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Abstract In its early implementations, background model-
ing was a process of building a model for the background of
a video with a stationary camera, and identifying pixels that
did not conform well to this model. The pixels that were not
well-described by the background model were assumed to
be moving objects. Many systems today maintain models for
the foreground as well as the background, and these models
compete to explain the pixels in a video. If the foreground
model explains the pixels better, they are considered fore-
ground. Otherwise they are considered background. In this
paper, we argue that the logical endpoint of this evolution
is to simply use Bayes’ rule to classify pixels. In particular,
it is essential to have a background likelihood, a foreground
likelihood, and a prior at each pixel. A simple application
of Bayes’ rule then gives a posterior probability over the
label. The only remaining question is the quality of the com-
ponent models: the background likelihood, the foreground
likelihood, and the prior. We describe a model for the like-
lihoods that is built by using not only the past observations
at a given pixel location, but by also including observations
in a spatial neighborhood around the location. This enables
us to model the influence between neighboring pixels and
is an improvement over earlier pixelwise models that do not
allow for such influence. Although similar in spirit to the joint
domain-range model, we show that our model overcomes cer-
tain deficiencies in that model. We use a spatially dependent
prior for the background and foreground. The background
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and foreground labels from the previous frame, after spatial
smoothing to account for movement of objects, are used to
build the prior for the current frame. These components are,
by themselves, not novel aspects in background modeling.
As we will show, many existing systems account for these
aspects in different ways. We argue that separating these com-
ponents as suggested in this paper yields a very simple and
effective model. Our intuitive description also isolates the
model components from the classification or inference step.
Improvements to each model component can be carried out
without any changes to the inference or other components.
The various components can hence be modeled effectively
and their impact on the overall system understood more eas-
ily.

Keywords Background modeling · Motion segmentation ·
Surveillance

1 Introduction

Background subtraction for stationary camera videos is a well
researched problem. Algorithms have evolved from early
approaches modeling the background at each pixel [3,17,19,
22] to methods that include an explicit model for the fore-
ground [8,16], and finally to more recent models that incor-
porate spatial dependence between neighboring pixels [16].

In early algorithms [17,22], a probability distribution
px(c|bg) over background colors c is defined and learned for
each location x in the image. These distributions are essen-
tially the background likelihood at each pixel location. Pixels
that are well explained by the background likelihood are clas-
sified as background and the remaining pixels in the image
are labeled as foreground. Toyama et al. [19] use a Weiner
filter to predict the intensities of the background pixels in the
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current frame using the observed values from the previous
frames and to identify non-conforming pixels as foreground.
Wren et al. [22] model the background as a Gaussian distri-
bution at each pixel. To account for the multiple intensities
often displayed by background phenomena such as leaves
waving in the wind or waves on water surfaces, Stauffer and
Grimson [17] learn a parametric mixture of Gaussians (MoG)
model at each pixel. The MoG model update procedure as
described by Stauffer and Grimson can be unreliable during
initialization when not enough data have been observed. To
improve the performance during model initialization, Kaew-
trakulpong and Bowden [6] suggest a slightly different model
update procedure. Porikli and Tuzel [14] obtain the back-
ground likelihood by using a Bayesian approach to model the
mean and variance values of the Gaussian mixtures. Elgam-
mal et al. [3] avoid the drawbacks of using a parametric MoG
model by instead building the background likelihoods with
non-parametric kernel density estimation (KDE) using data
samples from previous frames in history.

While they are still called “backgrounding” systems, later
systems maintain a model for the foreground as well as the
background [8,16]. Explicit modeling of the foreground has
been shown to improve the accuracy of background subtrac-
tion [16]. In these models, pixel labeling is performed in a
competitive manner by labeling as foreground the pixels that
are better explained by the foreground model. The remaining
pixels are labeled as background.

Although it is natural to think about priors along with
likelihoods, the use of an explicit prior for the background
and foreground is less common. In the object tracking lit-
erature, Aeschliman et al. [1] use priors for the background
and foreground objects for segmentation of tracked objects.
In background modeling algorithms that do not explicitly
model the prior, the foreground–background likelihood ratio
is used for classification. Pixels that have a likelihood ratio
greater than some predefined threshold value are labeled as
foreground. This method is equivalent to using an implicit
prior that is the same at all pixel locations.

