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Abstract This paper proposes an automatic method for cell
segmentation and classification of erythrocytes in thin blood
smears with hemolytic anemia. First, to remove the back-
ground and noises in the blood images, the proposed method
detects a series of changes on the edges and analyzes the edge
changes by using the 8-connection chain codes technique to
recognize isolated erythrocytes. For segmenting the overlap-
ping erythrocytes, the 8-connection chain codes technique
obtains the edge direction of the cells to effectively figure
out the points of high concavity. Then, the adapted high con-
cavity information is used to separate overlapping erythro-
cytes and to extract features from each segmented erythro-
cyte. After segmenting, all the erythrocytes can be treated
equally and the differences between adjacent chain codes of
each erythrocyte can be calculated. Furthermore, the pro-
posed method extracts the variation of eight directions from
each individual erythrocyte as their features for classifying
into four main hemolytic anemia types. Finally, classifica-
tion process identifies abnormal erythrocytes and the types
of hemolytic anemia by using a trained bank of classifiers,
utilizing the proposed method to calculate the quantity of
erythrocytes and recognize the types of hemolytic anemia
effectively.
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1 Introduction

Medical images have become major tools and techniques
used for many clinical diagnosis and clinical trials [1,2]. Dig-
ital image processing has been widely applied in the medical
domain, but the majority of image processing techniques still
requires human work. Feature analysis and automatic image
segmentation systems allow doctors to diagnose diseases
faster and more accurately, increasing efficiency of treat-
ment by doctors. Especially for blood smears, the analysis
of blood cells suffer from the drawback of time-consuming
judgement and the inspection results vary depending on the
clinician’s experience. Hence, researchers have been encour-
aged to develop a computerized medical decision support
system focusing on automatic image segmentation and clas-
sification that can analyze different types of medical images
and extract useful information for medical clinicians [3–5].

Blood cells form in bone marrow. A blood cell can be
categorized into four types including platelets, erythrocytes,
white blood cells (WBCs), and plasma [5]. Cells in blood
smears may overlap each other, and there is great variation
in shape, texture, color, size, and morphology of the nucleus
and cytoplasm. Hemolytic anemia is the abnormal break-
down of erythrocytes either in the blood vessels or elsewhere
in the body and the erythrocyte shape is an important crite-
rion for the diagnosis. The cells are broken down at a faster
rate than the bone marrow can produce new cells. Hemolytic
anemia is classified as either inherited or acquired. More-
over, there are four subtypes of hemolytic anemia: hereditary
elliptocytosis, sickle cell anemia, thalassemia and glucose-6-
phosphate dehydrogenase [6]. Hence, this study focuses on
an automatic method for segmentation and classification of
hemolytic anemia in blood smears.

Image segmentation is the process to partitioning a dig-
ital image into multiple regions or objects to simplify fur-
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ther analysis and classification [7,8]. Furthermore, the tech-
niques of image segmentation can be categorized as super-
vised or unsupervised classification [5]. In general, to solve
the image segmentation problem effectively, techniques need
to combine domain knowledge [9]. For example, due to illu-
mination inconsistencies or the image capture conditions of
blood cells, this uncertainty makes blood cell image segmen-
tation a challenging task [10–13]. Many segmentation meth-
ods for blood cells have been proposed and most of them
are threshold-based, region-based, edge-based or clustering
schemes [5]. Recent works in this area have mainly focused
on segmenting WBCs, erythrocytes, and platelets. Based on
this segmentation, some studies have performed blood cell
counting and classified abnormalities in cells. Mohamed and
Far [14] presented gray scale contrast enhancement and fil-
tering techniques to segment the blood cell nuclei of WBCs.
Furthermore, Hiremath et al. [15] proposed histogram equal-
ization, thresholding and edge detection techniques to seg-
ment, identify and classify WBCs. In addition, Fatichah et
al. [16] proposed that WBC classification can be achieved by
optimizing the parameters of local fuzzy patterns based on the
fuzzy contrast measure to extract the nucleus and cytoplasm
region of the WBC texture. The optimal parameter values
of the nucleus and cytoplasm region of a WBC image and
the best accuracy rate of WBC classification can therefore be
achieved. Sharif et al. [17] used the combination of YCbCr

