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Abstract Image mosaic is a useful preprocessing step for
background subtraction in videos recorded by a moving cam-
era. To avoid the ghosting effect and mosaic failure due to
huge exposure difference and big parallax between adja-
cent images, this paper proposes an effective mosaic algo-
rithm named Combined SIFT and Dynamic Programming
(CSDP). Based on SIFT matching and dynamic program-
ming, CSDP uses an improved optimal seam searching cri-
terion that provides “protection mechanisms” for moving
objects with an edge-enhanced weighting intensity differ-
ence operator and ultimately solves the ghosting and incom-
plete effect induced by moving objects. The proposed method
was compared to three widely used mosaic softwares (i.e.,
AutoStitch, Microsoft ICE, and Panorama Maker) and Mills’
approach in multiple scenes. Experimental results show the
feasibility and effectiveness of the proposed method.
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1 Introduction

Background subtraction is a hot research topic in com-
puter vision and has many applications in video surveil-
lance, human-machine interaction and sports video analy-
sis [1,8,25–27]. In real-world applications, the videos are
usually recorded by a moving camera in which case standard
background subtraction algorithms do not work. A possi-
ble solution is to first generate wide-angle view images with
image mosaic softwares and then apply standard background
subtraction algorithms on the wide-angle view images. In the
past few decades, a large number of mosaic algorithms were
proposed, which achieve good performances [12,22,28].
There are also some existing mosaic softwares available,
such as AutoStitch [2], Microsoft ICE1, and Panorama
Maker2. However, to ensure good mosaic effect, most cur-
rent algorithms and softwares have to meet the following
constraints:

1. The scenes must be static. Most mosaic algorithms are
designed for static scenes. If the scenes contain moving
objects such as moving vehicles, pedestrians, leaves under
wind and so on, ghosting effect would appear in mosaic
results, or even worse mosaic will fail due to the parallax
of moving objects [2,14].

2. The camera should be kept rotating around its optical cen-
ter when capturing images. A large deviation from optical
center would also cause ghosting effect and thus result in
the mosaic failure [2,4,10,17,20].

3. Large exposure differences are not allowed between
images. Large exposure difference will lead to inaccurate
registration and mosaic failure [3,24].

1 http://www.arcsoft.com/products/panoramamaker/.
2 http://research.microsoft.com/en-us/um/redmond/groups/ivm/ice/.
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There is some work that tries to solve the dynamic mosaic
problems mentioned above. Echigo et al. and Iranio et al.
[7,13] used a median filtering operator to eliminate the
ghost problem in their mosaic processes. However, these
methods require large overlapping regions without obvi-
ous intensity differences between the images. Shum and
Szeliski [21,23] proposed a method that uses a set of trans-
formations to construct a full view panorama, but they
are not suitable for mosaic conditions with strong motion
parallax.

David [3] first used phase correlation to perform image
registration, and then calculated the intensity difference
between the registered images by the overlapping regions,
and finally search for the optimal stitching line by using the
Dijkstra algorithm. However, if there are large exposure dif-
ferences between the registered images, the optimal stitching
line searching may not be achieved using intensity difference
alone.

Milles and Dudek [19] proposed an optimal seam search-
ing criterion that combines intensity difference and gradient
difference. The Dijkstra algorithm was then used to opti-
mize the seam line searching. However, if the moving objects
are similar to the background of the adjacent image to be
matched, the optimal seam line may divide the whole mov-
ing object into two parts. In this case, the composite image
would contain ghosting effect.

Image registration is a critical step for image mosaic. The
commonly used registration methods are mainly divided into
three classes: template matching, mutual information (MI),
and features-based methods. The template matching meth-
ods firstly get a matching template by selecting a window
from the overlapping regions [15], and then search in another
image until it reaches the highest matching degree. This kind
of methods can solve the image registration with low com-
putational complexity when there is only pure translation.
MI-based methods were originally proposed for the regis-
tration of multi-modality images. It was commonly used for
medical image processing in recent years [29]. However, MI-
based approaches are often powerless in the presence of seri-
ous occlusions. Mikolajczyk and Schmid [18] compared sev-
eral popular feature point matching algorithms, and drew the
conclusion that the SIFT algorithm [16] is better than other
feature-based algorithms in many aspects. The SIFT feature
has many advantages, such as invariant to image scale and
rotation, robust to affine distortion, and even to occlusion,
noise, and illumination variations.