Thus, existing algorithms make use of some subset of
the three natural components for background modeling—the
background likelihood, the foreground likelihood, and the
prior. They make up for the missing components by includ-
ing effective model-specific procedures at the classification
stage. For instance, Elgammal et al. [3] and Stauffer and
Grimson [17] use only the background likelihood, but, during
classification, consider a likelihood threshold below which
pixels are considered as foreground. Zivkovic [24] describes
Bayes’ rule for computing background posteriors, but since
neither the foreground likelihood nor the priors are explicitly
modeled, the classification is essentially based on a thresh-
old on background likelihood values. Sheikh and Shah [16]
utilize both foreground and background likelihoods, but do
not use an explicit prior. Instead, by using a foreground–

background likelihood ratio as the classification criterion,
they effectively use a uniform prior.

We argue that the logical endpoint of the model evolution
for backgrounding is a system where all three components
are explicitly modeled and Bayes’ rule is applied for classi-
fication. Such a system has the advantage of being a simpler
model where the modeling of the individual components is
isolated from the inference step. This separation allows us
to describe the components without any relation to the clas-
sification procedure. Our motivation behind this approach
is that the components can individually be improved, as we
will show in later sections, without affecting each other or
the final inference procedure.

In the rest of the paper, we describe the components of our
background system and place them in the context of existing
algorithms where possible. Section 2 discusses the evolution
of the background likelihood models and our improvements
to the most successful models. In Sect. 3, we discuss the
modifications to the likelihood for modeling the foreground.
Modeling of the prior is described in Sect. 4. Computation
of posterior probabilities by using the above components is
explained in Sect. 5. Results comparing our system to earlier
methods on a benchmark data set are given in Sect. 6. Recent
improvements to the background likelihood and its impact
on the system’s accuracy are described in Sects. 7, 8. We
conclude with a discussion in Sect. 9.

2 Background likelihood

The background likelihood, which is a distribution over fea-
ture values, is a common aspect in many backgrounding sys-
tems. Stauffer and Grimson [17] model the background like-
lihood at each pixel using a MoG approach. The requirement
of specifying the number of mixture components in the MoG
model is removed in the non-parametric kernel density esti-
mation (KDE) model [3]. In the KDE model, the distribu-
tions at each pixel location are estimated by summing up
contributions from the observed background data samples at
that location from previous frames in history. For each pixel
location x = [x, y], both these models maintain a distrib-
ution px(c) that is independent of the neighboring pixels.
Here, c = [r, g, b] is a vector that represents color. These
neighbor-independent distributions have the drawback of not
being able to account for the influence of neighboring pixels
on each other’s color distributions.

To allow neighboring pixels to influence the background
likelihood at a given pixel location, we model the likelihood
at a particular pixel location to be a weighted sum of distrib-
utions from its spatial neighbors. Our smoothed background
likelihood Px(c) for each pixel location x is a weighted sum
of distributions from a spatial neighborhood NB around x.
Each neighboring likelihood is weighted by its spatial dis-
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tance (i.e., distance in the image coordinates) from x:

Px(c|bg;Σ B
S ) = 1

Z

∑

Δ∈NB

px+Δ(c|bg) × G(Δ; 0,Σ B
S ).

(1)

Here Δ is a spatial displacement that defines a spatial neigh-
borhood NB around the pixel location x at which the like-
lihood is being computed. G(·; 0,Σ B

S ) is a zero-mean mul-
tivariate Gaussian with covariance Σ B

S . B indicates that the
covariance is for the background model and S denotes the
spatial dimensions. The normalization constant Z is

Z =
∑

Δ∈NB

G(Δ; 0,Σ B
S ). (2)

The weighted sum results in a spatial smoothing of the dis-
tributions as shown in Fig. 1. This spreading of information
is useful in modeling spatial uncertainty of background pix-
els. Σ B

S controls the amount of smoothing and spreading of
information in the spatial dimensions.

Explicitly maintaining a distribution at each pixel loca-
tion is impractical for color features which can take one of
2563 values if each of the three color channels have a range
between 0 and 255. Instead, we compute likelihoods with
KDE using the data samples from the previous frame. Let
bt−1

x be the observed background color at pixel location x in
the previous frame. Using a Gaussian kernel with covariance
Σ B

C in the color dimensions, our KDE background likelihood
in the video frame numbered t is given by

Pt
x(c|bg;Σ B

C ,Σ B
S ) = 1

Z

∑

Δ∈NB

G(c − bt−1
x+Δ; 0,Σ B

C )

×G(Δ; 0,Σ B
S ). (3)

Figure 2 illustrates the process of computing the background
likelihood using the observed background colors in one
image. It may be noted that the covariance matrix Σ B

S con-
trols the amount of spatial influence from neighboring pixels.
The covariance matrix Σ B

C controls the amount of variation
allowed in the color values of the background pixels.