color conversion and a morphological operator as a mask to
remove the WBC and carry out erythrocyte segmentation by
passing erythrocytes through a marker-controlled watershed
algorithm which handles overlapping cells. Khan et al. [18]
proposed a statistical method for detection of mitotic cells
in breast cancer histopathology image that models the pixel
intensities in mitotic and non-mitotic regions by a Gamma–
Gaussian mixture model and employs a context aware post-
processing to reduce false positives. Hahn et al. [19] proposed
an ellipse detection scheme using curve segments for clas-
sifying megakaryocytes. This major method uses the ellipse
function to detect a curve and apply the curve information to

segment the object. However, this process is quite complex
and takes too much time to calculate in an ellipse equation.
Jung et al. presented an unsupervised Bayesian classifica-
tion scheme for separating overlapped nuclei [20]. The major
method segments the overlapped nuclei by applying the prior
knowledge about the regular shape of clumped nuclei. How-
ever, this process constructs a complex model for analyzing
as to how many nuclei the overlapped ones should be sepa-
rated from.

Moreover, the chain codes technique [21,22] was pro-
posed for representing directions of adjacent pixels as line
drawings and planar curves. This technique can be used
to observe the shape of objects. Shape representation is
an important topic in many image processing applications,
including computer vision, compression of cartography and
medical image analysis. The chain codes technique moves
along a digital curve or a sequence of border pixels based on
8-connection. The direction of each movement is encoded
using a numbering scheme from 0 to 7 {i |i = 0, 1, 2, . . . 7}
in a counter-clockwise direction and the encoded symbol rep-
resents the angular direction of i×45◦. These codes represent
the direction of the neighboring pixels connected in a 3× 3
window, as shown in Fig. 1a. In the 8-connected chain codes,
we must move from one contour pixel to the next pixel and
each code can be considered as the angular direction in mul-
tiples of 45◦. Figure 1b shows an example of chain codes
using 8-connected path.

Hence, to improve upon the above issues, an effective
method is proposed to apply in the segmentation and clas-
sification of hemolytic anemia in blood smears. The pro-
posed technique recognizes normal and abnormal erythro-
cytes using directional information from chain codes. With
the chain codes technique [21,22] applied in the proposed
method, using the edge directions of the object, we do not
need to use mathematics computing to find the appropriate
points of the curve to segment the object effectively. Further-
more, the scheme splits overlapping erythrocytes in blood
smears using a procedure based on 8-connection chain codes.

Fig. 1 Chain code technique,
a chain codes with eight
directions, b example of chain
codes in a counter-clockwise
direction: start from
(1, 4):661100770223344455
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Finally, the classification of hemolytic anemia into its four
subtypes is carried out by incorporating three novel features
including the differential value of chain codes, irregularity
of erythrocytes and variation of eight directions. The above
three features are used to classify the hemolytic anemia in
the Bayes classifier, logistic model trees, and rules classi-
fier. According to these characteristics, hemolytic anemia can
then be classified into four subtypes: hereditary elliptocyto-
sis, sickle cell anemia, thalassemia and glucose-6-phosphate
dehydrogenase.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed method in detail. Section 3
presents the results and discussion. Finally, Sect. 4 concludes
the paper.

2 The proposed method

A general overview of the procedure for estimating erythro-
cytes in blood images is shown in Fig. 2. Image analysis and
recognition include four main phases: (1) image preprocess-
ing; (2) recognition of isolated erythrocytes; (3) segmentation
of overlapping erythrocytes; (4) feature extraction. Briefly,
the image preprocessing applies Otsu’s method [23,24] and
mathematical morphology [12,13,25,26] to remove back-
ground images and noises automatically.