In this paper, to address the problems mentioned above,
we propose an algorithm named CSDP, which was mainly
designed for dynamic scenes with moving objects, large
exposure differences and big parallax. Firstly, SIFT matching
was applied to perform image registration.Then we propose
an optimal seam searching criterion modified from Mills and
Dudek [19]. The optimal seam searching criterion is estab-

lished by combining gradient difference with edge-enhanced
weighting intensity difference, which provides an effective
mechanism for avoiding problems caused by moving objects
and as a result the stitching line will bypass the moving
objects. Subsequently, we searched for the stitching line
based on the improved optimal seam searching criterion by
applying dynamic programming [6] which is relatively eas-
ier than the Dijkstra algorithm. Finally, the multi-resolution
image fusion method was used to minimize inconsistency
nearby the stitching line.

In the following sections, we will give more details
about the proposed method using the example images in
Fig. 1. To verify the effectiveness of the proposed method,
we compare it with three popular softwares, i.e., AutoS-
titch, Microsoft ICE, and Panorama Maker as well as Mills’
approach.

2 CSDP algorithm for dynamic scene mosaic

There are mainly three steps in the proposed method: image
registration, improved optimal seam searching, and multi-
resolution image fusion.

2.1 Image registration

As mentioned in Sect. 1, we adopt SIFT feature matching to
register two images including the following four steps:

– Step 1 Extracting SIFT descriptors from two adjacent
images to be registered.

– Step 2 Applying an approximate nearest neighbor algo-
rithm for SIFT descriptor matching.

– Step 3 Deleting the mismatching points (outline points)
by RANSAC algorithm [9]. As shown in Fig. 2, the cor-
rect matching points (inline points) are marked in the red
circle, and the mismatching points deleted by RANSAC
algorithm are marked in the green circle.

– Step 4 Computing the projection between two images
based on the matching points using the general linear least
square method or some recently developed approaches,
such as [30].

2.2 Improved optimal seam searching

After registering (i.e., the projection matrix was computed),
we can figure out the overlapping regions between two
adjacent images. And then we stitch the registered images
together along the seam in the overlapping region. The ideal
optimal seam should satisfy the following requirements [6]:

– The difference in intensity around the stitch line should
be minimal.
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Fig. 1 Example images for
mosaicing to demonstrate the
implementation procedure of the
proposed CSDP method

Fig. 2 SIFT matching results.
The correct matching points are
marked in the red circle and the
mismatching points are marked
in the green circle

– The difference in geometrical structure around the stitch
line should be minimal.

Actually, it is very hard to meet the above two require-
ments at the same time since there are inevitable exposure
differences between the images taken by a hand-held cam-
era. To overcome this problem, we first correct the expo-
sure difference using the inline matching points mentioned
in Sect. 2.1. After exposure correction, we introduce an edge-
enhanced weighting intensity difference (EWID) operator to
replace the traditional intensity difference mentioned in Mills
and Dudek [19]. For the similarity of geometric structure in
the overlapping region, we formulate it by gradient differ-
ence. The detailed procedures are introduced in the following
subsections.

2.2.1 Exposure correction

The exposure differences between the images are unavoid-
able whether taken by the same camera at different times
or different cameras at the same time. Assuming the opti-
cal reflection characteristics of objects in the overlapping
regions remain constant, we can estimate the exposure cor-
rection between two images by a linear model:

pixel1 = α × pixel2 + β (1)

where pixel1 and pixel2 represent the pixel values of the
original images and the image after exposure correction,
respectively, α means gain and β means bias.