Finally, we consider background data samples not just
from the previous frame, but from the previous T frames
in order to obtain a more accurate likelihood. We also allow
probabilistic contribution from the previous frames’ pixels by
weighting each pixel according to its probability of belonging
to the background:

Pt
x(c|bg;Σ B) = 1

Kbg

∑

i∈1:T

∑

Δ∈NB

G(c − bt−i
x+Δ; 0,Σ B

C )

×G(Δ; 0,Σ B
S ) × Pt−i

x (bg|bt−i
x+Δ). (4)

Σ B represents the covariance matrices for the background
model and consists of the color dimensions covariance
matrix Σ B

C and the spatial dimensions covariance matrix
Σ B

S . Pt
x(bg|bt

x) is the probability that pixel at location x in
the frame t is background. Kbg is the appropriate normaliza-
tion factor:

Kbg =
∑

i∈1:T

∑

Δ∈NB

G(Δ; 0,Σ B
S ) × Pt−i

x (bg|bt−i
x+Δ). (5)

For efficiency, we restrict the covariance matrices to be diago-
nal and hence parameterize them by their diagonal elements.

2.1 Existing work on spatial smoothing of distributions

The use of spatial smoothing of distributions is not entirely
new. Sheikh and Shah [16] use a joint domain-range model

Fig. 1 Influence of neighboring pixels on each other is modeled by
spreading information spatially. a Some example likelihoods for each
pixel in a single-dimensional (row) image. The distributions shown
below each pixel are the estimated background likelihoods. The ver-
tical axis corresponds to color values which are visualized in the color
map on the left side of the image. The horizontal axis corresponds to
the probability of the corresponding color. b The smoothed likelihood

at each pixel, which is a weighted sum of the likelihoods in the pixel’s
neighborhood. The effect of smoothing is clearly visible in the first
pixel. The distribution in the first pixel clearly influences the distribu-
tions at the second and third pixels. The distance-dependent nature of
the weights results in the first pixel influencing the third pixel less than
it does the second pixel
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Fig. 2 Modeling the likelihoods using pixel data samples and KDE. a
The colors at each pixel. The corresponding color and its location with
respect to the vertical color axis is shown under each pixel. b The likeli-
hood at each pixel estimated using KDE with a Gaussian kernel. c The
effect of spatial smoothing of the KDE-based likelihoods. Again, the

illustration uses a one-dimensional row image in which a pixel’s color
is also represented in one dimension. It is straightforward to extend the
example to two-dimensional spatial coordinates and three-dimensional
color space

that combines the pixels’ position values and color observa-
tions into a joint five-dimensional space. By modeling the
likelihoods in the joint space, they allow pixels in one loca-
tion to influence the distribution in another location. Their
background likelihood is defined as:1

Pt (c, x|bg;Σ B)

= 1

K

∑

i∈1:T

∑

Δ∈NB

G(c − bt−i
x+Δ; 0,Σ B

C )

×G(Δ; 0,Σ B
S ) × Pt−i

x (bg|bt−i
x+Δ). (6)

The normalization constant, K , is given by

K =
∑

i∈1:T

∑

Δ∈NB

Pt−i
x (bg|bt−i

x+Δ). (7)

The key difference between their model and ours is that
theirs is, for the entire image, a single distribution in the
joint domain-range space whereas ours consists of a different
location-dependent distribution at each pixel. This difference
has a big effect on the classification stage. As we will see later,
their classification criterion, based on the ratio of foreground
and background likelihoods in this five-dimensional space,
has an undesirable dependence on the size of the image. By
replacing the single joint distribution with a field of distribu-
tions dependent on image location, we avoid the dependence
on image size and achieve better results.

The joint domain-range model has been used earlier in
the object tracking literature. Elgammal et al. [2] use a joint
domain-range model that is almost identical to the back-
ground model of Sheikh and Shah [16]. A scheme very sim-
ilar to our Eq. 1 was used in a tracking system by Han and

1 We have modified their equation to allow probabilistic contributions
from the pixels and changed the notation to make it easily comparable
to ours.

Davis [5] to interpolate the pixelwise appearance distribu-
tions for an object whose size has changed during the track-
ing process. The close resemblance between these models
suggests that tracking and background modeling share sim-
ilar fundamental principles and can be achieved under the
same framework. One such framework that integrates seg-
mentation and tracking has been described by Aeschliman
et al. [1].