The edge changes of erythrocytes are analyzed using the
8-connection chain codes technique to distinguish isolated
erythrocytes. The next step segments the overlapping ery-
throcytes, also using the chain code technique to detect high
concavity in the edges of erythrocytes and separate each over-

Fig. 2 Overview scheme of the proposed method

lapping erythrocytes. First, the differences between each con-
tinuous chain code can be calculated. Second, extract features
from the variation of individual erythrocyte of eight direc-
tions for classifying four different types of hemolytic anemia.
The final step of the classification process identifies abnor-
mal erythrocytes and types of hemolytic anemia by applying
a trained bank of classifiers.

2.1 Image preprocessing

The preprocessing phase includes three steps for image
analysis and segmentation. First, Otsu’s [23,24] method is
a high-speed and effective thresholding approach for image
binarization. It is mainly exploited to discriminate the back-
ground and objects on a gray level histogram. However,
in a bi-level image, the contour of each object is rubbed.
The proposed technique adopts mathematical morphology
[12,13,25,26] to remove noises of small objects and smooth
the edges of the object. First, in the background, both overlap-
ping and isolated erythrocytes are segmented with an auto-
matic threshold. In the different magnification ratios of thin
blood smears, the automatic threshold can be used to recog-
nize erythrocytes as either overlapping or isolated. We cal-
culate mean and standard deviation of object areas, and then
set the threshold as mean plus standard deviation in that the
standard deviation expresses the differences in the number
of degree from the object areas. Meanwhile, we determine if
each isolated erythrocyte has an area less than the threshold,
and the overlapping erythrocytes have an area greater than the
threshold. After that, isolated erythrocytes and overlapping
erythrocytes are extracted, respectively.

2.2 Recognition of isolated erythrocyte

First, each isolated erythrocyte is extracted with an automatic
threshold from the background in the blood image. The shape
of a healthy erythrocyte is a complete circle, and the chain
code technique represents the shape of each isolated erythro-
cyte. Therefore, we analyze edge characteristics using the
8-connection chain codes technique to detect the patholog-
ical changes of cells in the blood image. We use the cycle
of eight directions from the chain codes where the shape of
normal erythrocytes is round. The proposed method defines
four blocks for analyzing a circle; each block consists of a
sequence of chain codes selected from the eight directions.
The scanning model is counter-clockwise. If the erythrocyte
is normal, the sequences of the four blocks will be Block1–
2–3–4 as shown in Fig. 3. Take Fig. 1b as an example, the
sequence of chain codes is 667700011223344455 and we can
combine the duplicate codes. Hence, the result of the com-
bined sequence of chain codes is 67012345. With the four
blocks we can observe the variation of chain codes, and the
sequences of the four blocks are round from Block 1 [6, 7, 0]
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 Block 1: [6, 7, 0] 
   Block 2: [0, 1, 2] 
   Block 3: [2, 3, 4] 
   Block 4: [4, 5, 6] 

Fig. 3 Defining the four blocks by using chain codes with eight direc-
tions

to Block 4 [4, 5, 6]. Nevertheless, the abnormal erythrocyte
does not follow this round of blocks; therefore, in this step,
we can observe the variation of the contours of the isolated
erythrocytes. Through the sequences of the four blocks, the
abnormal erythrocyte can be identified.

2.3 Segmentation of overlapping erythrocytes

The overlapping erythrocytes are located based on the
obtained erythrocyte area range. Meanwhile, the chain code
technique is also applied to represent the shapes of objects.
Since the high concavity of overlapping erythrocytes pos-
sesses a symmetric feature, after carrying out the process
stated above, this section defines two types with the four
blocks according to the directions in a circle. As shown in
Fig. 4a, Type 1 contains two pairs: Block 2–Block 1 (denoted
as No. 1), and Block 4–Block 3 (denoted as No. 2). On the
other hand, Type 2 is composed of two pairs, including Block
1–Block 4 (denoted as No. 3), and Block 3–Block 4 (denoted
as No. 4). Because of the coexistence of both Numbers 1 and
2, this is categorized as a Type 1 condition and then we seg-
ment Numbers 3 and 4. Similarly, Fig. 4b holds a Type 2
condition because both Numbers 3 and 4 exist. The detected

