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Abstract Foreground segmentation of moving regions in
image sequences is a fundamental step in many vision
systems including automated video surveillance, human-
machine interface, and optical motion capture. Many models
have been introduced to deal with the problems of model-
ing the background and detecting the moving objects in the
scene. One of the successful solutions to these problems is
the use of the well-known adaptive Gaussian mixture model.
However, this method suffers from some drawbacks. Mod-
eling the background using the Gaussian mixture implies
the assumption that the background and foreground distrib-
utions are Gaussians which is not always the case for most
environments. In addition, it is unable to distinguish between
moving shadows and moving objects. In this paper, we try
to overcome these problem using a mixture of asymmetric
Gaussians to enhance the robustness and flexibility of mix-
ture modeling, and a shadow detection scheme to remove
unwanted shadows from the scene. Furthermore, we apply
this method to real image sequences of both indoor and out-
door scenes. The results of comparing our method to differ-
ent state of the art background subtraction methods show the
efficiency of our model for real-time segmentation.
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1 Introduction

Over the last decade, automatic segmentation of foreground
from background in video sequences has attracted lots of
attention in computer vision [1–3]. Foreground segmentation
is often used as the primary step in video surveillance [4–
6], optical motion capture [7,8], and multimedia process-
ing [9,10] to model the background and to detect the moving
objects in the scene. Background subtraction involves the
extraction of a background image which does not include
any moving object, reference image, then subtracting each
new frame from this image and thresholding the result to
highlight regions of non-stationary objects. Normally, video
surveillance systems can be employed in two kinds of envi-
ronments: controlled and uncontrolled. Monitoring systems
in controlled or indoor environments (i.e., airports, ware-
houses, and production plants) are easier to implement as
they do not depend on weather changes. Uncontrolled envi-
ronment is used to refer to outdoor scenes where illumina-
tion and temperature changes occur frequently, and where
various atmospheric conditions can be observed. Normally,
when developing background subtraction algorithms, there
are two major problems that must be taken into consideration,
namely, robustness and adaptation. These methods should be
robust to illumination and weather changes, as well as able
to detect addition, occlusion, and removal of objects in the
scene. To take into account these problems of robustness and
adaptation, many background modeling methods have been
developed (a complete detailed survey can be found in [11]).

In the past, computational barriers have limited the com-
plexity of real-time video processing applications. As a con-
sequence, most systems were either too slow to be practical,
or succeeded by restricting themselves to very controlled sit-
uations. Recently, faster computers have enabled researchers
to consider more complex, robust models for real-time
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analysis of streaming data. These new methods allow
researchers to begin modeling real-world processes under
varying conditions. Most recent methods assume that the
images of the scene without the intruding objects exhibit
some regular behavior that can be well described by a sta-
tistical model. If we have a statistical model of the scene,
an intruding object can be detected by spotting the parts
of the image that do not fit the model. In the majority of
these methods, a common bottom-up approach has been
applied to construct a probability density function for each
pixel separately. Its idea is to segment the foreground mov-
ing objects by constructing over time a mixture model for
each pixel and deciding, in a new input frame, whether the
pixel belongs to the foreground or the background [12,13].
Among the vast amount of approaches that have been pro-
posed to accomplish this task, adaptive Gaussian mixture
models (GMMs) [12,14] have proven their outstanding suit-
ability in several computer vision application [15] and par-
ticularly in the surveillance domain because of their ability
to achieve many of the requirements of a surveillance sys-
tem, e.g., adaptability and multimodality, in real time with
low memory requirements. GMMs model the history of each
pixel by a mixture of K Gaussian distributions. In [16], the
authors implemented a pixel-wise EM framework for detec-
tion of vehicles by attempting to explicitly classify the pixel
values into three separate predetermined distributions corre-
sponding to the road color, the shadow color, and colors cor-
responding to vehicles. Stauffer et al. [12] generalized this
idea by implementing online K-means approximation algo-
rithm for modeling each pixel using a mixture of K Gaus-
sians, where K was chosen in the range (3–5) depending on
the computational power of the machine. In [14] the use of a
negative prior evidence was introduced to discard the compo-
nents that are not supported by the data, therefore being able
to automatically select the number of components of the mix-
ture used for each pixel. In [17] the use of an adaptive learning
rate calculated for each Gaussian at every frame was pro-
posed which led to an improved segmentation performance
compared to the standard method. However, these methods
have some drawbacks. Modeling the background using the
GMM implies the assumption that the background and fore-
ground distributions are Gaussians which is not always the
case as argued by [18]. Figure 1 shows the probability den-
sity function of a pixel throughout a video. From this figure
we can notice that the distribution is not symmetrical. Apply-
ing the GMM, we can observe its inefficiency in modeling
the data. To overcome these problems, some researchers have
shown that the generalized Gaussian mixture (GGM) can be a
good choice to model non-Gaussian data [19–21]. Compared
to the Gaussian distribution (GD), the generalized Gaussian
distribution (GGD) has one more parameter λ that controls
the tail of the distribution: the larger the value of λ is, the flat-
ter is the distribution; the smaller λ is, the more peaked is the

Fig. 1 Probability density function of a pixel throughout a video
sequence

distribution. Despite the higher flexibility that GGD offers, it
is still a symmetric distribution inappropriate to model non-
symmetrical data. From Fig. 1, we can recognize that the
GGM is not suitable in modeling our data. In this article,
we suggest the use of the asymmetric Gaussian distribution
(AGD) capable of modeling asymmetrical data. The AGD
uses two variance parameters for left and right parts of the
distribution, which allow it to change its shape to conclude
the asymmetry. As shown in Fig. 1, we can notice that the
asymmetric Gaussian mixture (AGM) was able to accurately
model the data.