Ko et al. [7] use a histogram-based variant of the Sheikh
and Shah [16] background model which is built from obser-
vations in a spatial neighborhood around each pixel from
previous frames in history. However, they do not consider
the spatial distance between a pixel and its neighbor when
summing up the contributions. In addition, they build another
distribution, which can be interpreted as the “texture” at each
pixel, by using only the current frame observations in each
pixel’s spatial neighborhood. Their classification criterion for
foreground pixels is to threshold the Bhattacharya distance
between the background distribution and the “texture” distri-
bution. Our model is different because of our classification
criterion that uses foreground likelihoods and explicit pri-
ors for the background and foreground which we discuss in
subsequent sections.

3 Foreground likelihood

Explicit modeling of the foreground likelihood has been
shown to result in more accurate systems [8,16]. Our fore-
ground likelihood is very similar to our background likeli-
hood. However, it is important to consider in the foreground
likelihood, the possibility of hitherto unseen color values
appearing as foreground. This may happen because a new
foreground object enters the scene or an existing foreground
object either changes color or, by moving, exposes a previ-
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Background subtraction: separating the modeling and the inference 1167

ously unseen part of it. We find it useful to separate the fore-
ground process into two different sub-processes: previously
seen foreground, which we shall refer to as seen foreground,
and previously unseen foreground, which we shall refer to as
unseen foreground. The likelihood for the seen foreground
process is computed using a KDE procedure similar to the
background likelihood estimation:

Pt
x(c|fg;Σ F ) = 1

Kfg

∑

i∈1:T

∑

Δ∈NF

G(c − f t−i
x+Δ; 0,Σ F

C )

×G(Δ; 0,Σ F
S ) × Pt−i

x (fg|f t−i
x+Δ). (8)

Similar to Eq. 4, f t
x is the observed foreground color at pixel

location x in frame t. Σ F is the covariance matrix for the fore-
ground model, and Kfg is the normalization factor, analogous
to Kbg. Pt

x(fg|f t
x) is the probability that pixel at location x

in the frame t is foreground.
Since foreground objects typically move more than back-

ground objects and also exhibit more variation in their color
appearance, we typically use higher covariance values for the
foreground than for the background.

The likelihood for the unseen foreground process is simply
a uniform distribution over the color space.

Pt
x(c|fu) = 1

R × G × B
(9)

for all locations x in the image, where R, G, and B, are the
number of possible intensity values for red, green, and blue
colors respectively.

The unseen foreground process constantly tries to account
as foreground any colors not reasonably explained by both
the background and the seen foreground likelihood.

The concept of using a uniform likelihood is not new. For
instance, Sheikh and Shah [16] mix a uniform distribution
(in five-dimensional space) to their foreground likelihoods
to explain the appearance of new foreground colors in the
scene. Separation of the foreground process into two sub-
processes, as we have done, is equivalent to the mixing of
the likelihoods into one combined likelihood. The advantage
of considering them as separate sub-processes is that when
combined with a separate prior for each, greater modeling
flexibility can be achieved. For instance, at image boundaries
where new objects tend to enter the scene, a higher prior can
be used for the unseen foreground process.

4 Priors

In addition to modeling the likelihoods, we explicitly model
spatially varying priors for the background and foreground
processes. Such spatial priors have recently been used for
segmentation of objects being followed in a tracking algo-
rithm [1]. Background modeling systems that use a likelihood

ratio as the classification criterion are implicitly assuming a
uniform prior for the entire image. In such systems, if the
foreground–background likelihood ratio at a given pixel is
greater than some predefined threshold L , then the pixel is
labeled as foreground. Using a value of 1 for L means that
the background and foreground processes have a uniform and
equal prior value at every pixel location. Other values of L
imply using a uniform but unequal prior for the background
and foreground.

We generalize the notion of the prior by considering
a spatially varying prior. The uniform prior is simply a
special case of our model. We define pixelwise priors for
the three processes involved— background, previously seen
foreground, and unseen foreground. The classified pixel
labels from the previous frame are used as a starting point
for building the priors for the current frame. We assume that
a pixel that is classified as background in the previous frame
has a 95 % probability of belonging to the background in the
current frame as well. The pixel has a 2.5 % probability of
belonging to a seen foreground object, and a 2.5 % probabil-
ity of coming from a previously unseen foreground object.
For a foreground pixel in the previous frame, we assume
that due to object motion, there is a 50 % probability of this
pixel becoming background, a 25 % probability of this pixel
belonging to the same foreground object as in the previous
frame, and a 25 % probability that it becomes a new unseen
object. Experimental validation and the justification for the
choice of these values is provided later.