high concavity information obtained by applying Type 1 and
Type 2 can determine how many erythrocytes should be split
in each object for segmenting each of the overlapped ery-
throcytes, as shown in Fig. 4c. Note that, in most cases of
overlapped nuclei, the erythrocytes are dispersed overlapped
and can be found with symmetrical concavity types as shown
in Fig. 4. Even with three or more nuclei dispersed overlap-
ping, the proposed chain codes technique can be applied to
get the high concavities. For example, if there are three nuclei
overlapped, we can find six concavities with three symmet-
rical concavity types which may or may not be the same
type. However, if the nuclei are tightly overlapped, this kind
of nuclei could not be provided as the medical judgment of
hemolytic anemia. Hence, the proposed technique does not
consider this type of overlapped nuclei.

2.4 Feature extraction

The feature extraction process identifies and extracts rele-
vant information from the blood images allowing the filter-
ing of unhealthy erythrocytes from the isolated erythrocytes
and the overlapping erythrocytes. The criteria of classify-
ing four main types of hemolytic anemia are based on the
following three characteristics: differential value of chain
codes, erythrocyte irregularity, and variation of eight direc-
tions. According to these characteristics, hemolytic anemia
can be classified into four subtypes: hereditary elliptocyto-
sis, sickle cell anemia, thalassemia and glucose-6-phosphate
dehydrogenase, as shown in Fig. 5a–d. Afterwards, 14 fea-
tures are extracted from hemolytic anemia images based on
these three characteristics for classification.

First, in step 1: differential value of chain codes. Chain
codes represent the shape of an erythrocyte, and therefore,
this step calculates differences between the adjacent chain
codes. We use an example to illustrate our feature extraction
method. An individual erythrocyte using the 8-connection
chain codes technique can be represented by the following
series: A = {6, 6, 6, 7, 7, 7, 5, 5, 5, 4, 4, 3, 3, 0, 0}, and pair-
wise subtracted sequence of chain codes can be shown as fol-
lows: series A′ ={0, 0,−1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0,−6}.

Fig. 4 Using the chain code
technique to find high concavity
in the object a Type 1: Block
2–Block 1 (No. 1) and Block
4–Block 3 (No. 2), b Type 2:
Block 1–Block 4 (No. 3) and
Block 3–Block 2 (No. 4), c
results of segmenting
overlapped erythrocytes
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Fig. 5 Four types of hemolytic anemia: a hereditary elliptocytosis, b sickle cell anemia, c thalassemia and d glucose-6-phosphate dehydrogenase
(G6PD)

Afterwards, the series of A′ can then generate the mean and
standard deviation through calculation.

In step 2: erythrocyte irregularity. First is to use the dif-
ferential value of radius to represent the degree of circularity
of the erythrocyte. Euclidean distances are calculated based
on the distance from the center pixel to each pixel of the
boundaries of each individual erythrocyte. Thus, the max-
imum value of Euclidean distance is set as the maximum
radius rmax

i and the minimum value of Euclidean distance is
set as the minimum radius rmin

i . The center pixel is found out
by the crossing of x- and y-axis with most pixels. The max-
imum covering area is the circle with rmax

i , because normal
erythrocyte should be similar to a circular shape. By subtract-
ing minimum radius rmin

i from the maximum radius rmax
i , we

obtain the differential value. The smaller the difference is, the
closer the erythrocyte is to being a circle. Hence, the ratio of
radius Si is shown in following Eq. (1):

Si =
(

rmax
i − rmin

i

)/
rmax

i (1)

Though the radius of the erythrocyte can represent the degree
of circularity, this feature does not provide enough informa-
tion to recognize the shape of the erythrocyte as an ellipse
or circle. To better capture the shape information, we extract
area irregularity based on region. The ratio of area irregular-
ity Ai is shown in the following Eq. (2):