An important part of the mixture modeling problem con-
cerns learning the model parameters and determining the
number of consistent components (M) which best describes
the data. For this purpose, many approaches have been sug-
gested. The vast majority of these approaches can be classi-
fied, from a computational point of view, into two classes:
deterministic and stochastic methods. Deterministic methods
estimate the model parameters for different range of M then
choose the best value that maximize a model selection cri-
teria such as the Akaike’s information criterion (AIC) [22],
the minimum description length (MDL) [23] and the Laplace
empirical criterion (LEC) [24]. Stochastic methods such as
Markov chain Monte Carlo (MCMC) can be used to sam-
ple from the full a posteriori distribution with M considered
unknown [25]. Despite their formal appeal, MCMC meth-
ods are too computationally demanding, therefore cannot
be applied for online applications such as foreground seg-
mentation. For this reason, we are interested in determinis-
tic approaches. In our proposed method, we use K-means
algorithm to initialize the AGM parameters and success-
fully solve the initialization problem. The number of mixture
components is automatically determined by implementing
the minimum message length (MML) criterion [26] into the
expectation–maximization (EM) algorithm. Therefore, the
method can integrate simultaneously parameter estimation
and model selection in a single algorithm, thus it is totally
unsupervised.
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Background subtraction using finite mixtures 1147

Shadows, areas where direct light from a light source
cannot reach due to obstruction by different objects, are an
ever-present aspect of color images. As a result of the dif-
ference between the light intensity reaching a shaded region
and a directly lit region, shadows are often characterized by
conspicuous strong brightness gradients. In outdoor scenes,
the change between shadow and non-shadow regions is not
entirely a brightness difference, but a color one as well. This
property makes shadow detection task a highly problematic
one in a number of different fields. Recently, there have been
few studies concerning shadow removal; however, the best
performing methods still require user interaction with image
sequences to perform optimally. In our moving shadow detec-
tion algorithm, we implement a method compatible with the
RGB color model and able to use our mixture model. It
is noteworthy that the proposed learning approach is com-
pletely different from recent efforts published for instance
in [21,27]. In fact, [27] proposed the use of the asymmetric
Gaussian with different parametrization for pattern recog-
nition applications. Furthermore, this method used the two-
dimensional AGM for data classification when the number
of components is known in advance. In [21] a Bayesian non-
parametric approach based on infinite GGM was developed
for pedestrian detection and foreground segmentation.

The rest of this paper is organized as follows. Section 2
describes the AGM model and its learning algorithm. In
Sect. 3, we assess the performance of the new model with
shadow removal scheme for foreground segmentation; while
comparing it to other models. Our last section is devoted to
the conclusion and some perspectives.

2 Finite AGM model

Formally we say that a d-dimensional random variable X =
[X1, . . . , Xd ]T follows a M components mixture distribution
if its probability function can be written in the following
form:

p(X|Θ) =
M∑

j=1

p j p(X|ξ j ) (1)

where

– ξ j is the set of parameters of the component j ,
– p j are the mixing proportions which must be positive and

sum to one,
– Θ = {p1, . . . , pM , ξ1, . . . , ξM } is the complete set of

parameters fully characterizing the mixture,
– M ≥ 1 is number of components in the mixture.

For the AGM, each component density p(X|ξ j ) is an AGD
given by:

p(X|ξ j ) =
d∏

k=1

√
2

π

1

(σl j + σr j )

×

⎧
⎪⎪⎨

⎪⎪⎩

exp

[
− (Xk−μ jk )

2

2σ 2
l jk

]
if Xk < μ jk

exp

[
− (Xk−μ jk )

2

2σ 2
r jk

]
if Xk ≥ μ jk

(2)

where ξ j = (μ j , σ l j , σ r j ) is the set of parameters of compo-
nent j where μ j = (μ j1 . . . , μ jd), σ l j = (σl j1, . . . , σl jd ),
and σ r j = (σr j1 , . . . , σr jd ) are the mean, the left stan-
dard deviation, and the right standard deviation of the
d-dimensional AGD, respectively. The AGD is chosen to be
able to fit, in analytically simple and realistic way, symmet-
ric or non-symmetric data by the combination of the left and
right variances.

Let X = (X1, . . . , XN ) be a set of N independent and
identically distributed vectors, assumed to arise from a finite
AGM model with M components. Thus, it can be expressed
as follows:

p(X |Θ) =
N∏

i=1

M∑

j=1

p(Xi |ξ j )p j (3)

where the set of parameters of the mixture with M classes is
defined by Θ = (μ1, . . . ,μM , σ l1 , . . . , σ lM , σ r1 , . . . , σ rM ,

p1, . . . , pM ).
We introduce membership vectors, Zi = (Zi1, . . . , Zi M ),

one for each observation, whose role is to encode to which
component the observation belongs. In other words, Zi j , the
unobserved or missing variable in each membership vec-
tor, equals 1 if Xi belongs to class j and 0, otherwise. The
complete-data likelihood for this case is then:

p(X , Z |Θ) =
N∏

i=1

M∏

j=1

(
p(Xi |ξ j )p j

)Zi j (4)

2.1 Maximum likelihood estimation of the mixture
parameters

For the moment, we suppose that the number of mixture M
is known. The maximum likelihood method consists of get-
ting the mixture parameters that maximize the log-likelihood
function given by:

L(Θ, Z ,X ) =
N∑

i=1

M∑

j=1

Zi j log
(

p(Xi |ξ j )p j
)

(5)

by replacing each Zi j by its expectation, defined as the pos-
terior probability that the i th observation arises from the j th
component of the mixture as follows:

Ẑi j = p( j |Xi ) = p(Xi |ξ j )p j∑M
j=1 p(Xi |ξ j )p j

(6)
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Using Eq. 6, we can affect each observation to one of the
M clusters. Now, using these expectations, we want to max-
imize the complete-data log-likelihood with respect to our
model parameters. This can be done by taking the gradient of
the log-likelihood with respect to p j ,μ j , σ l j , and σ r j . When
estimating p j , we actually need to introduce Lagrange multi-
plier to ensure that the constraints p j > 0 and

∑M
j=1 p j = 1

are satisfied. Thus, the augmented log-likelihood function
can be expressed by:

Φ(Θ, Z ,X ,Λ) =
N∑

i=1

M∑

j=1

Zi j log
(

p(Xi |ξ j )p j
)

+Λ

⎛

⎝1−
M∑

j=1

p j

⎞

⎠ (7)

where Λ is the Lagrange multiplier. Differentiating the aug-
mented function with respect to p j we get:

p̂ j = 1

N

N∑

i=1

p( j |Xi ) (8)

