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Abstract Automatic vehicle classification is an important
area of research for intelligent transportation, traffic surveil-
lance and security. A working image-based vehicle classifi-
cation system is proposed in this paper. The first component
vehicle detection is implemented by applying histogram of
oriented gradient features and SVM classifier. The second
component vehicle classification, which is the emphasis of
this paper, is accomplished by a hybrid model composed of
clustering and kernel autoassociator (KAA). The KAA model
is a generalization of auto-associative networks by training
to recall the inputs through kernel subspace. As an effective
one-class classification strategy, KAA has been proposed to
implement classification with rejection, showing balanced
error–rejection trade-off. With a large number of training
samples, however, the training of KAA becomes problem-
atic due to the difficulties involved with directly creating the
kernel matrix. As a solution, a hybrid model consisting of
self-organizing map (SOM) and KAM has been proposed to
first acquire prototypes and then construct the KAA model,
which has been proven efficient in internet intrusion detec-
tion. The hybrid model is further studied in this paper, with
several clustering algorithms compared, including k-mean
clustering, SOM and Neural Gas. Experimental results using
more than 2,500 images from four types of vehicles (bus,
light truck, car and van) demonstrated the effectiveness of the
hybrid model. The proposed scheme offers a performance of
accuracy over 95 % with a rejection rate 8 % and reliabil-
ity over 98 % with a rejection rate of 20 %. This exhibits
promising potentials for real-world applications.
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1 Introduction

With the increasing demand for security awareness of motor-
vehicles and widespread installation of surveillance cam-
eras, there is a pressing need for technologies that are able
to automatically identify vehicle types through imaging [1–
3]. The identified vehicle type could provide valuable infor-
mation for the vehicle, which enables the functionalities
of the conventional number-plate recognition systems to be
extended. Information on vehicle type is serviceable to many
applications such as traffic management and transportation
infrastructure planning. In controlled areas such as airports,
a license plate recognition system augmented with the vehi-
cle type recognition feature can be installed at access lanes,
automatically monitoring the vehicles entering and exiting
the area, and detect any discrepancies between the vehicle
type and its license plate number.

Early AVC technology mainly employed inductive loop
[4,5], which has certain disadvantages such as being costly
and impractical for relocation. As vision systems are rela-
tively cheap and easy to install and operate, vision-based
vehicle classification has attracted much attention in recent
years [1,3,6–8]. The issues and problems of vehicle type
recognition are similar to other forms of object recognition
in computer vision, with a number of challenging characteris-
tics. Vehicle images are always captured with a large degree
of variations due to the ever-changing road environments,
backgrounds and lighting conditions. Motion-induced vari-
ability in the shape, size, color, and appearance of vehicles
all add to the limiting factors of the development of vehicle
type recognition systems. Although classification of vehicle
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types has been a subject of interest for several years, most
of the published works mainly focused either on detection
(determining vehicle or background) or tracking [2,3,6,7].
A few of the past works attempted to apply different feature
analysis from images and use advanced machine learning
algorithms to classify vehicles into some categories such as
cars, buses, heavy goods vehicles (HGVs), etc. [9–11].

As a pre-requisite for image-based vehicle classification,
the region of vehicle has to be located from the image. Due to
the variability present in imaging conditions caused by occlu-
sions, illuminations and shadows, vehicle detection itself is a
challenging task. A number of vehicle detection approaches
have been reported in the computer vision literature [6,7,11].
Among the proposed approaches, the dominant ones are
those based on the pioneering object detection method intro-
duced by Viola and Jones [12]. Viola and Jones’ object detec-
tion mainly consists of two main steps: (i) hypothesis gen-
eration and (ii) hypothesis verification, which generate the
tentative locations of vehicles in an image and then validate
the true existence of the vehicles in turn. A recent work by
Negri [13] further extends VJ’s strategy in vehicle detec-
tion by exploiting two features, i.e., Haar-like feature and
histogram of oriented gradient (HOG) [14], together with
an AdaBoosting classifier. The joint application of the two
features and cascade classifier makes the algorithm compu-
tationally expensive. This paper explores a simpler yet more
efficient method which exploits HOG and SVM.

Given the significance of vehicle type information, assess-
ment of confidence for classification results should be
addressed. A clear indication of classification reliability
would allow users’ control over the system’s performance.
Typically, image classification methods implicitly assume
that a testing case must fall onto one of the predefined classes
and subsequently classify all of the examples, even if a result
is somehow ambiguous. For most of the real-world applica-
tions, such a close-set classification assumption is not accept-
able. A preferred practice is to classify an example only when
there is a sufficiently high degree of confidence. Known as
rejection option in classifier design [15–18], the techniques
would allow the accuracy be set prior to classification and
hence each classification is given with a predefined confi-
dence level. However, how to implement a rejection option in
a multi-class classifier has not been sufficiently addressed by
and large, with the exception of a few publications [17–19].