Ai =
(

πb
rmax2

i
i − borg

i

)/
borg

i , (2)

where πb
rmax2

i
i is the square of the maximum radius multi-

plying π in the object that can represent the area of largest
possible circle, and borg

i is the original area of the object.
In step 3: variation of eight directions, the 8-connection

chain code better describes the shape of the erythrocytes, and
we extract the variation of eight directions from the individ-
ual erythrocyte as feature. We, hereby, provide an example
to illustrate our feature extraction method. The individual
erythrocyte using the 8-connection chain codes techniques
results in the following series: A = {6, 6, 7, 7, 7, 0, 0, 0, 0,
1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6}, and we construct
an 8 × 8 matrix to record the variation of eight directions
as shown in Fig. 6. The matrix of rows and columns is the
direction of the chain code, which is used to record the direc-
tion from one pixel to another. In the sequence of series A,
the first code is 6 and the next is also 6, therefore the vari-
ation of eight directions is described as (6, 6) in the matrix.
Similarly, the second and third code can be described as (6,
7). Eventually, all the variations of direction will be accumu-
lated in the matrix. The results of calculation for series A are
as shown in Fig. 6. Afterward, we transform the matrix from
two to one dimensional so that matrix contains 64 vectors,
and obtains the largest 5 numbers and the smallest 5 num-
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Fig. 6 A sample 8× 8 matrix records the variation of the eight direc-
tions

bers from the matrix as features to observe a regular pattern
of shape. Based on the approach described above, we can
extract 14 features. An example from a glucose-6-phosphate
dehydrogenase blood smear is shown in Table 1.

3 Results and discussion

The experiments in this study, including the segmentation
algorithm and extraction features, are implemented with Mat-
lab 9.0. The erythrocyte classification is processed using
Weka [27]. We used 24 microscopic images of thin blood
smears to test the performance of the proposed segmentation
algorithm as shown in Fig. 7. Then, we input the abnormal
erythrocytes from the segmentation results to conduct the
classification of hemolytic anemia. The proposed segmen-
tation method is compared with manual segmentation and
the performance of our automatic hemolytic anemia classi-
fication system is evaluated by using three classifiers: the
J48 tree classifier, Bayes classifier, and DTNB rule classifier.
The proposed scheme can recognize the types of hemolytic
anemia effectively.

3.1 Comparisons of the proposed method with manual
recognition feature extraction

The proposed method uses 24 blood images to gener-
ate segmentation results. The number and size of erythro-
cytes are different in each image, yet our method can
successfully segment each abnormal erythrocyte in the
images. This section identifies three types of erythrocytes.
The first type is isolated abnormal erythrocytes, the sec-
ond type is isolated normal erythrocytes, and the third
type is overlapping erythrocytes. The images with erythro-
cytes require manual annotations and numbering to serve
as ground truth. After image segmentation, the erythro-
cytes are segmented and numbered to corresponding ery-
throcytes. Then, the classifiers use 14 extracted features
of the erythrocytes to train or test the cell’s recognition
rate.

The segmentation results are evaluated using the true pos-
itive (TP), true negative (TN), false positive (FP) and false
negative (FN) metrics. The formulas of TP, TN, FP and FN
metrics are defined in the following Eqs. (3)–(6):

TP = the number of abnormal erythrocytes minus the number of non-detection of our method

the number of abnormal erythrocytes
(3)

TN = the number of normal erythrocytes minus the number of misdetection of our method

the number of normal erythrocytes
(4)

FP = the number of non-detection of our method

the number of abnormal erythrocytes
(5)

FN = the number of misdetection of our method

the number of normal erythrocytes
(6)

where TP represents the overlapping erythrocytes and abnor-
mal erythrocytes correctly identified in the image, TN
describes the normal erythrocytes correctly identified as stan-
dard in the image, and FP describes the normal erythro-
cyte incorrectly identified as abnormal in the image, and FN
describes the overlapping erythrocytes and abnormal ery-
throcytes in the image misidentified as standard.