There are hence essentially two settings for the prior at
each pixel depending on whether the pixel was labeled back-
ground or foreground in the previous frame. Instead of using
the hard thresholds described above, we use the pixel’s back-
ground label probability from the previous frame when com-
puting the prior. For instance, a pixel that has probability p
of being background in the previous frame will have a back-
ground prior equal to p × 0.95 + (1 − p) × .5. Also, since
objects typically move by a few pixels from the previous
frame to the current frame, we apply a smoothing (7 × 7
Gaussian filter with a standard deviation value of 1.75) to the
classification results from the previous frame before com-
puting the priors for the current frame. Let P̃ t−1

x (bg) be
the smoothed background posterior image from the previous
frame. The priors for the current frame are

Pt
x(bg) = P̃ t−1

x (bg) × 0.950 + (1 − P̃ t−1
x (bg) × 0.500,

Pt
x(fg) = P̃ t−1

x (bg) × 0.025 + (1 − P̃ t−1
x (bg) × 0.250,

Pt
x(fu) = P̃ t−1

x (bg) × 0.025 + (1 − P̃ t−1
x (bg) × 0.250.

(10)

Figure 3 is an illustration of the prior computation process.
Figure 3a shows the previous frame for which the background
label probabilities at each pixel have been computed in b. The
background probabilities are smoothed with a Gaussian filter
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Fig. 3 Illustration of
computation of the spatially
dependent prior. The image
from the previous frame is
shown in a. The background
probabilities in b are first
smoothed with a Gaussian filter
to allow for some amount of
object motion in the scene. The
smoothed probabilities are
shown in c, from which the
background prior (d), the
foreground prior (e), and the
unseen foreground prior (f) are
computed. The mapping from
color to probability values is
given in g. We use equivalent
equations for the foreground and
unseen foreground priors which
result in e and f being identical

in c. Using Eq. 10, the background prior d, the foreground
prior e, the unseen foreground prior f are computed. These
priors are then used for computing the posterior probabilities
in the current frame, as we explain in the next section.

In our implementation, although the likelihoods for the
foreground and unseen foreground processes are different,
the priors for the two processes are equal at every pixel. It is
not necessary that the priors for the seen foreground and the
unseen foreground be the same in all background modeling
systems. For instance, at image boundaries, using a higher
prior value for the unseen foreground could result in better
detection of new objects that enter the scene in these regions.

Our choice of the values 0.95 and 0.50 for the background
prior for pixels that have been labeled as background and
foreground in the previous frame respectively is guided by
the intuition that background pixels change their label from
one frame to the next very rarely and foreground objects that
are moving have a moderate chance of revealing the back-
ground in the next frame. That these values are set by hand
is a weakness of our current system.2 The advantage of our
approach is that these values can easily be learned automat-
ically by accumulating statistics from the scene over a long
period of time. Although the effect of using different pri-
ors for the background and foreground is equivalent to using
a decision threshold on the foreground–background likeli-
hood ratio, the priors are easier to understand and update.
For example, the priors at each pixel can be updated using

2 Observations from the ground truth labels from videos in the change
detection data set [4] show that between 95 and 100 % of all pixels
labeled as background in each frame retain their background label in
the next frame. We believe the use of the value 0.95 for background
prior is justified in light of this observation. The use of 0.50 for the
background prior in pixel locations that were labeled as foreground in
the previous frame essentially allows the likelihood to decide the labels
of these pixels in the current frame.

the statistics of pixel labels from long term scene history. The
statistics could reveal a higher foreground prior near doors in
the scene and at image borders. A similar scheme to update
a decision threshold at these locations is far less natural.

We use a Gaussian filter of size 7 because the foreground
objects in these videos typically move by 5–10 pixels. The
size of the filter can potentially be learned by tracking the
foreground objects. If there is a significant depth variation
in different parts of the scene, a different parameter can be
learned for the corresponding image regions by using track-
ing information [11].

5 Computing the posteriors: putting the components
together during inference

Given the likelihoods and the priors as described in the pre-
vious sections, the only thing left to do is to compute the
posterior probability of background and foreground, condi-
tioned on the observed pixel values using Bayes’ rule.

Given an observed color vector c at pixel location x in
frame t , the probability of background and foreground are

Pt
x(bg|c)
= Pt

x(c|bg;Σ B) × Pt
x(bg)∑

l=bg,fg Pt
x(c|l;�l) × Pt

x(l) + Pt
x(c|fu) × Pt

x(fu)
,

Pt
x(fg) = 1 − Pt

x(bg|c). (11)

When the ideal likelihoods and priors are known, classifica-
tion based on Bayes’ rule gives the minimum possible error. A
common alternative classification criterion is the ratio of the
foreground likelihood to the background likelihood. The like-
lihood ratio classification in the joint domain-range model
deserves special consideration because it implicitly includes
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a notion of a prior. However, as we show in the next section,
the implicit prior involved causes a peculiar dependence on
the image size. Our model does not exhibit this undesired
consequence.