Taking the gradient of the complete log-likelihood with
respect to μ j , σ l j , and σ r j , we obtain the following for
k = 1, . . . , d:

μ̂ jk =
∑N

i=1 Ẑi j Xik∑N
i=1 Ẑi j

(9)

N∑

i=1,Xik<μ jk

Ẑi j (Xik − μ jk)
2

σ 3
l jk

−
N∑

i=1

Ẑi j

σl jk + σr jk

= 0 (10)

N∑

i=1,Xik≥μ jk

Ẑi j (Xik − μ jk)
2

σ 3
r jk

−
N∑

i=1

Ẑi j

σl jk + σr jk

= 0 (11)

We can notice that Eqs. 10 and 11 are non-linear, therefore
we have decided to use the Newton–Raphson method for
estimation:

σ̂l jk � σl jk −
⎡

⎣
(

∂2L(Θ, Z ,X )

∂σ 2
l jk

)−1 (
∂L(Θ, Z ,X )

∂σl jk

)⎤

⎦

(12)

σ̂r jk � σr jk −
⎡

⎣
(

∂2L(Θ, Z ,X )

∂σ 2
r jk

)−1 (
∂L(Θ, Z ,X )

∂σr jk

)⎤

⎦

(13)

where ∂2 L(Θ,Z ,X )

∂σ 2
l jk

,
∂L(Θ,Z ,X )

∂σl jk
,

∂2 L(Θ,Z ,X )

∂σ 2
r jk

, and ∂L(Θ,Z ,X )
∂σr jk

are given in Appendix A.

2.2 Model selection using the minimum message length
criterion

Different model selection methods have been introduced
to estimate the number of components of a mixture. In
this article, we are interested with deterministic approaches,
especially MML. The MML approach is based on evaluat-
ing statistical models according to their ability to compress a
message containing the data (minimum coding length crite-
ria). High compression is obtained by forming good models
of the data to be coded. For each model in the model space,
the message includes two parts. The first part encodes the
model, using only prior information about the model and no
information about the data. The second part encodes only
the data in a way that makes use of the model encoded in
the first part. When applying the MML, the optimal num-
ber of classes of the mixture is obtained by minimizing the
following function [26,28]:

MessLen ≈ − log(p(Θ))− L(Θ, Z ,X )+ 1

2
log |F(Θ)|

+Np

2
− 1

2
log(12) (14)

where p(Θ) is the prior probability, |F(Θ)| is the deter-
minant of the Fisher information matrix minus the log-
likelihood of the mixture, and Np is the number of para-
meters to be estimated and is equal to M(3d + 1) in our
case. In the following subsections, we give the derivation of
both the prior probability p(Θ) and the determinant of the
Fisher information matrix of minus the log-likelihood of the
mixture |F(Θ)|.

2.2.1 Derivation of the prior p(Θ)

We specify a prior p(Θ) that expresses the lack of knowl-
edge about the mixture parameters. It is reasonable to
assume that the parameters of different components in the
mixture are independent, since having knowledge about
a parameter in one class does not provide any knowl-
edge about the parameters of another class. Thus, we can
assume that the mixture parameters are mutually indepen-
dent, then:

p(Θ) = p(P)

M∏

j=1

p(μ j )p(σ l j )p(σ r j ) (15)

where P = (p1, . . . , pM ). In what follows, we will spec-
ify each of these priors separately. Starting with p(P), we
know that P = (p1, . . . , pM ) is defined on the simplex
{(p1, . . . , pM ) :∑M

j=1 p j = 1}. Then, a natural choice as a
prior for this vector is the Dirichlet distribution
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p(P) =
Γ

(∑M
j=1 η j

)

∏M
j=1 Γ (η j )

M∏

j=1

p
η j−1
j (16)

where (η1, . . . , ηM ) is the parameter vector of the Dirichlet
distribution. When η1, . . . , ηM = η = 1 we get a uniform
prior over the space p1 + · · · + pM = 1. This prior is repre-
sented by

p(P) = (M − 1)! (17)

For μ j , we take a uniform prior for each μ jk . Each μ jk is
chosen to be uniform in the region (μ jk − σlk ≤ μ jk ≤
μ jk + σrk ), then the prior for μ j is given by

p(μ j ) =
d∏

k=1

p(μ jk) =
d∏

k=1

1

(σlk + σrk )
(18)

For both σ l j and σ r j , knowing that (0 ≤ σl jk ≤ σlk ) and
(0 ≤ σr jk ≤ σrk ), then a good choice of prior for σl jk and
σr jk is the uniform distribution:

p(σ l j ) =
d∏

k=1

p(σl jk ) =
d∏

k=1

1

σlk
(19)

p(σ r j ) =
d∏

k=1

p(σr jk ) =
d∏

k=1

1

σrk

(20)

Finally, by replacing the priors of the parameter in Eq. 15 by
each prior value in Eqs. 17, 18, 19, and 20 we get

p(Θ) = (M − 1)!
d∏

k=1

1

σ M
lk

σ M
rk

(σlk + σrk )
M

(21)

2.2.2 Derivation of the determinant of the Fisher
information matrix |F(Θ)|

The Fisher information matrix is the expected value of the
Hessian of minus the logarithm of the likelihood. It is dif-
ficult, in general, to obtain the expected Fisher information
matrix of a mixture analytically. Therefore, we use the com-
plete Fisher information matrix where its determinant is equal
to the product of the determinant of the information matrix
for each component times the determinant of the information
matrix of P

|F(Θ)| = |F(P)|
M∏

j=1

|F(μ j )||F(σ l j )||F(σ r j )| (22)

in which |F(μ j )|, |F(σ l j )|, and |F(σ r j )| are the Fisher infor-
mation with regards to μ j , σ l j , and σ r j , respectively, for
the AGD that corresponds to component j in the mixture
model. |F(P)| is the Fisher information with regards to
the mixing parameters vector that satisfy the requirement
{∑M

j=1 p j = 1}. Consequently, it is possible to consider the
generalized Bernoulli process with a series of trials, each of

which has M possible outcomes labeled first cluster, second
cluster,…, M th cluster. Therefore, the number of trials of
the j th cluster is a multinomial distribution of parameters
p1, p2, . . . , pM . Then, the determinant of the Fisher infor-
mation matrix is

|F(P)| = N M−1

∏M
j=1 p j

(23)