Among the first works to study classification with rejec-
tion option, Chow [20] proposed a Bayes optimum recog-
nition framework to reject the most unreliable objects that
have the lowest class posterior probabilities. In real prob-
lems, however, it is not realistic to accurately estimate the
posterior probabilities. It was later proved that Chow’s rule
does not perform well if a significant error in probability
estimation is present [16]. For vehicle type classification,
it is more difficult to accurately estimate class conditional

probabilities because of the curse of dimensionality prob-
lem. The possibility of having objects from unknown classes
also needs to be taken into account. Fumera et al. [16] demon-
strated that per-class thresholds have advantages over a sin-
gle global threshold with regard to an error–reject trade-off.
However, the values of the multiple thresholds must be esti-
mated, which is not a trivial task due to the computational
intensiveness.

Recently, one-class classification paradigm has been
proven efficient in the implementation of rejection options
in vehicle type classification [21]. Conventional multi-class
classification algorithms classify an unknown object into one
of several pre-defined categories, which has an unavoidable
problem when the unknown object does not belong to any
one of those given categories. In one-class classification, a
class known as the positive class or target class, is well char-
acterized by instances in the training data [22,23]. By class-
specific description models using distance among samples,
one-class classification can bypass the estimation of class
conditional probabilities.

Among the statistical methods and neural learningschemes
proposed for one-class classification, auto-associative neural
network (AANN) has proved to be a valuable tool in
many applications. Auto-associative neural network mod-
els [24,25] are feedforward neural networks, performing an
identity mapping of the input space. To improve the perfor-
mance of a simple AANN model, Zhang et al. [26] proposed
a kernel auto-associator (KAA) which maps the data into a
high-dimensional feature space via the utilization of a ker-
nel function. Compared with the simple auto-associative net-
work models, KAA model has the benefit of finding complex
nonlinear features. The applications of the KAA model to
recognition and classification have been reported previously
[27,28].

The main issue of applying the KAA model in one-class
classification is to create the kernel matrix. In an earlier paper,
we proposed that the prototypes of training samples could
be selected by self-organizing map (SOM) and the kernel
matrix is then created using the prototypes [29]. This study
focuses on the hybrid model and how to exploit its use for
vehicle type classification, comparing with two more popu-
lar clustering algorithms, i.e., k-means and Neural gas. The
clustering algorithms extract prototypes for each of the data
categories. The implementation of rejection option is then
addressed, aiming at building a reliable classifier that is able
to measure the appropriateness of its decisions. Such a sys-
tem is highly expected when the user requires to be notified
about the confidence level of each classification or rejecting
the query. The reliable hybrid classification model is applied
to classify vehicle types, which are represented by simple
edge histogram features.

This paper is structured as follows. Section 1 briefly intro-
duces some background and related research issues of image-
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based automatic vehicle type classification, Sect. 2 outlines
the data acquisition from surveillance cameras and explains
the necessary step of vehicle segmentation. Section 3 intro-
duces the hybrid model of KAA and clustering, with three
clustering algorithms included; k-means, SOM and Neural
Gas. The implementation of confidence estimation via rejec-
tion option is discussed in Sect. 4. Section 5 is dedicated to
the experiments of vehicle classifications using the hybrid
model, followed by conclusion in Sect. 6.

2 Image collection and vehicle detection

A large collection of vehicle images was provided by police
in a collaborated project for traffic surveillance. The images
were recorded with traffic surveillance cameras over a 1-
week period between 7:30 a.m. to 21:50 p.m., encompassing
a wide range of weather and illumination conditions. From
the recorded images (>50,000), 6,000 images of different
vehicles of four categories were selected, including car, van,
truck and bus. All of the images contained frontal views of a
single vehicle captured from variable distances. The original
images have 1,024 × 1,360 color pixels. A sample of the
selected images is shown in Fig. 1.

2.1 Vehicle detection

Vehicle detection is a special topic of object detection
in computer vision, which has seen many progresses in

recent years, particularly appearance-based methods. Exam-
ples include the seminal work of Viola and Jones and
many extensions [12]. Support vector machines (SVM)
with HOGs [14] have also been extensively applied for
object detection, including vehicle detection [13]. In the
following, two kinds of vehicle detector that combines
the HOG feature descriptor and SVM were proposed.
Figure 2 shows the first simple vehicle detection scheme.

The essential idea of HOG is to describe the appearance
and shape of a local object in an image can often be charac-
terized well by the distribution of local intensity gradients or
edge directions. The main steps of HOG consist of first divid-
ing the image window into small spatial regions (or “cells”),
and then accumulating a weighted local 1-D HOG direc-
tions over the pixels of the cell. We adopted the most pop-
ular R-HOG, which uses rectangular cell. To minimize the
effect from illumination variance, contrast-normalization is
carried by accumulating local histogram over a larger regions
(blocks) to normalize all of the cells in the block.

The vehicle detection is performed by window searching
at different scales with the HOG feature using an appropriate
classifier, which will locate the bounding boxes for potential
vehicles. Training samples were prepared with two types:
6,358 negative samples and 4,557 positive samples. Negative
samples correspond to non-object images, which are taken
from arbitrary outdoor images free of any vehicles. Positive
samples are manually cropped vehicle objects from traffic
surveillance images as shown in Fig. 1, with different dura-
tions of time and weather conditions being taken into account.

Fig. 1 Samples of the frontal
vehicle images

Fig. 2 Illustration of the
HOG-SVM vehicle detection
scheme
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Fig. 3 Examples of vehicle images as the positive samples

Fig. 4 Examples of non-vehicle images as the negative samples

Some of the positive and negative examples are illustrated in
Figs. 3 and 4.

