
Machine Vision and Applications (2013) 24:1623–1643
DOI 10.1007/s00138-013-0530-0

ORIGINAL PAPER

Efficient segmentation of leaves in semi-controlled conditions

João V. B. Soares · David W. Jacobs

Received: 16 July 2012 / Accepted: 17 June 2013 / Published online: 17 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract We present a study on segmentation of leaf
images restricted to semi-controlled conditions, in which
leaves are photographed against a solid light-colored back-
ground. Such images can be used in practice for plant species
identification, by analyzing the distinctive shapes of the
leaves. We restrict our attention to segmentation in this semi-
controlled condition, providing us with a more well-defined
problem, which at the same time presents several challenges.
The most important of these are: the variety of leaf shapes,
inevitable presence of shadows and specularities, and the
time constraints required by interactive species identifica-
tion applications. We evaluate several popular segmentation
algorithms on this task. Different datasets of leaf images are
used, with manually segmented images serving as ground
truth for quantitative comparisons. We observe that many of
the methods are not immediately applicable: they are either
too slow or would require that important modifications be
introduced. We thus present extensions to our previously pub-
lished segmentation method, which are able to improve its
performance. The previous approach was based on pixel clus-
tering in color space. Our extensions introduce a graph cut
step and the use of a training set of manual segmentations in
order to adjust important parameters of the method. The new
method is fast enough for an interactive application, while
producing state-of-the-art results.

Electronic supplementary material The online version of this
article (doi:10.1007/s00138-013-0530-0) contains supplementary
material, which is available to authorized users.

J. V. B. Soares (B) · D. W. Jacobs
Computer Science Department,
University of Maryland, College Park, USA
e-mail: joao@cs.umd.edu

D. W. Jacobs
e-mail: djacobs@cs.umd.edu

Keywords Image segmentation · Species identification ·
Electronic field guide · Expectation-Maximization ·
Graph cut

1 Introduction

Agarwal et al. [1] and Belhumeur et al. [7,26] proposed
mobile systems for plant species identification via leaf recog-
nition. These systems used the shape of a leaf to identify its
tree species, and required that the leaves be photographed
against a plain light-colored background. Large datasets of
these leaf images were collected, giving us the opportunity to
study a useful semi-controlled segmentation problem, which
at the same time allows for objective assessments of different
methods.

On the other hand, much research in image segmenta-
tion has been dedicated to the problem of general segmen-
tation in uncontrolled settings. For example, Arbelaez et al.
present a comparison of methods on images of several dif-
ferent types [4], which constitute the Berkeley Segmentation
Dataset and Benchmark [3]. Similarly, Alpert et al. [2] col-
lected a database with a variety of different image types.
Thus, much previous work has been dedicated to design-
ing general-purpose methods that have high agreement with
users’ subjectively defined hand-drawn regions. The leaf seg-
mentation problem we address here is different in that the
environment is much more constrained. Furthermore, there
is very little subjectivity involved in defining the ground truth
for these images. Finally, we are also concerned in precisely
locating segmentation boundaries. Precise boundary detec-
tion is important for plant identification since the leaf shape
will be used as the main recognition cue. Again, this is in
contrast to previous work, as precise boundary detection is
usually not a prerequisite for general-purpose segmentation
methods.

123

http://dx.doi.org/10.1007/s00138-013-0530-0

1624 J. V. B. Soares, D. W. Jacobs

Though at first sight segmenting a leaf against a plain
light-colored background seems easy due to the somewhat
controlled conditions, in fact it poses significant challenges.
The task requires that segmentations be produced in time that
is suitable for an interactive application, and whose bound-
aries are faithful to the true leaf boundaries, sufficient enough
to enable correct recognition.

Figure 1 presents examples of leaf images from the three
datasets we experiment within this study, to illustrate the
variety of leaves and acquisition conditions that must be
dealt with. In Fig. 2, we demonstrate the difficulty of tra-
ditional methods in this problem. A series of undesirable
results are shown, resulting from the GrabCut method (see
Sect. 4.3) when applied in difficult scenarios. The GrabCut
method was chosen here for illustration purposes since it is
very well known and was one of the best performing on our
datasets (see Sect. 5). Below we more generally identify a
series of significant practical challenges, several of which
were previously noted [26].

– Speed is a major challenge for our application, since the
segmentation method should work as part of an interac-
tive system. Coupled with this, high-resolution images
are required in order to capture fine-scale details, such as
leaf serrations.

– The datasets present a large variety of leaf shapes, due to
the diversity among the different species. In particular,
compound leaves are especially difficult to segment for
traditional methods, due to their complex segmentation
boundaries, some of which include several concavities
and holes. Examples are presented in Fig. 2c, d.