For |F(μ j )|, |F(σ l j )|, and |F(σ r j )| let us consider the j th
class X j = (Xl , . . . , Xl+n j−1) of the mixture as the data in
class j after classifying all the data X using the maximum
a posteriori probability defined by Eq. 6. Note that n j is
the number of data vectors belonging to the j th distribution.
This given choice of the j th class allows us to simplify the
notation without loss of generality. Then, the Hessian matri-
ces when we consider the vectors μ j , σ l j , and σ r j are given
by:

F(μ j )k1,k2 =
∂2L(Θ, Z ,X )

∂μ jk1∂μ jk2

(24)

F(σ l j )k1,k2 =
∂2L(Θ, Z ,X )

∂σl jk1
∂σl jk2

(25)

F(σ r j )k1,k2 =
∂2L(Θ, Z ,X )

∂σr jk1
∂σr jk2

(26)

where (k1, k2) ∈ (1, . . . , d). Using Appendix B to compute
the derivatives in Eqs. 24, 25, 26, we obtain

|F(μ j )| =
d∏

k=1

⎡

⎣
l+n j−1∑

i=l,Xik<μ jk

1

σ 2
l jk

+
l+n j−1∑

i=l,Xik≥μ jk

1

σ 2
r jk

⎤

⎦ for j = 1, . . . , M

(27)

|F(σ l j )| =
d∏

k=1

⎡

⎣
l+n j−1∑

i=l

1

(σl jk + σr jk )
2 − 3

×
l+n j−1∑

i=l,Xik<μ jk

(Xik − μ jk)
2

σ 4
l jk

⎤

⎦ for j=1, . . . , M

(28)

|F(σ r j )| =
d∏

k=1

⎡

⎣
l+n j−1∑

i=l

1

(σl jk + σr jk )
2 − 3

×
l+n j−1∑

i=l,Xik≥μ jk

(Xik − μ jk)
2

σ 4
r jk

⎤

⎦ for j=1, . . . , M

(29)
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2.3 The AGM model learning algorithm

In the following steps, we summarize the algorithm used for
the AGM parameters estimation and model selection. Given a
number of components, the mixture parameters are estimated
iteratively using the EM algorithm:

Input: Data set X and Mmax

Output: ΘM∗ (the values of Θ when M∗ components are
chosen) and M∗

Step 1: For M = 1 : Mmax do{

1. Initialize the parameters.
2. Repeat until convergence.

(a) The E-step given by Eq. 6.
(b) The M-step given by Eqs. 8, 9, 12, 13.

3. Calculate the associated message length using Eq. (14).

}END FOR
Step 2: Select the model M∗ with the smallest message
length.

To initialize the parameters, we used the K-means algorithm.
Note that, we initialized both the left and right standard devi-
ations with the standard deviation values obtained from the
K-means. To detect the convergence of the EM, we stop the
iterations when the difference of the log-likelihood from two
successive iterations, � and �+1, is smaller than a predefined
threshold ε.

3 Background subtraction

In this section, we investigate the efficiency of the AGM
algorithm for background subtraction. Our method can be
divided into two main components: background modeling
and shadows detection.

3.1 Adaptive AGM algorithm

Adaptive Gaussian mixture algorithms are widely applied
for background subtraction. In [12], the authors presented an
online learning of a GMM for each pixel in the video frames.
Their idea was to model each pixel in the scene by a mixture
of K Gaussian distributions, where K is taken in the range
(3–5). Then, they ordered the K distributions based on the
fitness value p j/σ j and used the first B distributions to model
the background of the scene, where B is estimated as

B = arg minb

b∑

j=1

p j > T, (30)

T is a measure of the minimum portion of the data that rep-
resents the background in the scene. Then, the foreground
pixels were detected as any pixel that is more than 2.5 stan-
dard deviations away from any of the B distributions. For the
(�+ 1) frame, the first Gaussian component that matches the
test value will be updated by the following equations:

p̂�+1
j = (1− α) p̂�

j + α p̂( j |X�+1) (31)

μ̂�+1
j = (1− α)μ̂�

j + ρX�+1 (32)

Σ̂�+1
j = (1− α)Σ̂�

j + ρ
(

X�+1 − μ̂�+1
j

) (
X�+1 − μ̂�+1

j

)T

(33)

where 1/α defines the time constant which determines
change. p̂�+1

j , μ̂�+1
j , and Σ̂�+1

j are the estimated value of the
weight, mean, and covariance of the component j of the mix-
ture at the (�+ 1) frame, respectively. Note that p̂( j |X�+1)

is formulated as:

p̂( j |X�+1) =
{

1 if X� match the class j
0 otherwise

(34)

Finally, ρ is defined as:

ρ = αN
(

X�+1; μ̂�
j , Σ̂

�
j

)
(35)

where N (X�+1; μ̂�
j , Σ̂

�
j ) represents the Gaussian probability

density function with mean μ̂�
j and covariance Σ̂�

j ) at X�+1.
In the case when none of the K distributions matches

that pixel value, the least probable component is replaced
by a distribution with the current value as its mean, an ini-
tially high variance, and a low weight parameter. According
to their papers [12,13,29], only two parameters, α and T ,
have to be set in the method. However, there are four major
problems when using this method. First, modeling both fore-
ground and background pixels by a mixture of Gaussians
implies the assumption that they are symmetrical which is
not always the case. Second, using a prefixed number of
components to represent all pixel mixtures is not practical
in real life. The method is not robust when dealing with busy
environments because a clean background is rare. Last but
not least, slow adaptations in the means and the covariance
matrices, therefore the tracker can fail within a few seconds
after initialization. In this paper, we are trying to overcome
these drawbacks by:

1. Using the AGM to model the non-symmetricity of the
pixels distributions.

2. Using the MML to choose the right number of compo-
nents for each pixel distribution.

3. Using another method to update the mixture parameters.
4. Removing the connection between the likelihood term

and ρ.
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Background subtraction using finite mixtures 1151

Fig. 2 a Sample frame from Pets2006 video sequence in the baseline category, b Stauffer et al. [12], c Zivkovic [14], d KaewTraKulPong et
al. [37], e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