The parameters of HOG are as follow: The convolution
of the image with a 1D [−1, 0, 1] filter mask is applied to
approximate the gradient. There are four (2×2) cells in each
block, with each cell of 8 × 8 pixels. The bin number of gra-
dient orientation is taken as 9 over the range of 0◦−180◦. The
block normalization is implemented by L2-norm as follows:

ν → ν√
‖ν‖2

2 + ε2
(1)

where ν stands for the local histogram and ε is a small num-
ber. The final HOG feature for each sample image is of 1,764
dimension, as illustrated in Fig. 5.

The first vehicle detection scheme is implemented by
applying HOG feature and a SVM [30]. Given labeled train-
ing data, SVM will generate an optimal hyperplane to cate-
gorize new examples. Intuitively, the operation of the SVM
algorithm is based on finding the hyperplane that gives the
largest minimum distance to the training examples. And
the optimal separating hyperplane maximizes the margin of
the training data. During detection, HOG features from the
searching windows are calculated and inputted to the SVM
classifier. The SVM’s output will correspond to the detection
result. By incorporation of the idea of rescaling the Region

Fig. 5 Illustration of the HOG features extracted for both of the posi-
tive and negative samples

of Interests (RoIs) as proposed in [31], such a single SVM
detector with HOG feature provides better results than the
AdaBoost algorithm with composite features of HOG and
Haar described in [31].

To further improve the detection performance, we devel-
oped a cascade of linear SVM classifiers for fast vehicle
detection. Our motivation is based on the proved efficiency of
cascade classifiers such as the AdaBoost algorithms. A cas-
cade SVM was proposed in [32] for object detection, with
independently trained SVMs. Being different from theirs, the
cascade SVM scheme we proposed can be demonstrated in
Fig. 6, with details expounded in the following. A SVM’s
existence and performance in the cascade is dependent upon
the previous one. Specifically, the original training samples
are divided into two sets: training set and validation set, where
training set accounts for 10 % of the training samples while
validation set 90 %. The training set was used to train the
first SVM, and 5 % random samples without replacement
from the validation set were taken to test the SVM’s per-
formance. If the error rate exceeds a predefined threshold
(10−4), then the correctly classified and wrongly classified
examples were, respectively, added to the positive and neg-
ative training samples exploited by the first SVM, and the
resulting augmented training samples will be applied to next
SVM’s training. The procedure continues until the error rate
from a SVM in the cascade is less than the threshold (10−4),
which will terminate the training.

Proceeding with the trained cascaded SVMs, a multi-scale
vehicle detection is implemented by scaling up the detection
windows. Specifically, the hypothesis images delineated by
rectangular boxes, which indicate potential vehicle objects,
will undergo scaling up operations with appropriate ampli-
fication coefficients. Two factors were taken into account
in the selection of the coefficients. Too large amplification
coefficients will omit some small vehicle objects while too
small coefficients will generate unnecessarily many detec-
tion windows thus slowing down the detection speed. We

123



Hybrid model of clustering and kernel autoassociator 441

Fig. 6 Illustration of cascade
SVMs for vehicle detection
scheme

Fig. 7 The containment relations for the bounding boxes and the final
result from deleting the smaller ones

Fig. 8 The intersection relations for the bounding boxes and the aver-
aged result

selected the detection parameters by trial and error. The ini-
tial detection window is of 128 × 128 pixels, which will be
shifted 64 pixels, and scaled up with coefficient 1.3.

As there will be more than one detected windows gen-
erated by the cascade SVM from the hypothesis images,
proper decision fusion is necessary to produce single detec-
tion result. There are two possible different relationships
among the detected windows. The first is containment rela-
tion, which means one detected window may locate inside
another. The second relation is intersection relation, which
means different detected windows cross each other. For the
first relation, only the largest window will be kept. For the
second relation, the positions of the boxes will be averaged
and rounded. The two situations and their handling were fur-
ther explained in Figs. 7 and 8.

3 Hybrid model of clustering algorithms and kernel
auto-associator

3.1 Kernel auto-associator construction

A kernel auto-associator (KAA) finds an identity mapping
through an implicit kernel space, which can be formally
defined as follows [26,27]. Let Hk be a reproducing ker-

nel Hilbert space and k(·, ·) be a positive-definite function in
Hk . The inner product in H is defined by

〈kx , kt 〉 = k(x, t) (2)

and k(·, ·) is called the reproducing kernel for Hk .
Let Fb be a linear mapping function from Hk to the input

space RN . The principle of kernel auto-associator is to per-
form auto-associative mapping via the kernel feature space,
i.e., reconstructing patterns from their counterparts in Hk :

x̂ = F (m)
b (Φ(x)), for x ∈ class m (3)

where Φ(x) = k(x, ·) represents the feature in functional
form in Hk and the subscript b denotes the function for reverse
mapping.