To calculate the parameters α and β , we propose to
denoise image I1 and I2 by Gaussian blur filtering. Let I ′

1
and I ′

2 denote the denoised images, respectively. And then
we compute α and β by using the least square method
based on the inline points mentioned in Sect. 2.1. Supposing
pixel ′1 ∈ I ′

1, pixel ′2 ∈ I ′
2 are the pixel values of a pair of

inline matching points from adjacent images after Gaussian
blur filtering. The linear equation of {α, β} is formulated as

A × m = pixel ′1i (2)

where A = [pixel ′2i , 1], m = [α, β]T ), i = 1, 2, . . . , n and
n is the total number of inline points. The results of the expo-
sure correction are illuminated in Fig. 3a (with Gaussian blur
filter) and Fig. 3b (without Gaussian blur filter). As we can
see that the exposure correction model with Gaussian blur is
more robust and accurate.

2.2.2 Edge-enhanced weighting intensity difference

In Mills and Dudek [19], the intensity difference was
obtained by a pixel-by-pixel normalized ratio

δ I
i j = abs(I m1i j − I m2i j )

max(I m1i j , I m2i j )
(3)

where I m1i j and I m2i j are corresponding pixels in the over-
lapping regions of adjacent images, and obviously δ I

i j ∈
[0, 1]. The intensity difference computed using Eq. 3 is
shown in Fig. 4a.

From Fig. 4a, we can see multiple moving objects: a bus,
cars, and a biker. Here, we focus on the moving bus that

123



1274 L. Zeng et al.

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200
Without Gaussian blur

pixel
2i

pi
xe

l 1i

 

 

inline matching points
fitting straight line

(a) Without Gaussian blur

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

pixel
2i
’

pi
xe

l 1i’

With Gaussian blur

 

 

inline matching points
fitting straight line

(b) With Gaussian blur

Fig. 3 An illustration of the effectiveness of the proposed exposure
correction. The red snowflake points represent the inline matching point
pairs extracted by SIFT, and the fitting straight line is fitted using linear

least square. a The linear fitting result without Gaussian blur preprocess-
ing and b the linear fitting result after Gaussian blur preprocessing

Fig. 4 An illustration of the
Intensity difference image of the
overlapping region. a The
traditional intensity difference
image. b The intermediate
image that is dilated and
connected from the traditional
intensity difference image.
c The final EWID image

overlaps with the static tree. Traditional intensity difference
method divided the moving bus into multiple parts. To over-
come this problem, we propose an improved edge-enhanced
weighting intensity difference (EWID). The detailed proce-
dures are summarized as follows:

– Step 1 Denoising images I m1 and I m2 by a Gaussian blur
filter of 5 × 5 kernel operators G(x, y, δ), we can get:

I m′
1 = G(x, y, δ) × I m1

I m′
2 = G(x, y, δ) × I m2 (4)

– Step 2 Building intensity difference by

δ I
i j =

abs(I m′
1i j

− I m2′
i j
)

max(I m′
1i j

, I m′
2i j

)
(5)

– Step 3 Threshold binarization :

I mmsk
i j =

⎧
⎨

⎩

1 (δ I
i j ≥ T hrd)

0 (δ I
i j < T hrd)

(6)

here, I mmsk
i j is the binary image of δ I

i j . We set the thresh-
old T hrd to 0.7 in this paper which achieves the best
performance in the experiments.

– Step 4 Making a morphological dilation operation for
the binary image I mmsk twice, and then connecting the
dilated image with 4 pixels both on horizontal and vertical
directions to generate the image I mmsk′

which is shown
in Fig 4b.

– Step 5 Large weighting intensity-difference value weight
is given to the edge of moving objects by computing
the average of image I mmsk′

. In this paper, we set the
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parameter weight to 5. So after enhancing weights on the
edge, the intensity difference image δ I ′

i j can be computed
as

δ I ′
i j =

⎧
⎨

⎩

weight (I mmsk′
i j = 1 ∩ δ I

i j < thrd)

δ I
i j (else)

(7)

Figure 4c shows the EWID image δ I ′
where the green

pixel points take up a value of weight . According to Fig. 4c,
the edge of moving objects (bus, cars and biker) are con-
nected as a whole. As described in the following section,
the above mentioned improvement can effectively prevent
the seam from dividing the moving objects into several
parts.