In our method, we start by representing every pixel at
a given time frame � by a vector of three values: X(�) =
[R, G, B], where R, G, B are the red, green, and blue val-
ues taken from the color camera. Then, as argued above, we
model each pixel by an AGM to enhance the robustness of our
algorithm in modeling the non-symmetricity of pixels distri-
butions. To update the parameters of the AGM mixture at an
input frame (�+1), we check whether its new value matches
one of the M components of its AGM mixture. A match to
a component occurs when the value of the pixel X(�+1) falls
within K standard deviations of the mean of the component
(depending on the position of the pixel value from the mean,
we use the left or right standard deviation). If a match occurs
then we update the component parameters by:

p�+1
j = p�

j + B�

[
p( j |X�+1)− p�

j

]
(36)

ξ�+1
j = ξ�

j + B�

[
p( j |X�+1)

∂L(Θ, Z , X�+1)

∂ξ j

]
(37)

where B� represents any sequence of positive numbers that
decreases to zero. The derivatives in Eq. 37 are given in
Appendix A. If no match occurs, we create a new compo-

nent for the mixture with the mean equal to the new value
of the pixel. Then, we evaluate the new model M�+1 with
MML (note that M�+1 denotes the mixture model associated
with the pixel X at time �+ 1). In other words, we calculate
the message length for the new mixture model with M + 1
components: if MessLen(�) > MessLen(� + 1), then we
use M�+1 else we use M� and update the parameters using
Eqs. (36) and (37). In the case when there is an empty com-
ponent j, p j = 0, we discard the component j of the mixture
and set M ← M−1. Finally, using the same idea of [12], we
order the mixture components by the value of

p j
||σ l j ||+||σ r j || ,

where ||σ l j || and ||σ r j || are the norm of the left and right
standard deviations of the component j , respectively. At that
point, we use Eq. 30 to model the background by the first B
components.

The complete algorithm for adaptive background subtrac-
tion can be summarized in the following steps:

Step 1- Initialization for each pixel X :

1. Set M= 1, p1= 1
2. ∀k = 1, . . ., d: set σl1k = σr1k = 0.2, and μ1k = X (0)

k .
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1152 T. Elguebaly, N. Bouguila

Fig. 3 a Sample frame from Overpass video sequence in the dynamic background category, b Stauffer et al. [12], c Zivkovic [14], d Kaew-
TraKulPong et al. [37], e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

Step 2- For each pixel X(�+1) in a new frame do {

1. Verify if there is a match that exists for the new pixel
value.
(a) If True

i Update the new pixel model parameters
using Eqs. 36 and 37.

(b) If False
i Add a new component to the mixture with

mean equal the new pixel value.
ii Evaluate the new model M�+1 with MML.

A. If MessLen(�) > MessLen(�+1){M ←
M + 1}

B. If MessLen(�) < MessLen(�+ 1) { use
M� and update it using Eqs. 36 and 37}.

2. Check if there is any p j = 0 then {
M ← M − 1 }.

3. Order the pixel mixture components by the values of
p j

||σ l j ||+||σ r j || .
4. Use Eq. 30 to extract foreground objects.

3.2 Shadow detection algorithm

3.2.1 Related works

Moving shadows are a major problem for foreground detec-
tion algorithms. Shadows pixels in any image differentiate
themselves from the background and generally fall within the
group of pixels associated with foreground objects. Labeling
cast shadows as foreground objects lead to silhouette dis-
tortions and object fusions, thus reducing vision algorithm
efficiency for scene monitoring and target recognition and
tracking. Therefore, an effective shadow detection method is
indispensable for accurate foreground segmentation.

Moving shadows in the scene are caused by the occlu-
sion of light sources due to the moving objects. Therefore,
shadow points have lower luminance values but similar chro-
maticity values. However, the texture characteristic around
the shadow points remains unchanged since shadows do not
alter the background surfaces. Shadow detection is known to
be a challenging task because: (1) shadow points are mostly
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Fig. 4 a Sample frame from Badminton video sequence in the Camera Jitter category, b Stauffer et al. [12], c Zivkovic [14], d KaewTraKulPong
et al. [37], e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

classified as foreground, since they differ significantly from
the background; (2) shadow has the same motion as the mov-
ing object causing it, which make the task of differentiating
between them very difficult; (3) shadow is always adjacent to
moving object, which make it hard to remove using common
segmentation techniques.

Generally, shadow detection algorithms can be classi-
fied into three categories: color-based, texture-based, and
statistic-based. The color-based approaches attempt to
describe the change in the color features of shadow pix-
els. In [30], the authors presented a robust shadow detection
approach based on brightness, saturation, and hue properties
in the HSV color space. Their idea is built on the hypoth-
esis that shadows reduce surface brightness and saturation
while maintaining hue properties in the HSV color space.
The work in [31] addressed the shadow detection problem
in YUV color space to avoid the time consuming HSV color
space transformation. They distinguished the shadow regions
from the foreground regions according to the observation that
the YUV pixel value of shadows is lower than the linear pix-
els. According to the shadow model, Salvador et al. [32]
identified an initial set of shadow pixels in RGB color space

basing on the fact that shadow region darkens the surface.
Then, combining color invariance with geometric properties
of shadow they were able to detect the shadows in different
scenes. In Horprasert et al. [33], built a model in the RGB
color space to express normalized luminance variation and
chromaticity distortions. Though color-based methods have
shown their efficiency in shadow detection, they may not be
reliable in the case when moving objects have similar color
as moving shadows.

On the other hand, texture-based approaches are based on
the fact that texture of shadow regions and the background
are similar, while the texture of moving objects are differ-
ent from the background. In [34], the authors explored ratio
edges for shadow detection. They proved that ratio edge is
illumination invariant and that the distribution of normalized
ratio edge difference is a chi-square distribution. Then, a sig-
nificance test was used to detect shadows. In addition to using
scene brightness distortion and chromaticity distortion, Choi
et al. [35] proposed three estimators which use the prop-
erties of chromaticity, brightness, and local intensity ratio.
Hence, creating a chromaticity difference that obey a stan-
dard normalize distribution between the shadow region and
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Fig. 5 a Sample frame from Parking video sequence in the intermittent object motion category, b Stauffer et al. [12], c Zivkovic [14], d Kaew-
TraKulPong et al. [37], e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

the background. Finally, Finlayson et al. [36] used shadow
edges along with illuminant invariant images to recover full
color shadow-free images. Hence, texture-based methods
may be the most promising technique for shadow detection
because they are capable of capturing textual information of
different scenes. However, they suffer from three major prob-
lems: (1) they require to set parameters for different scenes,
(2) they can not handle complex and time-varying lighting
conditions, and (3) they are too computationally demanding
which limit their applications.