When the patterns to be reproduced are multidimen-
sional, Fb will be composed of a set of functions { fbn },
each corresponding to an element of the output space: Fb =
[ fb1, . . . , fbN ]T. Consider an element function fbn and omit
the element label n, the function in linear form is

x̂ = fb(Φ(x)) = 〈βφ,Φ(x)〉 (4)

Here, x̂ represents an element of the output vector x̂, and βφ

is a vector in the feature space. Suppose the vector βφ can be
spanned by the images of M training samples:

βφ =
M∑

i=1

biΦ(xi ) (5)

then the linear function fb can be rewritten as

x̂ =
〈

M∑

i=1

biΦ(xi ),Φ(x)

〉
=

M∑

i=1

bi k(xi , x) = bTk (6)

where b = [b1, . . . , bM ]T is the vector of expansion coef-
ficients, and k = [k(x1, x), . . . , k(xM , x)]T represents the
vector of kernel products. So the complete output vector x̂ is
given by

x̂ = Bk (7)

where B = [b1, . . . , bN ] denotes the collection of linear pro-
jections for each output element. Given a set of samples, for
example, (x1, x2, . . . , xM ) for training, we can first compute
the kernel product vectors (k1, k2, . . . , kM ). The desired out-
put of the network can be expressed as

X = BK (8)
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Fig. 9 Structure of a KAA network

where X is the matrix with each column an example pat-
tern, X = (x1, x2, . . . , xM ), and K represents the matrix
with each column a corresponding kernel product vector,
K = (k1, k2, . . . , kM ).

In [26], a simple method of learning the projection matrix
B was proposed by minimizing the empirical square error∑

i ||xi − Bki ||2, which gives:

B = X K + (9)

where K + is the pseudo-inverse of the kernel product matrix
K : K + = (K T K )−1 K T.

For the kth query, the distance between the query input
x and the reconstruction xk can be simply given by their
Euclidean distance:

d(xk, x̂k) = ‖xk − x̂k‖2. (10)

The kernel auto-associator constructed from Eq. (8) shares
the structure of the Radial Basis Function (RBF) network, as
shown in Fig. 9, in which Bi j is the connection weight from
the unit j to the linear output unit i . Here, the activity of the
unit j is same as the kernel function, for example, a Gaussian
kernel of the distance from the input x to its center x j .

An important issue in KAA is about the selection of the σ

value in Gaussian kernel function. An appropriate value of σ

would allow a direct measurement of confidence in the recon-
struction for a particular input. We choose a simple method
to effectively calculate the σ value by taking an average of
the similarity measure (in L2 norm sense) between every pair
of training samples.

3.2 Hybrid model of clustering algorithms and KAA

The KAA model is particularly valuable when the train-
ing samples are scarce, which makes most of the traditional
classifiers inapplicable. However, when there is a relatively

Fig. 10 Demonstration of the hybrid classification structure, which
mainly consists of clustering and KAA

large number of training data, the direct application of KAA
becomes impractical as the kernel matrix in Eq. (8) becomes
larger, which makes the inversion computationally expen-
sive. A simple intuition to solve this problem is by appropri-
ate selection of representative samples (prototypes) to build
the kernel matrix. In [29], the SOM model [33] was chosen to
generate the prototypes. In the following, the hybrid model
is further extended with different clustering methods com-
pared, including SOM, k-means clustering and Neural Gas.
The training can be explicitly described into two steps:

Step 1: Unsupervised training to find the prototypes, for
example, by applying appropriate clustering algo-
rithms;

Step 2: Self-supervised training of the KAA models using
the prototypes.

The training process can be further illustrated in Fig. 10.
After the prototypes are generated from the training data and
the KAA network is trained, a testing pattern will be recon-
structed by each of the KAA model during the recognition
phase. The reconstruction errors of the KAA define the indi-
cators that the input vector is assigned to the corresponding
category.

3.3 k-Means clustering

The k-means clustering [34] is one of the most commonly
used unsupervised learning methods, which categorizes the
input data points into a number (k) of different clusters based
on an appropriately defined distance, e.g., Euclidean dis-
tance, from each other. In another word, the data points are
clustered around centroids μi , i = 1, 2, . . . , k, which are
obtained by minimizing the following objective

J =
k∑

i=1

∑

x j ∈Si

‖x j − μi||2 (11)

123



Hybrid model of clustering and kernel autoassociator 443

where there are k clusters Si , i = 1, 2, . . . , k, and μi is the
centroid of all the points x j ∈ Si .

3.4 Self-organizing map

Self-organizing map [24,33] aims at generating a mapping
of an input signal vector x from a high-dimensional space RL

onto a 2D spatial space through a correspondence between
input vectors and the weight vectors of neurons, w ∈ RL ,
such that the topological relationships of weight vectors asso-
ciated with each neuron faithfully preserve the essential fea-
tures of the inputs.

In the learning process, from a given data sample x, the
best matching reference vector wc, together with those wm

adjacent to c, are updated, m = 1, . . . , M , with a step size
decreasing with the lattice distance between m and c. Specif-
ically, SOM can be realized by first selecting a winning unit c
as the one with minimal representation error and then choos-
ing a neighborhood set Nc around c, which determine those
units within c’s neighborhood. All the units within the Nc

adapt their weights according to the following learning rule

Δwm =
{

μk(x − wm) for m ∈ Nc

0 otherwise

In Kohonen’s model, the size of Nc starts large and slowly
decreases over time. For a two-dimensional network, a square
array or hexagonal array topological neighborhood shape can
be selected. If the learning rate μk decreases gradually over
the learning course, the reference vectors wm tend to become
evenly distributed over the input probability distribution.