2.2.3 Gradient difference

If the exposure differences between two images are obvi-
ously nonlinear, the exposure correction will become inef-
fective. In this case, the intensity differences cannot effec-
tively express the similarity between images, so we set up
the gradient images �I m1 and �I m2 for those images

�I m1i, j =
√

(I m1i+1, j − I m1i−1, j )
2+(I m1i, j+1 − I m1i, j−1)

2

�I m2i, j =
√

(I m2i+1, j − I m2i−1, j )
2+(I m2i, j+1 − I m2i, j−1)

2

(8)

And the computation of gradient difference δ� in this paper
is the same as traditional intensity difference δ I . An example
of the gradient difference image is shown in Fig. 5.

2.2.4 Optimal seam searching criteria

Based on the combination of EWID and gradient difference,
we establish the optimal seam line searching criteria as fol-
lows:

Fig. 5 An example of the computed gradient difference image

Fig. 6 An example of the optimal seam searching results by combining
EWID and gradient difference

� = w1δ
I ′ + w2δ

� (9)

In this formula, we select w1 and w2 by adopting the weight-
ing method in Duplaquet [6]:

w2 = (abs(ln(a)) + abs(β))2 (10)

Here, w2 is the weight of the gradient difference. During the
mosaic process with huge exposure difference, the accuracy
of exposure correction using a linear model will be reduced,
and the reliability of the similarity measurement between
intensity differences will also be decreased. In that case, the
gradient difference will be assigned a greater weight.

w1 = 1 − w2 (11)

where w1 is the weight of intensity difference. If the value is
negative, we set it to be 0.

After the procedure above, we finally create a seam search-
ing criterion, as shown in Fig. 6. Because of the minimal
exposure difference between these two example images, w1

trend to 1. Therefore, the image of seam searching criteria is
similar to the EWID image as shown in Fig. 4c.

2.2.5 Optimal seam searching implementation

In this section, we use dynamic programming associated with
Eq. 9 to find out the optimal seam criterion. Supposing each
pixel position of the first row residing in the overlap region
corresponds to a seam line, then the optimal seam should have
the minimal value according to the seam searching criterion
that was mentioned in the previous section. The main steps
are summarized as follows:

– Initialization. As shown in Fig. 7a, each pixel in each col-
umn on the first row corresponds to a seam line, and is
assigned with a value calculated by Eq. 9.

– Expanding sequentially until reaching the last row. Adding
the current points of each seam line to the minimum value
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(a) (b)

Fig. 7 An illustration of the optimal seam searching method. Each
circle represents a pixel value obtained using Eq. 9. a Initialization.
b Expanding for the first time

of the three pixels on the next row, as shown in Fig. 7b, and
then setting the column with the minimum pixel as exten-
sion direction, updating the current point of the column
with the minimum value.

The algorithm complexity of the above process is O(mn)

where m and n denote the numbers of row and column,
respectively. The proposed method is more efficient than the
Dijkstra algorithm [5] with complexity of O(mn2).

In Fig. 8, the red line is the optimal seam obtained by
dynamic programming. The optimal seam without improve-
ment is shown in Fig. 8a. We can see this optimal seam line
cuts the moving bus into two parts.The optimal seam after
improvement is shown in Fig. 8b. Because of the introduc-
tion of edge-enhanced weighting intensity difference algo-
rithm, the moving bus can effectively maintain its integrity,
and there is no incomplete object in the mosaic image. Fig-
ure 9 is the mosaic result of the example images in Fig. 1
where the stitch line is shown in the black line. In Fig. 9a,
the red box demonstrates that the composited image contains
residual of the moving bus, but there is no such a problem in
Fig. 9b.