Meanwhile, we assess the accuracy rates of identifica-
tion results in the proposed scheme via statistical measures,
including accuracy, sensitivity and specificity. Equations (7)–
(9) are shown as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(7)

Sensitivity = TP

TP + FN
(8)
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Table 1 Extraction of 14 features from G6PD blood smears

Image no. Variation of eight directions Differential value of chain codes Erythrocyte irregularity

Gd-1 10 55 19 37 1 2 9 17 35 6 2.092285 0.043478 0.79214 0.116259

Gd-2 47 55 1 37 19 7 35 6 11 28 2.005044 0.053435 0.984514 0.110019

Gd-3 45 19 37 55 1 7 35 6 28 11 1.99196 0.044776 0.123933 0.090085

Gd-4 9 19 36 1 55 10 17 18 26 47 2.028089 0.057692 0.204936 0.141052

Gd-5 57 1 55 19 37 12 16 53 2 6 2.418946 0.048387 0.026594 0.087335

Gd-6 11 18 46 1 37 7 17 38 6 20 1.871281 0.04918 0.217423 0.265118

Gd-9 46 64 19 37 1 7 53 5 56 63 2.07134 0.051282 0.472439 1

Gd-8 8 1 37 55 19 2 17 58 6 9 2.413866 0.042553 0.176188 1

Fig. 7 Results of our method a original image; b abnormal erythrocytes; c segmentation of overlapping erythrocytes

Specificity = TN

TN + FP
, (9)

where accuracy is the degree of closeness of measurements of
a quantity to that quantity’s true value. Sensitivity measures
the proportion of actual positives which is correctly identified
and specificity measures the proportion of negatives which
is correctly identified.

The result listed in Table 2 shows that the position of
abnormal erythrocytes can be figured out completely; more-
over, erythrocytes can be effectively separated from the over-
lapping regions. The proposed method can filter the abnormal
erythrocytes better and more effectively, providing informa-
tion with reduced FP rates for medical workers.

3.2 Analysis of the proposed features and results of various
classifiers

In the classifier, we input 14 features into three classifiers:
the Bayes classifier, logistic model trees and rules classifier,

and observe the classification performance. The test mode
uses tenfold cross-validation and the 87 test data as shown
in Table 3. Moreover, the classification results are shown
in Tables 3, 4, 5 and 6. True positive describes the type of
hemolytic anemia correctly categorized. The FP describes
the types of hemolytic anemia incorrectly categorized. As
seen in Table 3, the different classifiers applied in the pro-
posed method all achieve accurate and effective classifica-
tion of the four types of hemolytic anemia. We observe that
the results for the thalassemia have lower recognition rate
than other types of hemolytic anemia can be correctly clas-
sified. Moreover, thalassemia is an inherited blood disorder
characterized by less hemoglobin than normal. Hemoglobin
is the substance in erythrocytes that allows them to carry
oxygen. The low hemoglobin may make the image of ery-
throcytes appear pale in some cases. Based on collected ery-
throcytes images, it may result in shape deformation after
further image processing and lower recognition rate than the
other types. Furthermore, the FP rate is very low represent-
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Table 2 Comparison results
Image no. TP (%) TN (%) FP (%) FN (%) Accuracy Sensitivity Specificity