The above neighborhood selection procedure usually
results in slow convergence. A better alternative is to replace
the neighborhood set Nc by a continuous neighborhood inter-
action function hi j of the distance between units i and j in
the lattice. The corresponding learning algorithm becomes:

Δwm = μkhmc(x − wm), m = 1, . . . , M (12)

where the neighborhood interaction function hmc is a
monotonically decreasing function of the geometrical dis-
tance dmc between units m and c in the topological map,
typically selected as a Gaussian function

hmc = exp

(
− d2

mc

2σ 2

)
, for m ∈ Nc (13)

3.5 Neural ‘Gas’ algorithm

The idea of Neural ‘Gas’ (NG) model [35,36] is to partition
the input space by competition while ordering the neurons
based on a distance metric defined in the input space. Each
neuron associates a reference vector. The information about
neighborhood relationship among the reference vectors can

be provided by an matching score between a reference vector
and the input.

With a training sample x, the ranking of distortions ‖x −
wm0‖2, ‖x − wm1‖2, . . . , ‖x − wmM−1‖2 will be first sorted
out, with wm0 being closest to x, wm1 being second closest
to x, wmk , k = 0, . . . , M − 1 being the reference vector for
which there are k vectors w j with ‖x − w j‖ < ‖x − wmk ‖.
Each neuron adjusts its own weight via a dynamical learning
rate which depends on the ranking of its distortion.

Denote the number k associated with each neural unit m
by km . The following learning rule realizes the Neural ‘Gas’
algorithm in [35].

Δwm = μkhλ(km)(x − wm), m = 1, . . . , M (14)

where hλ(km) is 1 for km = 0 and decays to zero for increas-
ing km . In the simulation we choose the same one as in [35],
hλ(km) = exp(−km/λ), with λ being a decay constant.

Comparing with k-means clustering, Neural ‘Gas’ model
is less sensitive to the initial conditions. It has also been
proven that NG achieves both robustness and best asymptotic
quantization error [36].

4 Hybrid KAA classification with controlled confidence

Classical classification problem is to assign an unknown pat-
tern to one of some pre-defined categories, even if the exam-
ple is not belonging to any existed category. In practice, the
assumption that all classes are known beforehand may not
always be true. For example, there may exist a large number
of classes, some of which are scarce and difficult to be col-
lected for training the classifier. Another common situation
in image classification is the inclusion of poorly segmented
samples in the training sets. The poor segmentation results
may not be similar to any of the types defined. It is therefore
preferable to have a rejection option, by which the ambiguous
input can be relayed to human expert to be operated accu-
rately. A rejection option allows the misclassification rate
be kept beneath an acceptable threshold, thus ensuring the
reliability.

4.1 Chow’s theory of classification with rejection

For applications with known probability distributions, the
Bayes classifier is optimal which also explicitly defines the
posterior probability of the chosen class. The posterior proba-
bility is a natural measure of classification confidence. Based
on this institution, Chow [20] has carried out some fun-
damental research on classification with reject option. For
two-class classification problems, an example is represented
by a n-dimensional feature vector x ∈ �n and a label
y ∈ C, C = {−1,+1}. Following the Bayes’ theorem, pos-
terior probability is defined:
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p(Ci |x) = p(Ci )p(x|Ci )

p(x)
, i = 1, 2. (15)

where p(Ci ) is the prior probability of class Ci , p(x|Ci )

is the conditional densities of x given Ci and p(x) =∑2
i=1 p(x|Ci )p(Ci ) represents the unconditional density

of x.
If we use risk(x) to denote the risk of making a wrong

decision for x, the Bayes decision rule assigns x to the class
of maximum posterior probability (14) by minimizing the
error probability, which can be defined by

error =
∫

x
risk(x)p(x) dx (16)

The Bayes classifier predicts the class having the highest pos-
terior probability and is optimal if true posterior probabilities
are available. However, when some classes are not known or
when classes overlap in feature space, Bayes classifier may
not be always efficient. An alternative approach is to classify
only those samples for which the posterior probability is suf-
ficiently high and reject the remaining ones. Based on this
principle, Chow presented an optimal classifier with reject
option [20]. A binary decision rule with reject option is opti-
mum if for a given error rate (error probability) it minimizes
the reject rate (reject probability). Chow demonstrated that
the optimum rule is to reject the pattern if the maximum of
the a posteriori probabilities is less than a certain threshold.

More explicitly, an example x is accepted only if the prob-
ability that x belongs to Ci is higher than or equal to a given
probability threshold t :

f (x) =
{

argmaxCi
(p(Ci |x)) if maxCi p(Ci |x) ≥ t,

reject if p(Ci |x) ≤ t ∀i.
(17)

where f : �n → C represents the classification function,
which divides the feature space into two regions R1, R2, one
for each predicted class, such that x ∈ Ri means that f (x) =
Ci .