5.1 Likelihood ratio-based classification in the joint
domain-range model

In the Sheikh and Shah joint domain-range model [16], the
classification of pixels is done based on the likelihood ratios
of the background and foreground processes. The decision
criterion based on the ratios of the five-dimensional back-
ground and foreground likelihoods can be represented as

Pt (c, x|bg)
?
≷ Pt (c, x|fg)

Pt (c|x,bg) × Pt (x|bg)
?
≷ Pt (c|x,fg) × Pt (x|fg). (12)

The classification decision hence depends on the factors
Pt (x|bg) and Pt (x|fg). These factors are the prior prob-
ability of a particular pixel location given the background
or foreground process. For any pixel location x, these fac-
tors can depend upon parts of the image that are arbitrar-
ily far away. This is because the prior likelihood of a given
pixel location being foreground will be smaller if more pixels
from another part of the image are detected as foreground,
and larger if fewer pixels elsewhere are detected as fore-
ground (since Pt (x|fg) must integrate to 1). Furthermore,
these factors will change when the image size is changed,
hence affecting the classification [13]. By separating the sys-
tem components and bringing them together during the pos-
terior computation, we avoid this arbitrary dependence on
the size of the image.

6 Comparison to earlier systems

In this section, we compare our system to the various ear-
lier systems described in the paper so far. We use the I2R
benchmark data set [8] with nine videos taken in different
settings. The videos have several challenging features like
moving leaves and waves, strong object shadows, and moving
objects becoming stationary for a long duration. The videos
are between 500 and 3,000 frames in length and typically 128
× 160 pixels in size. Each video has 20 frames for which the
ground truth has been marked. We use the F-measure to judge
accuracy [9]; the higher the F-measure, the better the system:

F = 2 × recall × precision

recall + precision
. (13)

We use a Markov random field to post-process the labels
as is done by Sheikh and Shah. Further, to be consistent
with the experimental set up of earlier systems [9,12], we
discard any foreground detections smaller than 15 pixels in

size. The various systems compared are the MoG model of
Stauffer and Grimson [17], the KDE model of Elgammal
et al. [3], the complex background–foreground model of Li
et al. (ACMMM03) [8], the joint domain-range model of
Sheikh and Shah (jKDE) [16],3 and our model, which we call
the distribution field background (DFB) model. The naming
reflects the fact that our model is a field of distributions with
one distribution at each pixel location and was inspired by
the description of such models in the tracking literature by
Sevilla-Lara and Learned-Miller [15].

Results in Table 1 show that systems that model the spa-
tial influence of pixels, namely the jKDE model and our DFB
model yield significantly higher accuracy. The table shows
that the jKDE system is most accurate for our chosen parame-
ter setting. Although this is not true for other parameter set-
tings,4 the table makes an important point that very effective
systems can be built even if the underlying model has certain
deficiencies (as we showed in Sect. 5.1 for the jKDE). Mere
separation of the model components as we have done and
computing posterior probabilities for the labels does not guar-
antee better results. The usefulness of our system descrip-
tion is in the clear understanding of the different components
and allowing for better modeling of the components without
having to tweak the inference procedure. To illustrate this
aspect of our system, we next describe one specific example
of improving the background likelihood model by identify-
ing a shortcoming in the model and developing a strategy to
fix it.

7 Adaptive kernel variances for the background
likelihood

In this section we discuss recent improvements to our
KDE likelihood model. Although KDE is a non-parametric
approach to estimate probability densities, the choice of the
kernel variance or the bandwidth is an important one. Using
large bandwidth values can result in a very smooth density
function while low bandwidth values result in insufficient
smoothing of the density function.

In the context of background modeling, different parts
of a dynamic scene may exhibit different statistics over the
feature values and hence may need to be explained by dif-
ferent kernel variance values. Consider the result from a
slightly different KDE model [12] shown in Fig. 4. The fig-
ure shows background classification results when the back-
ground likelihoods were computed with increasing values of

3 The KDE and jKDE models are our own implementations and include
spatially-dependent priors and Bayes’ classification criterion in order
to make a fair comparison.
4 For a detailed comparison of our model and the joint domain-range
model, the reader is referred to our earlier paper [13].
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Table 1 F-measure comparison between various existing algorithms on I2R data