Recently, the statistical prevalence of cast shadows had
been employed to learn shadows in the scenes. The princi-
ple of statistic-based methods is to build pixel-based statisti-
cal models to detect cast shadows. In [37], the authors used
an adaptive Gaussian mixture model to detect moving cast
shadows. The method consists of building a GMM to seg-
ment moving objects. Then, they identified the distribution
of moving objects from shadows using an effective com-
putational color model similar to the one proposed in [33].
The work in [38] proposed the use of a Gaussian mixture
shadow model (GMSM). The algorithm models moving cast

shadows of non-uniform and varying intensity, and builds
statistical models to segment moving cast shadows using the
GMM learning ability. However, the shadow models need a
long time to converge while the lighting conditions should
remain stable which is a major drawback. Liu et al. [39]
were able to remove shadow using multilevel information
in HSV color space. They attempted to improve the conver-
gence speed of pixel-based shadow model using multilevel
information. They used region-level information to increase
the number of samples and global level information to update
a pre-classifier. However, the method still suffers from the
slow learning of the conventional GMM [12], and the low
discriminativity of the pre-classifier in scenes having differ-
ent types of shadows. Statistical-based methods are widely
applied due to their robustness in different scenes; however,
they are less effective in a real-world environment.

3.2.2 Proposed approach

In this section, we present a novel pixel-based statistical
approach to model moving cast shadows. Normally, when
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Fig. 6 a Sample frame from PeopleInShade video sequence in the shadows category, b Stauffer et al. [12], c Zivkovic [14], d KaewTraKulPong
et al. [37], e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

using adaptive mixture algorithms, values that are frequently
seen by a pixel are captured into stable background dis-
tributions while values that are infrequently seen are clas-
sified into foreground objects. Shadow values lie between
both situations: they are not as frequent as background val-
ues, but their rate of appearance is higher than random fore-
ground values. Therefore, in most cases, they are classified
as foreground objects. Hence, the purpose of our shadow
detection algorithm is to remove cast shadows classified by
the adaptive AGM as foreground objects. Our idea is very
simple and makes use of the property that shadows darken
the surface upon which they are cast [32]. Let us consider
X�+1 = (X�+1

R , X�+1
G , X�+1

B ) belonging to the foreground
distribution. We classify the pixel X�+1 as shadow if its dis-
tribution mean is smaller than that of the pixel background
models for all three channels. The steps of this approach can
be summarized as:

Input: The output of the asymmetric Gaussian mixture.
Output: Shadow candidates
For for each foreground distribution F do {

1. Compare its mean μF
R to the mean μB

R values of the
B background distributions.

2. Compare its mean μF
G to the mean μB

G values of the
B background distributions.

3. Compare its mean μF
B to the mean μB

B values of the
B background distributions.

4. If (μF
R −μB

R < 0 & μF
G −μB

G < 0 & μF
B −μB

B < 0)
then Consider this distribution to be a candidate for
the shadow model.

} END

where μB
R, μB

G , μB
B are the B background distributions red,

green, and blue means, respectively. Hence, after applying
this algorithm we will end up with three different models for
the background, foreground, and shadow.

3.3 Results

Our approach performance has been evaluated using the
change detection dataset described in [40]. This dataset
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Fig. 7 a Sample frame from Corridor video sequence in the thermal category, b Stauffer et al. [12], c Zivkovic [14], d KaewTraKulPong et al. [37],
e Evangelio et al. [41], f ELgammal et al. [42], g Nonaka et al. [43], h AGM, i AGM+SD

consists of 31 videos depicting indoor and outdoor scenes
with boats, cars, trucks, and pedestrians that have been cap-
tured in different scenarios. The videos were taken with dif-
ferent cameras ranging from low-resolution IP cameras to
thermal cameras. Therefore, spatial resolutions of the videos
vary from 320× 240 to 720× 576 and the level of noise and
compression artifacts varies from one video to another due
to diverse lighting conditions present.

The videos are grouped into six categories according to
the type of challenge each represents. The baseline category
contains four videos, two indoor and two outdoor. There are
six videos in the dynamic background category depicting out-
door scenes with strong background motion. The third cat-
egory, Camera Jitter, contains one indoor and three outdoor
videos captured by unstable cameras. Shadows: this category
consists of two indoor and four outdoor videos exhibiting
strong as well as faint shadows. Intermittent object motion
is the fifth category which includes six videos with scenar-
ios known for causing “ghosting” artifacts in the detected
motion. The last category is composed of five (three outdoor
and two indoor) sequences taken by far-infrared cameras.
Figures (2,3,4,5,6,7) show some sample frames taken from
this dataset.

In order to validate our method, we have compared it with
six state-of-the-art methods. These methods can be divided
into two main groups: pixel based and non-parametric Ker-
nel Density Estimation (KDE) methods. For pixel based
methods, we have used Stauffer et al. [12], Zivkovic [14],
KaewTraKulPong et al. [37], and Evangelio et al. [41];
as for KDE methods, we have chosen the methods intro-
duced by Elgammal et al. [42] and Nonaka et al. [43]. Fig-
ures (2–7) show the segmentations of our method with and
without shadow detection as well as the six other meth-
ods. Note that in this application, we set the maximum
number of components for the AGM to 9, the standard
deviation factor K = 2, and the threshold T = 0.6.
From Fig. 6, we can distinguish that the AGM+SD was
not able to remove the shadow completely from the image
because the difference in value between the shadow and
foreground was not large enough to construct a model that
represents this shadow distribution. However, from qualita-
tive evaluation, we can notice the higher efficiency of our
method.