The classifier rejects an example if the prediction is not
sufficiently reliable. The rejection rate is the probability that
the classifier rejects the example,

p(reject) =
∫

Rreject

p(x) dx = p(max(p(Ci |x)) ≤ t) (18)

where Rreject denotes rejection region defined in the feature
space and all examples belonging to this region are rejected
by the classifier. Accordingly, the acceptance rate is the prob-
ability that the classifier accepts an example,

p(accept) = 1 − p(reject) (19)

There is a general relation between the error and rejection
rate: the error rate decreases monotonically while the rejec-
tion rate increases [30]. The following basic properties can
be easily verified:

p(accept) + p(reject) = 1

p( f (x) = y) + p( f (x) �= y) + p(reject) = 1 (20)

p( f (x) = y|accept) + p( f (x) �= y|accept) = 1

In Chow’s theory, an optimal classifier can be found only
if the true posterior probabilities are known. This is rarely
the case in practice. Fumera et al. [16] showed that Chow’s
rule does not perform well if a significant error in probability
estimation is present. In this case, the authors of [16] claimed
that defining different thresholds for each class yields better
results.

4.2 Hybrid KAA model with confidence

Chow’s theory is fundamental for classification with reject
option. However, in real-world applications, the class dis-
tributions are rarely known and the posterior probabilities
have to be estimated. Though there are some algorithms for
density estimation, most of them are difficult to apply, partic-
ularly when the “curse of dimensionality” exists. Among the
proposed methods for posterior probability approximation, a
commonly applied approach, called soft-max function, can
be defined for the hybrid kernel auto-associator:

P̂(C j |x) = exp(−err j (x))∑N
k=1 exp(−errk(x))

(21)

where err j (x) represents the output reconstruction error from
j th KAA, and N is the number of classes. P̂(C j |x) is an esti-
mated posterior which can be also treated as the confidence
of the hybrid classifier in predicting class C j for instance x.

With posterior estimation for the each of the KAA models,
the simplest rejection strategy is by thresholding, following
Chow’s theoretical guidance Eq. (16). Specifically, assume
the estimated posteriors of a given pattern x be P̂(x) =
{P̂1(x), P̂2(x), . . . , P̂N (x)}, where probabilities P̂i (x) are in
descending order. The decision function would be based on
sgn(P̂1(x) − T ), where T is an empirically chosen thresh-
old. Such a simple thresholding, however, cannot effectively
detect patterns for which the classifier is likely to confuse. In
another word, those errors which are caused by the samples
near the decision boundaries are most pertinent to classifica-
tion reliability in real applications. In such a case, the scores
of at least two classes will be nearly equal.

To cater for the confusion reject, a better scheme is by the
comparison of relative difference between the probabilities
P̂1(x) and P̂2(x) of the first two ranks. A possible condition
of rejection could be based on an appropriate measurement
function in the form of ||P̂1(x) − P̂2(x)||, where ||.|| is a
suitably defined distance, and the decision function is based
on a thresholding of the difference.

In the hybrid KAA-based classification system, due to
the monotonicity of exponential function, the comparison of
the probabilities P̂1(x) and P̂2(x) of the first two ranks can
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be simplified to the direct comparison of the reconstruction
errors of the first two ranks. Specifically, a test pattern can be
rejected if the smallest reconstruction error and the second
smallest error differ by less than a threshold. An indicator
variable η can be defined as

η = 1 − err j

erri
(22)

where err j and erri are the smallest and second smallest
reconstruction errors, respectively. A decision is then made
by the following rule

x is rejected from classification if η ≤ ηT

x is accepted for classification if η > ηT (23)

where ηT is a threshold which can be experimentally decided.
We undertook an experiment by varying the threshold ηT

from 0.05 to 0.3.
With the rejection option for the hybrid KAA classifi-

cation system, error rate can be lowered by rejecting some
testing vehicle images. In practical applications, user can set
a prior high accuracy because potential errors are converted
into rejections. The error rate and rejection rate can be defined
as

Error rate = # misrecognized instances

# testing instances
(24)

Rejection rate = # rejected instances

# testing instances
(25)

Recognition rate = # Correctly recognized instance

# testing instances
(26)

Obviously, error rate can be lowered by increasing the thresh-
old ηT and a larger ηT means a higher rejection rate.

The reliability of a classification system can be defined as
the probability of the decision to be correct on a given input
object. With the rejection mechanism defined above, relia-
bility can be assessed as the portion of correctly recognized
patterns in all the test patterns:

Reliability = Recognitionrate

100 % − Recognitionrate
(27)

Such a reliability metric directly suggests that the error rate
should be reduced by rejecting suspicious results.

Accordingly, for hybrid KAA classification with reject
option, the trade-off between accuracy and the rejection rate
can be controlled. The more the system rejects, the better
the accuracy. However, with a high rejection rate, some sam-
ples that otherwise would have been correctly classified, are
rejected. Therefore, a compromise has to be made in prac-
tice. The relationship between the error rate and the reject
rate is often represented as an error–reject trade-off curve,
which can be used to set the desired operating point of the
classification system.

Fig. 11 Comparison of the detection results from a single SVM clas-
sifier and cascaded SVMs. Left column results were from single SVM.
Right column results were from the cascaded SVMs. Both detectors
exploited the same HOG feature, without decision fusion

5 Experiments

5.1 Vehicle detection

An integrated software toolbox for support vector classifica-
tion, LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/),
was exploited for the cascade SVM detection. As both of
the dimensionality of HOG feature and the size of training
samples are relatively high, we chose the linear kernel to
accelerate the calculation.