2.3 Multi-resolution mosaic based on optimal seam

To minimize the inconsistency nearby the optimal seam, we
adopted the multi-resolution method [11] to stitch two images
IA and IB along the optimal seam. We first generated a mask
IR based on the optimal seam. IR is assigned to 0 on the left
side of this seam line, and 1 on the right side. The steps of
composition are summarized as follows:

– Step 1 Generating Laplacian pyramid L A and L B for IA

and IB , respectively;
– Step 2 Generating Gaussian pyramid G R for IR ;
– Step 3 Compositing image pyramid S. The L layer of S is

formulated as

L Sl(i, j) = G Rl(i, j)L Al(i, j)

+ (1 − G Rl(i, j))L Bl(i, j) (12)

where G Rl(i, j) represents the Gaussian pyramid of the L
layer in the mask image, L Al(i, j) and L Bl(i, j) represent
the Laplacian pyramid of the L layer in the left and right
image, respectively.

– Step 5 Rebuilding the S from the top layer to the bottom
layer.

3 Experiment results

In this paper, we implemented the proposed CSDP algorithm
in OpenCV 2.0 to implement the proposed. To sufficiently
verify the CSDP’s effectiveness, we compared it with three
popular mosaic softwares (i.e., AutoStitch, Microsoft ICE,
and Panorama Maker) and Mills’ approach on multi-group
pictures in multiple scenes that contain moving objects, huge
exposure difference and strong motion parallax. Among them
Microsoft ICE, Panorama Maker and Mills’ approach have

Fig. 8 Optimal seam searching
results. a The traditional optimal
seam searching result cuts
through the moving bus. b The
improved optimal seam
searching result bypasses the
moving bus
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Fig. 9 Mosaic renderings of two different methods. The black line is the stitching line. a Mosaic result obtained by the traditional optimal seam
searching method. The red box marks the residual of the moving bus. b Mosaic result obtained by the improved optimal seam searching method

the optimal seam searching function, but AutoStitch not yet.
We will give more details in the following sections regarding
three different scenes.

3.1 General dynamic scene

Figure 10 shows the mosaic results of the example images
shown in Fig. 1 obtained by AutoStitch, Microsoft ICE ,

Panorama Maker, Mills’ approach and our method (CSDP),
respectively. From the comparison, we can draw the fol-
lowing conclusions: AutoStitch method has the ghosting
problem on moving objects, as shown in Fig. 10c; Mills’
approach and Microsoft ICE can only find the local opti-
mum seam that has no protection mechanisms for the
moving objects, the mosaic image by Mills’ approach has
slightly incomplete problem as identified by red rectangle

Fig. 10 Mosaic results in the
dynamic scene 1. a Microsoft
ICE. b Panorama maker. c
AutoStitch. d Mills’approach. e
CSDP

(a) (b) (c)

(d) (e)

Fig. 11 Mosaic results in the
dynamic scene 2. a Microsoft
ICE. b Panorama maker. c
AutoStitch. d Mills’approach. e
CSDP

(a) (b) (c)

(d) (e)
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Fig. 12 Mosaic results in the
dynamic scene with exposure
difference. a Images for mosaic.
b Microsoft ICE. c Panorama
maker. d AutoStitch.
e Mills’approach. f CSDP.
g Seam before improvement.
h Seam after improvement

(a)

(b) (c) (d)

(e) (f)

(g) (h)

in Fig. 10d and Microsoft ICE has an obviously incom-
plete moving bus as shown in Fig. 10a; CSDP and Panorama
Maker can get good mosaic results as shown in Fig. 10b, e,
respectively.

Figure 11 shows the mosaic results of another group of
pictures taken from the same scene as in Fig. 10. AutoStitch
still has the ghosting phenomenon on the moving object.
Microsoft ICE and Panorama maker have an incomplete
moving car as shown in Fig. 11a, b. CSDP and Mills’
approach obtained good mosaic results in this scene as shown
in Fig. 11e, d respectively.