Img-1 96.30 86.44 3.70 13.56 0.91 0.88 0.97

Img-2 92.31 92.59 7.69 7.41 0.93 0.93 0.92

Img-3 100.00 92.31 0.00 7.69 0.96 0.93 1.00

Img-4 100.00 97.50 0.00 2.50 0.99 0.98 1.00

Img-5 100.00 87.50 0.00 12.50 0.94 0.89 1.00

Img-6 100.00 100.00 0.00 0.00 1.00 1.00 1.00

Img-7 100.00 82.50 0.00 17.50 0.91 0.85 1.00

Img-8 100.00 100.00 0.00 0.00 1.00 1.00 1.00

Img-9 88.89 80.00 11.11 20.00 0.84 0.81 0.88

Img-10 100.00 100.00 0.00 0.00 1.00 1.00 1.00

Img-11 100.00 90.48 0.00 9.52 0.95 0.91 1.00

Img-12 84.00 97.89 16.00 2.11 0.91 0.98 0.86

Img-13 87.50 90.32 12.50 9.68 0.89 0.90 0.88

Img-14 100.00 86.36 0.00 13.64 0.93 0.88 1.00

Img-15 100.00 100.00 0.00 0.00 1.00 1.00 1.00

Img-16 100.00 92.86 0.00 7.14 0.96 0.93 1.00

Img-17 100.00 93.94 0.00 6.06 0.97 0.943 1.00

Img-18 100.00 96.97 0.00 3.03 0.98 0.97 1.00

Img-19 100.00 96.77 0.00 3.23 0.98 0.97 1.00

Img-20 92.59 94.00 7.40 6.00 0.93 0.94 0.93

Img-21 88.89 89.66 11.11 10.34 0.89 0.90 0.89

Img-22 100.00 100.00 0.00 0.00 1.00 1.00 1.00

Img-23 80.00 92.00 20.00 8.00 0.86 0.91 0.82

Img-24 100.00 86.67 0.00 13.33 0.93 0.88 1.00

Average 96.27 92.78 3.73 7.22 0.94 0.93 0.96

Table 3 Comparison
classification results Classifier name J48 tree (%) BayesNet (%) DTNB (%) Average (%)

Correctly classified instances 97.7011 85 95.4023 83 96.5517 84 96.5513

Incorrectly classified instances 2.2989 2 4.5977 4 3.4483 3 3.4483

Table 4 Results of the
Bayesnet classifier [27] Class TP FP a b c d ← classified as

Sickle cell anemia 0.955 0

21 0 1 0 |a = sc
0 18 0 0 |b = he
0 2 33 1 |c = thalassemia
0 0 0 11 |d = g6pd

Hereditary elliptocytosis 1 0.029

Thalassemia 0.917 0.02

G6PD 1 0.013

Average 0.954 0.016

ing very small number of incorrectly classified instances of
abnormal erythrocytes. After checked, those instances are
those without prominent characteristics on 14 features for
classification.

4 Conclusions

In this paper, we present an automatic method for segmen-
tation and classification of abnormal erythrocytes in blood
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Table 5 Results of the J48 tree
classifier [27] Class TP FP a b c d ← classified as

Sickle cell anemia 1 0

22 0 0 0 |a = sc
0 18 0 0 |b = he
0 0 34 2 |c = thalassemia
0 0 0 11 |d = g6pd

Hereditary elliptocytosis 1 0

Thalassemia 0.944 0

G6PD 1 0.026

Average 0.977 0.003

Table 6 Results of the DTNB
rule classifier [27] Class Class TP FP a b c d ← classified as

Sickle cell anemia Sickle cell anemia 1 0

22 0 0 0 |a = sc
0 18 0 0 |b = he
0 0 34 2 |c = thalassemia
0 0 1 10 |d = g6pd

Hereditary elliptocytosis Hereditary elliptocytosis 1 0

Thalassemia Thalassemia 0.944 0.02

G6PD G6PD 0.909 0.026

Average Average 0.966 0.011

smears. The proposed techniques offer three major contribu-
tions for the proposed techniques: First, overlapping erythro-
cytes in blood smears are split by using a procedure based on
8-connection chain codes. Second, normal and abnormal ery-
throcytes are recognized using directional information from
chain codes. Finally, hemolytic anemia is classified into its
four subtypes by incorporating three novel types of features
including differential value of chain codes, irregularity of
erythrocytes and variation of eight directions. To sum up,
we can recognize whether erythrocytes are abnormal or not,
segment overlapping erythrocytes effectively and meanwhile
classify the types of hemolytic anemia accurately using the
aforementioned classifiers. In conclusion, we reduce the time
required for doctors to make judgments and improve the effi-
ciency of treatment.
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