To demonstrate the superb detection performance of cas-
cade SVM, the single SVM classifier with the same HOG fea-
ture was compared without inclusion of the decision fusion
stage for both of the methods. As illustrated in the left col-
umn in Fig. 11, many no-vehicle objects were generated from
the single SVM detector, thus yielding high false detection
rate. As a sharp comparison as shown in the right column
in Fig. 11, the majority of the those no-vehicle windows
will be filtered out by the cascaded SVMs, which means a
much higher correct detection rate and lower false detection
rate.

For the cascaded SVMs, the false detection rate is gener-
ally decreased with the inclusion of more SVMs. As illus-
trated in Fig. 12, a total number of 684 traffic surveillance
images were used in the experiment for the detection of vehi-
cles using the cascaded SVM. When there is only one SVM,
the number of falsely detected windows is 180 per image on
average. With one more SVM added, the number of falsely
detected windows drops to 50 per image on average. The
dependence of the detection performance over the number
of stages is clear from Fig. 12. Based on this experiment, we
applied 12 SVMs in the final detection experiment to gener-
ate the segmented vehicle objects for classification.
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Fig. 12 False detection rate versus the number of SVMs in the cas-
caded SVMs detector

5.2 Feature extraction

After vehicle objects were detected and segmented from orig-
inal image, appropriate features should be defined for the
subsequent classification. Though HOG can still be applied,
the relative high dimension makes it less competitive when
the trade-off between performance and computational cost
has to be taken into account. As geometrical features per-
tinent to edge are important in the representation of vehi-
cle, another well-known simple feature, Edge Orientation
Histogram (EOH) [37,38], is employed. EOH represents the
local edge distribution by dividing image space into 4 × 4
sub-images and describing the local distribution of each
sub-image by a histogram. More specifically, histograms
are created by categorizing edges in all sub-images into
five types: vertical, horizontal, diagonal and nondirectional
edges, resulting in a total of 5 × 16 = 80 histogram bins.
Each sub-image can be further divided into nonoverlapping
square image blocks with particular size which depends on
the image resolution. Each of the image blocks is then clas-
sified into one of the five mentioned edge categories or as
a nonedge block. For the vehicle images of different types,
Fig. 13 demonstrates the extracted EOH features.

5.3 Vehicle classification

The proposed recognition system was tested on an exten-
sive data set of frontal images (>6,000) of a single vehicle
detected and segmented from the images captured in a traffic
control photographic system, using the cascade SVM detec-
tion scheme introduced in Sect. 2. The segmented vehicles
are quite different with the manually cropped positive sam-
ples used the training of the cascade SVMs. Some of the
examples are illustrated in Fig. 14. In addition to the within-
class appearance differences, other obvious variations of the
detected images include scale, orientation, illumination and
remaining background.

The whole training process can be divided into two phases
as described in Sect. 3. As the process starts from prototypes
generation, the first step of the experiment is to create pro-

Fig. 13 Demonstration of the EOH features extracted from different
vehicles

Fig. 14 Some of the detected vehicles images (total 6,000) used for the
classification experiment. The four rows from top to bottom are cars,
buses, vans and light trucks, respectively

totypes via SOM, Neural Gas and k-means for comparison.
The number of prototypes for each class is first chosen as
64. For SOM, other parameters are chosen as the default
values in the Matlab SOM Toolbox (http://www.cis.hut.fi/
somtoolbox/). The learning parameter is varying from 1 to 0.1
dynamically. The decay constant appeared in the interaction
function explained in Sect. 3 changes from s to s/100, where
s is the size of the pre-defined square grid. For the Neural
Gas algorithm, the parameter chosen are based on the work
of [36,37]. The learning rate decays from 0.3 to 0.01. The
neighborhood size dynamically changes from 0.2× training
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Fig. 15 Comparison of the classification accuracies from the three
clustering algorithms exploited in the hybrid model

sample size to 0.01. Finally, the number of training epoch is
set to be 40× training sample size.

The training of the kernel auto-associative networks has
been elaborated in Sect. 3. During the training process, the
value of σ in the Gaussian kernel function will be chosen
experimentally as the 1/6 time of the centers variance which
generated by clustering algorithm.

For all of the experiment, the training set and testing set
are randomly split, with 80 % of the patterns for training and
20 % patterns for testing. The results are from the averages of
100 runs. Figure 15 shows the performance of the classifiers
based on three clustering algorithms without reject option,
respectively, which shows over 91.5 % accuracy from Neural
Gas model. The better performance of Neural Gas model over
other clustering algorithms including SOM is consistent with
our previous studies on handwriting digits recognition [39].

The subsequent experiments focus on the performance
evaluation of the KAA classification scheme taking account
of rejection option. A common practice to study a classi-
fier with a rejection option is to perform the comparison for
different values of a threshold and then plot the reject-error
curve. In the experiment, the threshold for KAA classification
ranges from 0 to 0.3. The interplay of classification and rejec-
tion can be illustrated by Fig. 16, showing the dependence
of error rate on the threshold when SOM, Neural Gas and k-
means model are applied, respectively. It is clear that Neural
Gas model produces smaller error rate comparing SOM at a
given threshold, and a bigger threshold brings smaller error
rate.