3.2 Dynamic scene with exposure difference

Figure 12 is a group of pictures taken by a hand-held camera
in our laboratory. At the moment of shooting, one subject is
moving on purpose, and we artificially add huge exposure dif-
ference at the same time. As shown in Fig. 12b, e, the ghosting
phenomenon appears in the mosaic result of Microsoft ICE
due to the head moving, and that Mills’ approach is marked
by a red rectangle area. In this scene, Panorama maker cannot
register the images well, which makes severe dislocation in
the composited image as shown in Fig. 12c. As for AutoS-
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Fig. 13 Mosaic results in the
strong motion parallax scene 1.
a Images for mosaic.
b Microsoft ICE. c Panorama
maker. d AutoStitch.
e Mills’approach. f CSDP

(a)

(b) (c) (d)

(e) (f)

titch, we can see from the red rectangle in Fig. 12d, it has the
worse ghosting problem than that of Microsoft ICE. Before
improving the searching criterion, as shown in Fig. 12g, we
get the optimal seam line as the same as Microsoft ICE
and Mills’ approach. After the improved optimal seam as
shown in Fig. 12h, we can get good mosaic result as shown
in Fig. 12f.

3.3 Strong motion parallax scene

Figure 13a is a group of images for mosaic with strong
motion parallax. As shown in Fig. 13b, c, because of inac-

curacy of registration and seam-searching strategy, both
Microsoft ICE and Panorama maker have dislocation phe-
nomenons marked by red rectangle areas. And AutoStitch
has the huge ghost phenomenon in multiple places as lamp
and computer as shown in Fig. 13d while Mills’s approach
and CSDP get good mosaic results as shown in Fig. 13e, f,
respectively.

Figure 14a contains two pictures taken by a hand-held
camera in an outdoor environment with strong motion par-
allax. As shown in Fig. 14b, c, Panorama maker, Mills’
approach and CSDP can get effective mosaic results. How-
ever, Microsoft ICE and AutoStitch cannot register images
and result in the incomplete mosaic results.
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Fig. 14 Mosaic results in the
strong motion parallax scene 2.
a Images for mosaic.
b Panorama maker.
c Mills’approach. d CSDP

(a) (b)

(c) (d)

3.4 Experimental analysis

Since AutoStitch does not have the optimal seam search-
ing function, it will result in the ghosting phenomenon and
mosaic failure in the presence of moving objects and strong
motion parallax. Microsoft ICE , Panorama Maker and Mills’
approach have the optimal seam function but with lim-
ited application scopes. In general in dynamic scene and
some uncertain conditions, the mosaic image obtained by
Microsoft ICE, Panorama Maker and Mills’ approach have
incomplete moving objects. In dynamic scene with huge
exposure difference among images, Panorama Maker some-
times cannot finish the matching process. The optimal seam
search used by Microsoft ICE and Mills’ approach can only
have a local optimum without the consideration of the moving
object’s integrality. In the scene with strong motion parallax
due to the misregistration, Panorama maker has a dislocation
phenomenon, and Microsoft ICE and AutoStitch sometimes
cannot finish the mosaic process without matching images
to be found. For our CDSP algorithm, we can always get
effective mosaic results by using an improved optimal seam
searching criterion.

4 Conclusion

Mosaic failure always happens in dynamic scenes due to huge
exposure difference and strong motion parallax. To solve
these problems, we proposed the CSDP mosaic algorithm
based on SIFT matching and dynamic programming. The
main contributions are summarized as follows:

– SIFT descriptors are invariant to rotation, image scal-
ing, brightness variations, and partially invariant to view

angles, affine transformation and noise. For these reasons,
we use SIFT operator to match images. We can further
figure out the inline points and outline points between the
matching pairs of point by RANSAC algorithm.

– Based on Mills and Dudek [19], we proposed an improved
optimal seam line searching criteria. The optimal seam
searching criterion is established by combining gradient
difference with the proposed edge-enhanced weighting
intensity difference operator, which provides an effective
mechanism for moving objects so as to avoid the ghosting
problem and incomplete effects.

– We proposed the combination of the multi-resolution
fusion algorithm and optimal seam line searching strat-
egy to minimize inconsistency nearby the stitching lines.
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