In order to have a quantitative evaluation of the per-
formance, we have used two well-known metrics, preci-
sion and recall, to quantify how well each algorithm works
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Table 1 Baseline precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Highway

Prec. 92.98 91.63 90.83 91.29 93.28 90.33 93.01 93.89

Rec. 91.82 89.16 64.96 87.81 93.79 94.59 92.27 89.07

Office
Prec. 74.63 92.90 99.08 81.58 96.76 81.54 93.87 96.69

Rec. 49.04 50.75 36.36 67.48 90.54 30.36 71.31 65.10

Pedestrians
Prec. 92.25 93.86 97.78 79.64 96.05 73.72 94.55 97.91

Rec. 98.68 98.20 80.15 95.93 95.40 99.72 98.33 97.18

PETS2006
Prec. 78.56 81.35 93.60 90.86 82.84 74.31 84.51 94.82

Rec. 87.65 85.28 53.04 95.97 79.04 74.22 89.23 89.20

Table 2 Dynamic background precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Boats

Prec. 70.14 80.12 89.72 96.76 60.89 44.97 92.61 93.31

Rec. 23.87 70.04 68.34 48.63 65.75 61.15 71.40 70.56

Canoe

Prec. 89.82 91.94 99.51 98.81 93.96 87.09 94.18 96.42

Rec. 86.59 85.33 67.76 80.12 83.15 79.11 86.15 86.06

Fountain01

Prec. 4.01 4.31 47.77 3.99 5.65 6.51 50.91 51.07

Rec. 79.73 75.06 82.91 73.76 79.30 96.35 83.76 82.13

Fountain02

Prec. 74.51 74.59 97.99 74.03 79.55 71.80 95.30 96.14

Rec. 87.17 84.37 59.06 85.33 85.28 97.04 86.10 86.12

Overpass

Prec. 91.91 93.66 85.97 85.56 85.12 82.29 91.90 95.30

Rec. 82.94 80.76 73.74 90.25 80.03 88.68 84.22 82.16

Fall

Prec. 3.91 28.17 69.20 40.33 18.75 32.12 66.12 71.27

Rec. 88.38 85.60 76.64 84.79 87.21 81.75 89.14 84.66

in classifying the data [44]. Precision (Eq. 38) represents
the percentage of detected true positives to the total num-
ber of items detected by the algorithm. Recall (Eq. 39)
is the percentage of number of detected true positives by
the algorithm to the total number of true positives in the
dataset:

Precision = TP

TP + FP
(38)

Recall = TP

TP + FN
(39)

where TP is the total number of true positives correctly classi-
fied by the algorithm, FP is the total number of false positives,
and FN is the number of true positives that were wrongly clas-
sified as background (false negatives). Tables (1–7) show the
average recall and precision for all methods. From Table 7,
we can deduce that our model is capable of detecting changes
under different scenarios efficiently.

According to quantitative and analytical analysis, we can
conclude that the use of AGM in background detection with
shadow detection increased the performance greatly.
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Table 3 Camera Jitter precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Badminton

Prec. 63.70 62.51 92.11 90.43 66.68 76.00 89.41 90.77

Rec. 75.53 71.47 54.80 80.44 79.04 81.61 78.07 77.95

Boulevard

Prec. 40.02 43.79 62.25 65.21 33.59 70.57 61.13 61.90

Rec. 83.21 79.77 62.96 75.82 77.64 58.73 79.54 77.89

Sidewalk

Prec. 42.71 35.99 53.20 89.86 49.89 64.25 80.82 88.16

Rec. 58.12 51.06 28.57 50.49 52.49 64.65 61.25 57.92

Traffic

Prec. 58.61 52.58 68.33 64.57 44.31 68.88 66.10 70.44

Rec. 76.47 73.68 56.64 76.76 85.89 87.63 78.46 72.72

Table 4 Intermittent object motion precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

AbondonedBox

Prec. 65.52 62.14 67.75 66.53 53.73 79.67 67.41 72.15

Rec. 45.74 45.64 39.51 42.23 87.45 40.54 45.18 42.60

Parking

Prec. 75.82 73.82 65.57 78.93 61.53 92.49 77.92 81.15

Rec. 74.09 69.87 36.60 65.80 26.77 46.45 73.08 70.22

StreetLight

Prec. 89.16 92.47 99.69 92.40 48.01 78.52 97.56 98.79

Rec. 32.25 33.94 23.57 33.19 31.46 20.76 30.33 28.61

Sofa

Prec. 85.92 89.25 96.93 94.02 85.72 87.34 92.52 95.70

Rec. 51.62 51.41 32.60 57.75 51.91 43.58 59.90 51.63

Tramstop

Prec. 68.54 56.36 71.89 68.20 18.91 97.01 68.23 75.44

Rec. 33.74 59.34 15.79 39.88 30.09 38.64 42.41 32.62

WinterDriveway

Prec. 16.32 13.41 15.37 19.49 8.64 54.94 25.68 25.79

Rec. 71.10 67.84 60.50 61.93 74.40 80.75 60.15 60.08

In order to evaluate the effect of changing the parameters
on the performance of our models, we have used precision-
recall curves. For simplicity, we have generated precision-
recall curves by systematically changing the threshold para-
meter T and the standard deviation factor K . Figure 8 shows
the effect of changing T and K on our method with and
without Shadow detection.

Based on the measurements shown in Fig. 8, we can notice
that both methods perform consistently very well. In addition,
we can remark that varying T and K have little effect on the
AGM+SD performance, as for the AGM it is affected by T
alteration. Furthermore, the high overall precision of both
algorithms allows our methods to operate with a low false
positive rate at their sensitive operating point.

