our results on
isolated leaf recognition and unrestricted plant photograph
recognition sub-problems separately.

We report both individual feature effectiveness and over-
all performance results using top-k classification rates and
the average inverse-rank score of the queries. In the Image-
CLEF’2012 campaign, the official tests were run by Image-
CLEF organizers and the results obtained by each group for
each sub-task are reported in [11], as discussed in Sect. 2.
There, the average inverse-rank metric is used slightly dif-
ferently, as explained in Sect. 4.3.

4.1 Dataset

The ImageCLEF’2012 plant database contains images of 126
tree species, contributed by about 20 different people. Each
species contains photographs from one or more individual
plants. The database consists of a training set that was made

available for the participants and a test set that was kept
sequestered until the official testing of participating systems
by the organizers, and released afterwards. The training data
contains 8,422 images (4,870 scans, 1,819 scan-like photos,
1,733 natural photos) and the test set contains a separate set of
3,150 images (1,760 scans, 907 scan-like photos, 483 natural
photos).

During system development, feature effectiveness was in
fact measured using a carefully obtained validation set that
was split from the training set. For this, we split the training
database into two, as development and validation subsets,
paying attention to representing all classes in the develop-
ment set and not splitting images of the same individual plant
across the two subsets. We preferred this method to using a
simple cross-validation, since in the ImageCLEF’2011 cam-
paign [3], there was a large performance degradation between
the results we obtained using cross-validation and in the offi-
cial test. We believe that the large performance drop was
partly due to the fact that the development and validation sets
contained very similar images in the case of cross-validation.
Indeed, in the ImageCLEF database, there are many plants
that are photographed more than once, often with very lit-
tle difference between two pictures. Putting these pictures in
separate subsets (development and validation), as may hap-
pen during a randomly partitioned cross-validation split, may
lead to overfitting. Furthermore, some classes may be miss-
ing from the development or validation subsets, simplifying
the problem.

4.2 Feature evaluation

We report the effectiveness of a feature using a classifier
trained with all of the training set and considering only that
feature. For training, we only used isolated leaves on simple
background (scan and scan-like data) so as to measure fea-
ture effectiveness on the core plant identification problem,
without the added complexity of background variations.

The individual feature performances are presented in
Table 2. The results show the top-1, top-2 and top-10 classifi-
cation accuracies, and the average inverse-rank of the correct
class for each query. A test instance is correctly classified
using Top-N (or Rank-N) accuracy if the correct class label
is in the most probable N classes. The inverse-rank score S
is calculated as

S = 1

P

P∑
p=1

1

Np

Np∑
n=1

rp,n (4.1)

where P is the number of different plant classes, Np is the
number of photographs for that plant, and rp,n is the rank of
the correct class for the nth image of the pth class.

As can be seen in Table 2, the best individual features
are shape descriptors, with around 35 % accuracy in the test
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Table 2 Classification accuracies of feature descriptors with isolated leaf images (scan and scan-like category of ImageCLEF’2012 plant identifi-
cation competition test set)

Feature name Length Top-1 (%) Top-2 (%) Top-5 (%) Average inverse rank

All shape features 95 58.08 70.68 83.76 0.68

Region-based features 23 53.24 65.92 81.03 0.64

Regional moments 7 36.52 49.72 71.77 0.49

Area width factor 13 36.37 47.73 64.12 0.47

Compactness 1 8.06 13.54 29.02 0.15

Area convexity 1 7.91 15.15 27.78 0.15

Elongation 1 5.70 12.56 25.53 0.13

Contour-based features 72 46.04 58.64 77.09 0.57

Fourier descriptors 50 34.91 47.39 68.28 0.47

Basic shape statistics 4 28.95 41.21 63.63 0.41

Contour point distribution histogram 7 24.97 36.00 56.28 0.36

Angle code histogram 10 20.62 31.01 48.41 0.30

Perimeter convexity 1 7.65 13.91 27.52 0.14

All texture features 47 33.30 44.51 59.21 0.43

Gabor features 40 31.72 43.68 59.02 0.42

Orientation histogram 6 17.59 25.31 43.68 0.26

Smoothness 1 3.67 6.07 14.66 0.07

All color features 39 24.07 32.47 44.06 0.31

Color moments 27 25.01 33.33 45.03 0.32

Saturation-weighted hue histogram 12 6.07 9.19 18.30 0.10

set (e.g. regional moments and Fourier descriptors); they are
followed by color moments (∼25 %) and orientation his-
tograms (∼18 %). Shape features also appear to be less prone
to over-fitting as indicated by a smaller degradation between
cross-validation and validation accuracies.

Since we found that the shape features are more robust for
this classification task, to better analyze the shape features,
we further divided them into two according to how they are
extracted as contour (Fourier descriptors, basic shape statis-
tics, angular code histogram, perimeter convexity, and con-
tour point distribution histogram) or region based (all others).
The accuracies for this division are also presented in Table 2.
According to these results, region-based shape features are
the best features for plant leaf retrieval.

For texture, the Gabor features show the highest discrim-
inatory performance (∼32 %), followed by the gradient ori-
entation histogram.

As far as color is concerned, given its high inter-class
similarity and high intra-class variance for many species, we
initially did not expect a high discriminatory performance.
All the same, considering its potential, to eliminate certain
species or help identify those with a distinct color, we did
some experiments to test the pertinence of the few standard
color descriptors. Specifically, we tested the RGB histogram
(4 bins per channel), color moments [60] and the saturation-
weighted hue histogram [59] that was explained previously.