Rejection avoids some errors, but often has its own cost,
e.g., incurring human inspection of the ambiguous exam-
ples. When rejection option is activated, the rejection rate
should be reported along with error estimates. A complete
description of the relationship between the error rate and
rejection rate is via error–reject trade-off curve, which can

Fig. 16 The interplay of error rate and the rejection threshold

Fig. 17 Error–reject tradeoff curve

be computed by changing rejection threshold and counting
the resulting error. As shown in Fig. 17, the error rate of
the KAA classification system reduces when reject option
is included, which is due to the fact that the reject option
discards those examples whose classification has a high risk.
For the Neural Gas model, an error rate (∼4.4 %) has been
achieved when the rejection rate is about 10 %. With a larger
rejection rate 20 %, the error rates drop to <2.5 % for both
of Neural Gas and k-means clustering. Following the same
experiment procedures, the relationship between reliability
defined in Eq. (26) and reject rate is shown in Fig. 18.

In the hybrid model, size of the prototypes provided by a
clustering algorithm is an important factor that influences the
system’s performance. Table 1 demonstrates the classifica-
tion accuracies when the size of prototypes changes, where
no rejection has been adopted. It can be observed again that
Neural Gas model demonstrates better performance. On the
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Fig. 18 The relationship between reliability defined in Eq. (26) and
reject rate

Table 1 Classification accuracies versus the sizes of prototype provided
by three clustering methods (%)

Accuracy 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

SOM 87.51 89.12 90.19 90.63 90.96 90.76 90.82

NeurGas 88.07 89.81 90.82 91.19 91.49 91.25 91.37

k-means 88.00 89.59 90.63 90.97 91.22 91.04 91.17

Table 2 Confusion matrix from the hybrid model of SOM–KAA with-
out rejection (%)

Actual vs. predicted Bus Car Truck Van

Bus 96.57 0.1 7.7 3.2

Car 0.1 97.5 2.2 6.5

Truck 3.1 0.5 84.3 8.0

Van 0.2 1.9 5.9 82.34

Table 3 Confusion matrix from the hybrid model of NG–KAA without
rejection (%)

Actual vs. predicted Bus Car Truck Van

Bus 96 0.1 6.9 2.7

Car 0.1 97 1.6 5.5

Truck 3.5 0.6 86 8.1

Van 0.4 2.2 5.5 83.6

other hand, the performance improvement from increasing
the number of prototypes is more obvious when the number
is relatively small. When the number is larger than 8×8 = 64,
no further improvement could be observed.

To comprehensively assess the quality of a multiclass clas-
sification, the confusion matrix is a significant performance
measure. For C classes, a C × C dimensional confusion
matrix evaluates the respective classification errors between
classes (off-diagonal), and correct classifications (diagonal
elements). Tables 2, 3 and 4 summarize the confusion matri-

Table 4 Confusion matrix from the hybrid model of k-means–KAA
without rejection (%)

Actual vs. predicted Bus Car Truck Van

Bus 95.9 0.1 7.9 2.2

Car 0.1 97.3 2.7 6.2

Truck 3.5 0.4 81.4 6.2

Van 0.5 2.1 8.1 85.4

Fig. 19 The identification rate from the hybrid model of SOM–KAA

Fig. 20 The identification rate from the hybrid model of k-means–
KAA

ces generated from the hybrid classification system with
SOM, Neural Gas and k-means, respectively, without reject
option. From the tables, it is obvious that car can be more
accurately classified than other three categories, for all of the
three clustering algorithms. On the other hand, truck and van
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Fig. 21 The identification rate from the hybrid model of NG–KAA

seem to be more easily confused with each other due to their
overlapping features.

With the inclusion of rejection option, the identification
rate for individual classes can be calculated from the confu-
sion matrix, as shown in Figs. 19, 20 and 21. Among the four
classes, it is evident that car always has the highest identi-
fication rates from different clustering methods. In contrast,
van and truck show much lower identification rates. How-
ever, with the introduction of rejection, all of the four classes
will increase the identification rates.

6 Conclusions

Vision-based automatic vehicle classification (AVC) is still
a big challenge in traffic surveillance. A practical system
is studied in this paper, which includes vehicle detection
and vehicle classification. An example-based algorithm for
vehicle detection was proposed based on cascade SVMs
with the HOG features. To implement vehicle classification,
a hybrid model composed of clustering and kernel auto-
associator (KAA) was investigated. As a generalization of
auto-associative networks, KAA offers an effective one-class
classification strategy with rejection option to avoid errors
on ambiguous inputs. The important issue of KAA, namely,
the creation of kernel matrix was emphasized. Three com-
monly used clustering methods were applied and compared
to generate prototypes. Experimental results using more than
6,000 detected vehicle images from four types of vehicles
(bus, light truck, car and van) demonstrated the effectiveness
of the hybrid model. The proposed scheme offers a perfor-
mance of accuracy of 95.6 % with a rejection rate 10 %
when the Neural Gas model was used for the creation of

prototypes. This exhibits promising potentials for real-world
applications.
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