123



Background subtraction using finite mixtures 1159

Table 5 Shadows precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Backdoor

Prec. 50.81 50.94 94.33 60.84 82.26 89.94 66.43 94.89

Rec. 85.32 82.34 75.39 88.56 86.74 99.07 89.73 76.82

Bungalows

Prec. 71.97 71.58 63.36 72.95 70.73 81.27 72.62 74.59

Rec. 89.41 87.40 58.29 94.88 83.31 89.36 94.89 93.13

BusStation

Prec. 88.28 88.32 93.74 88.2 84.02 82.93 88.50 92.88

Rec. 73.40 71.04 45.19 86.05 74.37 63.07 90.11 89.25

Cubicle

Prec. 10.82 55.11 88.26 67.22 55.31 85.86 66.16 87.19

Rec. 30.12 78.61 70.88 92.64 83.48 77.28 92.48 90.24

PeopleInShade

Prec. 84.05 84.11 84.66 83.67 84.21 78.66 84.61 87.15

Rec. 94.39 92.69 79.47 96.49 96.01 69.62 96.55 95.21

CopyMachine

Prec. 79.42 83.84 90.29 84.07 83.06 75.99 88.54 92.19

Rec. 53.92 54.14 50.15 56.19 88.29 33.41 57.43 55.70

Table 6 Thermal precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Corridor

Prec. 80.75 83.93 96.20 85.84 88.06 89.55 90.72 93.90

Rec. 82.52 83.26 65.71 84.68 83.20 56.00 89.24 87.17

Library

Prec. 84.76 81.76 96.68 93.86 97.14 96.35 94.66 94.81

Rec. 28.00 28.68 24.03 30.23 92.20 8.07 31.33 31.05

Park

Prec. 80.66 85.07 99.95 92.57 85.85 80.42 88.14 89.47

Rec. 63.96 59.30 16.24 39.98 60.81 89.03 64.00 62.28

DiningRoom

Prec. 93.37 92.31 98.54 94.03 88.42 95.55 93.74 94.44

Rec. 70.21 69.43 43.16 77.45 75.74 40.11 79.57 79.07

Lakeside

Prec. 93.04 92.23 94.10 96.86 89.21 96.36 97.48 98.53

Rec. 39.88 36.41 20.59 35.80 24.29 14.12 40.84 39.78

4 Conclusion

Adaptive mixture models are popular methods for back-
ground modeling. The proposed method has provided three
main improvements to the well-known adaptive Gaussian
mixture model [12]. First, we have adopted the asymmetric

Gaussian distribution capable of modeling non-symmetrical
data. Second, we have eliminated the problem of determining
the number of clusters of the AGM by the consideration of
the MML criterion. Finally, we have presented a novel pixel-
based statistical approach for shadow detection and removal.
Our shadow scheme identifies distributions of pixel values
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Table 7 Overall precision and recall

Stauffer et al.
[12] (%)

Zivkovic
[14] (%)

KaewTraKulPong
et al. [37] (%)

Evangelio
et al. [41] (%)

ELgammal
et al. [42] (%)

Nonaka et al.
[43] (%)

AGM
(%)

AGM+SD
(%)

Prec. 70.12 70.79 82.28 78.12 68.43 76.63 81.06 83.11

Rec. 71.08 69.64 50.72 70.73 74.42 65.07 79.18 73.07

Fig. 8 Precision and recall curves for: the AGM and the AGM+SD
when varying T and K

that could represent shadowed surfaces then uses them to
build a second asymmetric Gaussian mixture model for shad-
ows; hence, building shadow models capable of evolving over
time. Our background subtraction approach shows good per-
formance in terms of adaptability, accuracy and robustness,
in different indoor and outdoor scenes with complex illu-
mination variations, background movements, shadows, and
ghosting artifacts.
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Appendix A

In this Appendix, we calculate the derivative of ∂L(Θ,Z ,X )
∂μ jk

,

∂L(Θ,Z ,X )
∂σl jk

,
∂L(Θ,Z ,X )

∂σr jk
,

∂2 L(Θ,Z ,X )

∂σ 2
l jk

, and ∂2 L(Θ,Z ,X )

∂σ 2
r jk

used in

the EM algorithm and background subtraction.

∂L(Θ, Z ,X )

∂μ jk
=

N∑

i=1,Xik<μ jk

Ẑi j (Xik − μ jk)

σ 2
l jk

+
N∑

i=1,Xik≥μ jk

Ẑi j (Xik − μ jk)

σ 2
r jk

(40)

∂L(Θ, Z ,X )

∂σl jk

= −
N∑

i=1

Ẑi j

σl jk + σr jk

+
N∑

i=1,Xik<μ jk

Ẑi j (Xik − μ jk)
2

σ 3
l jk

(41)

∂2L(Θ, Z ,X )

∂σ 2
l jk

=
N∑

i=1

Ẑi j

(σl jk + σr jk )
2

−3
N∑

i=1,Xik<μ jk

Ẑi j (Xik − μ jk)
2

σ 4
l jk

(42)

∂L(Θ, Z ,X )

∂σr jk

= −
N∑

i=1

Ẑi j

σl jk + σr jk

+
N∑

i=1,Xik≥μ jk

Ẑi j (Xik − μ jk)
2

σ 3
r jk

(43)

∂2L(Θ, Z ,X )

∂σ 2
r jk

=
N∑

i=1

Ẑi j

(σl jk + σr jk )
2

−3
N∑

i=1,Xik≥μ jk

Ẑi j (Xik − μ jk)
2

σ 4
r jk

(44)

Appendix B

In this Appendix, we develop the solutions for Eqs.
(24, 25, 26) used in the MML algorithm

−∂2L(Θ, Z ,X )

∂μ2
jk

=
l+n j−1∑

i=l,Xik<μ jk

1

σ 2
l jk

+
l+n j−1∑

i=l,Xik≥μ jk

1

σ 2
r jk

(45)

∂2L(Θ, Z ,X )

∂μ jk1μ jk2

= 0 (46)

∂2L(Θ, Z ,X )

∂σ 2
l jk

=
l+n j−1∑

i=l

1

(σl jk + σr jk )
2

− 3

l+n j−1∑

i=l,Xik<μ jk

(Xik − μ jk)
2

σ 4
l jk

(47)

123



Background subtraction using finite mixtures 1161

∂2L(Θ, Z ,X )

∂σl jk1
σl jk2

= 0 (48)

∂2L(Θ, Z ,X )

∂σ 2
r jk

=
l+n j−1∑

i=l

1

(σl jk + σr jk )
2

− 3

l+n j−1∑

i=l,Xik≥μ jk

(Xik − μ jk)
2

σ 4
r jk

(49)

∂2L(Θ, Z ,X )

∂σr jk1
σr jk2

= 0 (50)
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