Video MoG KDE ACMMM03 jKDE DFB

Airport hall 57.86 62.46 50.18 70.13 67.95

Bootstrap 54.07 61.15 60.46 71.77 69.17

Curtain 50.53 61.83 56.08 87.34 85.66

Escalator 36.64 40.84 32.95 53.70 54.01

Fountain 77.85 52.76 56.49 57.35 77.11

Shopping mall 66.95 63.05 67.84 74.12 70.95

Lobby 68.42 22.78 20.35 27.88 21.64

Trees 55.37 64.01 75.40 85.80 82.61

Water surface 63.52 51.16 63.66 78.16 75.80

Average 59.02 53.34 53.71 67.36 67.21

Modeling the spatial influence of pixels (jKDE and DFB) significantly improves accuracy. MoG and ACMMM03 results are as reported by Li
et al. [9]. For KDE, jKDE, and DFB, we use color dimension covariance value of 45/4 for both the background and foreground models. For jKDE
and DFB, we use spatial dimension covariance values of 3/4 and 12/4 for the background and foreground models respectively

Fig. 4 Two video sequences classified using increasing values of spatial kernel variance. Column 1, original image; column 2, low variance;
column 3, medium variance; column 4 high variance

spatial dimension variance for two different videos. Recall
from Sect. 2 that the spatial variance controls the amount
of influence that neighboring pixels have on a given pixel’s
background likelihood. Figure 4a–d show that having a high
spatial dimension kernel variance helps in accurate classifi-
cation of the water surface pixels, but doing so causes some
pixels on the person’s leg to become part of the background.
Ideally, we would have different kernel variances for the
water surface pixels and the rest of the pixels. Similarly in
the second video (Fig. 4e–h), having a high kernel variance
causes incorrect classification of many foreground pixels.

Kernel variance selection for KDE is a well studied prob-
lem [20], which can be addressed with variable-sized ker-
nels [21]. The kernel size or variance can be adapted at the
estimation point (balloon estimator) or at each data sample

point (sample-point estimator). Zivkovic and Heijden [25]
use a balloon estimator to adapt the kernel variance. Mittal
and Paragios [10] use a hybrid approach but require that the
uncertainty in the features be known.

Using a different parameter for each pixel location can be
useful in accounting for the varied nature of the background
phenomenon at each pixel. For the MoG model, Zivkovic [24]
describes a method to find the optimal number of Gaussians
to use at each pixel. For KDE models, Tavakkoli et al. [18]
learn the variance for each pixel from a training set of frames,
but do not adapt the learned values during the classification
stage.

To address this problem, in earlier work [12,13], we pro-
posed a location-specific variance and an adaptive method
to select the best variance at each location. For each pixel
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Fig. 5 a, b Spatial uncertainty in the central part of the background. c
Small uniform variance results in low likelihoods for pixels that have
moved. d Large uniform variance results in higher likelihoods of the

moved pixels at the expense of lowering the likelihoods of stationary
pixels. e Adaptive variance results in high likelihoods for both the moved
and stationary pixels

Fig. 6 Color uncertainty in the central part of the background is best
modeled by using adaptive kernel variances. c Small uniform variance
results in low likelihoods for pixels that have changed color. d Large

uniform variance results in higher likelihoods of the altered pixels at the
expense of lowering the likelihoods of other pixels. e Adaptive variance
results in high likelihoods for both kinds of pixels

location, for the background model, a set of variance values
for both spatial and color dimensions is tried and the con-
figuration that results in the highest likelihood is chosen for
that particular pixel.

The effect of the adaptive kernel variance method can
be interpreted easily in Figs. 5, 6 (figures are originally
from [13]). Consider a synthetic scene with no foreground
objects, but in which the colors in the central greenish part
of the background have been displaced at random by one or
two pixel locations to simulate spatial uncertainty. As shown
in Fig. 5, the adaptive kernel variance method models the
scene better by applying a high spatial variance for pixels
that have moved and a low spatial variance for pixels that
have not moved. Similarly, for color variance, Fig. 6 shows
the resulting likelihoods when uniformly sampled noise is
added to the color values in the central part of the image.
A small color variance value results in low likelihoods for
pixels whose colors have changed. A large color variance
results in low likelihoods for pixels that have not changed.
The adaptive kernel variance method performs well in both
kinds of pixels.

This improved background likelihood can be plugged into
our system without any changes to the rest of the system.

The following section discusses the increased accuracy that
results from the substitution.