The best color descriptor was color moments with ∼25 %
accuracy. Unfortunately, color information do not contribute
to performance, when used in addition to shape and texture
descriptors, as shown in Table 3.

4.3 Overall results

Results on recognizing isolated leaf images, obtained with
different combinations of feature groups, are given in Table 3.
As shown in this table, the best classification performance is
obtained using the 142-dimensional feature vector consisting
of shape and texture features, as 60.97 %; the classification
accuracy reaches 80.69 % when considering top-5 classifi-
cation rates.

For the photo category consisting of leaf or foliage images
on natural background, we again obtained the best results
with shape and texture features, achieving a top-1 classifica-
tion rate of 8.49 % and top-5 classification rate of 22.15 %.
Notice that in this case, the segmentation aims to isolate a
single leaf in the image, which often results in noisy con-
tours. Furthermore, the preprocessing step occasionally fails
in normalizing the orientation of the leaf, which then affects
the extracted features.

When measuring performance with the average inverse-
rank metric, the proposed system obtains a score of 0.69 for
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Table 3 Overall classification accuracies of groups of feature descriptors with isolated leaf images (scan and scan-like category of ImageCLEF’2012
plant identification campaign’s test set)

Feature group Length Top-1 (%) Top-2 (%) Top-5 (%) Average inverse rank

Shape 95 58.08 70.68 83.76 0.68

Shape + color 134 48.82 60.52 73.38 0.58

Shape + texture 142 60.97 70.12 80.69 0.69

Shape + texture + color 173 52.49 64.30 75.33 0.62

isolated leaf images and 0.13 in recognizing photographs
from automatically detected leaves in the photograph.

Part of the difference between the official scores given in
[11] is due to the fact that the official metric averages the
inverse-rank scores across all photographers, with the aim to
better reflect the image retrieval performance in a potential
end-user service. When evaluated with this metric, within the
ImageCLEF’2012 plant identification campaign, a slightly
earlier version of the system described here achieved a score
of 0.58 on scanned leaves; 0.55 on scan-like leaf images,
and 0.16 on foliage photos. The best result obtained in the
campaign were 0.58, 0.59 and 0.32 for scan, scan-like and
foliage photo categories, respectively, each obtained by a
different research group.

4.4 Efficiency

Once a leaf is segmented from an image, our shape features
are extracted efficiently. While some of our shape features,
such as perimeter convexity, area convexity and elongation,
require only the binary segmentation mask, the contour-
based shape features, such as FFT, ACH and CPDH, require
the contour of the segmented leaf.

In contrast, texture features are more demanding. For
example, the extraction of Gabor features requires a con-
volution of the image with 40 different Gabor filters and the
computation of the orientation histogram requires the con-
volution of the image with an edge detection operator.

To train/test the SVM using the concatenation of the fea-
tures, we use the well-known LibSVM package. The total
training time of the SVM along with the grid search for para-
meters takes less than 5 min on a 2.00-GHz computer.

5 Discussion and future work

This paper has focused on the problem of plant identification,
an emerging application field enjoying increasing interest
from the computer vision and machine learning communi-
ties. This interest is due to the significant practical need by
botanists for such a solution, as well as to the considerable
commercial potential of the solution. The plant identifica-
tion problem is shown to be far from easy, since besides the

usual challenges surrounding object recognition, it possesses
additional difficulties, such as very high intra-class content
variation. Consequently, many of the prominent solutions
employed for general-purpose content-based image recogni-
tion and retrieval fail to deliver desired accuracy levels.

The proposed system is developed in the context of
the ImageCLEF plant identification campaigns. It employs
an automatic leaf-based plant characterization approach,
equipped with state-of-the-art solutions for segmentation,
content description and classification. Our segmentation
method relies on color quasi-flat zone-based simplification.
Given the large variability in the problem and the small sam-
ple size for many of the plant species, we focused on finding
the optimal set of features to reduce over-fitting and improve
generalization performance.

The results obtained on the publicly available Image-
CLEF’2012 plant database show a 61 % classification accu-
racy on recognizing the plant from an isolated leaf image,
among 126 plant classes. This result indicates the state-of-
the-art in identifying plants from isolated leaves, as variants
of the presented system obtained the best overall result in
the ImageCLEF’2012 campaign and the best result in this
category in the ImageCLEF’2013 campaign.

As for the classification of foliage photos with natural
backgrounds, the results are far from satisfactory. Nonethe-
less, we believe that the presented approach of isolating a
single leaf from the image is an important approach to the
problem, as it can complement one using local descriptors
(e.g. SIFT), especially in images where the background cov-
ers a large area. Furthermore, segmenting a single leaf can
be better accomplished using statistical shape models (e.g.
active appearance models).

While the challenge of plant identification is far from
resolved, performance results observed in ImageCLEF cam-
paigns have shown a slight increase, while the considered
plant species almost doubled every year since 2011. Further-
more, the top-5 classification accuracies indicate the applica-
bility of the plant identification and retrieval technologies for
user-assisted tasks.

Our future work will focus primarily on complementary
approaches based on local descriptors and feature descrip-
tion capabilities. In particular, we intend to adapt tree-based
image representations from mathematical morphology to this
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context, design content descriptors specifically for botanical
objects and investigate the potential of human-assisted fea-
ture extraction. In addition, we will work on improving the
segmentation and recognition of leaves from foliage photos.
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