8 Comparison

Table 2 shows the results after using the adaptive kernel vari-
ance likelihood for the background. We compare our system
to a very successful background system that uses recently
developed complex texture features called scale invariant
local ternary patterns (SILTP) [9] in a MoG model. These
features are specifically designed to be robust to lighting
changes and soft shadows in the scene and represent the
state of the art accuracy on this benchmark. Results from the
joint domain-range model with the use of the adaptive vari-
ance likelihood (abbreviated as jKDE-A) show a decrease in
accuracy compared to the earlier likelihood (jKDE). Using
the adaptive procedure in our system (DFB-A) results in a
remarkable increase in accuracy. Using simple color features,
our system is able to achieve accuracy comparable to SILTP
on many videos.

Using a combination of color and texture features has been
shown to be useful for background modeling [12,23]. Texture
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Table 2 F-measure on I2R data

Video features SILTP [9] jKDE jKDE-A DFB DFB-A DFB-A
siltp rgb rgb rgb rgb lab+siltp

Airport Hall 68.02 70.13 65.52 67.95 68.28 70.75

Bootstrap 72.90 71.77 71.38 69.17 71.86 77.64

Curtain 92.40 87.34 79.76 85.66 93.57 94.07

Escalator 68.66 53.70 54.02 54.01 66.37 49.99

Fountain 85.04 57.35 49.89 77.11 77.43 85.88

Shopping Mall 79.65 74.12 74.43 70.95 76.46 82.64

Lobby 79.21 27.88 33.34 21.64 13.24 62.60

Trees 67.83 85.80 85.57 82.61 83.88 87.64

Water surface 83.15 78.16 64.03 75.80 93.81 93.79

The highest accuracy for each video is marked in bold letters. Using the adaptive kernel variance method with LAB color features and SILTP texture
features results in the highest accuracy. Compared to uniform kernel variance DFB model, the adaptive variance method DFB-A is more accurate

features are robust to lighting changes but not effective on
large texture-less objects. Color features are effective on large
objects, but not very robust to varying illumination. Includ-
ing the SILTP feature representation along with LAB color
features, which are more robust to lighting changes, and per-
forming background modeling in this hybrid color-texture
space returns the best results on a majority of videos. The
parameters used for the adaptive kernel variance method and
explanations of the improvement in the results are detailed
in our earlier work [13].

Our results are poor on two videos in the set—escalator
and lobby. The escalator video is from an indoor mall scene
with a fast moving escalator. The escalator pixels exhibit a
large amount of motion causing them to be incorrectly clas-
sified as foreground in many frames. The lobby video is from
an office scene where a light switch is turned on and off at
various times during the video. Our likelihood model fails
during the light switching and our use of an explicit fore-
ground model causes the background model to take a very
long time to recover. Use of LAB color features and SILTP
features helps in the drastic illumination change scenario of
the lobby video.

8.1 Processing times

Our unoptimized Matlab code for distribution field back-
ground modeling with adaptive variance for each pixel (DFB-
A) takes 10 s per frame for videos of size 128 × 160 pixels.
In comparison, our implementation of the Sheikh and Shah
model and our DFB model without the adaptive variance
selection takes 5 s per frame. In earlier work [12], we describe
a scheme to reduce computation time with the adaptive kernel
method by recording the best variance values for each pixel
from the previous frame. These cached variance values are
first used to classify pixels in the current frame. The expen-

sive variance adaptation is performed only for pixels where
a confident classification is not achieved using the cached
variance values. The caching method reduces the processing
time to about 6 s per frame.

9 Discussion

We argue that the view of background modeling described in
this paper is, from a probabilistic perspective, clean and com-
plete for the purpose of background modeling. By separating
the various aspects of a background modeling system, namely
the background likelihood, the foreground likelihood, and a
prior, into distinct components, we have presented a simple
view of background modeling. For inference, these separate
components are brought together to compute the posterior
probability for background.

Previous backgrounding systems have also modeled the
components that we have described, but have often combined
them with each other or caused dependence between the com-
ponents and the inference. The separation of the components
from each other and their isolation from the inference step
makes the system easy to understand and extend. The individ-
ual components can be improved without having to consider
their interdependence and effect on the inference. We have
shown one example of improving the background likelihood
model and its positive impact on the system’s accuracy.

We use a spatially varying prior that depends on the labels
from the previous frame. The model can further be improved
by using a different prior at the image boundaries where new
foreground objects are more likely. The modeling of the prior
can also be improved by the explicit use of object tracking
information.

We also believe that isolation of the model components
can help in the development of effective learning methods
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for each of them. For example, the prior can be learned sim-
ply by counting the number of times each pixel is labeled
as background or foreground. Maintaining a record of the
number of times a pixel changes its label from background
to foreground and vice-versa is one possible scheme to learn
the prior values described in Sect. 4. Such a learning scheme
can help build a dynamic model for the priors at different
regions in the image.
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