– Pine leaves were identified to present a special difficulty,
since most of them occupy only a small fraction of the
image. Many methods fail on these because they are
biased towards producing larger segments. Figure 9 in
Sect. 5 illustrates this situation well, by showing results of
applying the GrabCut method to several photos of pines
leaves.

– The leaf images present natural variations in lighting. One
of the most difficult problems on these datasets has been
correctly segmenting out the shadows that the leaves cast
on the background. Refer to Fig. 2a–c.

– The color of a leaf can vary, producing difficulties as
presented in Fig. 2h. In addition, some tree species
have shiny leaves, occasionally producing specular high-
lights which can confuse segmentation methods, as in
Fig. 2e, f.

– The venation patterns on leaves can be very light-colored,
presenting a strong contrast and creating a strong edge
with the rest of the leaf, as in Fig. 2f, g.

In this work, we experiment with several available imple-
mentations of popular segmentation methods. In order to

(a)

(b)

(c)

Fig. 1 Images illustrating the three datasets used in this study. Refer to
Sect. 4.1 for descriptions of each dataset. For the Lab and Field datasets,
leaf species were randomly selected to have their images shown. For the
User dataset, images were randomly sampled without regard to species,
since this dataset was not labeled

provide an objective evaluation, we manually segment
images from two leaf datasets. We also present qualitative
observations on these two datasets, as well as an additional
third dataset, composed of images uploaded by users of the
mobile leaf identification system. We observe that the seg-
mentation methods do not immediately work well for leaf
segmentation. First of all, several methods were not devel-
oped with speed as a requirement and, for reasonably sized
images, cannot produce results in sufficient time. Other meth-
ods have their own specific inherent biases, and would require
the introduction of important modifications in order to work
well throughout the different leaf species. We thus present

123

Efficient segmentation of leaves 1625

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2 Some of the undesirable results obtained when applying GrabCut to a challenging set of images. See the text for a discussion, and Sect. 4.3
for a review of the GrabCut method and the setup used

extensions to our previously proposed segmentation method,
which was described in the work of Kumar et al. [26]. We
add a graph cut step as well as learning of several parame-
ters of the method, via a training a set of manually seg-
mented images. The new approach is still fast, while pro-
ducing improved segmentation results.

2 Related work

Several plant species identification approaches were pre-
sented for the ImageCLEF plant identification task [22]. The

task’s datasets are composed of leaf images, along with their
respective metadata. Some of the identification approaches
proposed have a leaf segmentation step, while others do not.
The scan and scan-like datasets are photographed against a
uniform background and usually segmented using some vari-
ant of Otsu’s thresholding method [34]. For literature reviews
of plant identification approaches using images of leaves, we
refer the reader to [7,22].

A more sophisticated leaf segmentation approach was pre-
sented by Cerutti et al. [13], in which polygonal shape models
were used to constrain an active contour. Due to the vari-
ety of leaf shapes, modeling becomes a complex problem.

123

1626 J. V. B. Soares, D. W. Jacobs

The authors presented a model for leaves with multiple num-
bers of lobes, while a separate model was used for com-
pound leaves. The approach seems to be especially bene-
ficial when dealing with unconstrained environments (see
below). Though it should work well on leaves with known
shape, it could be prone to failure on leaves with shapes that
were not modeled. This lead the authors to only consider
Angiosperm species for segmentation in ImageCLEF [13].
A similar approach (though somewhat more simple) was pre-
sented by Manh et al. [29], in which a single shape model
was used with the goal of segmenting leaves of a particular
species of weed.

In the present work, we do not adopt any kind of shape
prior, due to the difficulty of the modeling problem. Leaves
can be simple, compound, or found grouped into clusters.
More direct strategies such as that of Cerutti et al. [13], Nils-
back and Zisserman [31] for flowers or by Kumar et al. for
other object classes [25], do not appear to be sufficient for
our problem. These kinds of shape priors involve a some-
what limited amount of flexibility, which makes it difficult
to model the variety and complexity of leaf shapes.

Leaf segmentation is much more difficult on the photo
ImageCLEF dataset, in which photographs are taken in
unconstrained conditions. Some authors have attempted to
use completely automatic approaches, but with limited suc-
cess. Casanova et al. [12] experimented with k-means to clus-
ter the image pixels into leaf and background. Yanikoglu
et al. [39] assume the central region of the image contains
the leaf, so that the largest cluster found from this central
region (when performing histogram clustering) defines the
leaf’s color. With this representative color in hand, an over-
segmentation is found using watershed, whose segments are
assigned to leaf or background according to the distance of
their color to the reference leaf cluster color. Camargo Neto
et al. [11] also approached the unconstrained problem, in the
context of image analysis for weed control. Their approach
begins by finding leaf pixel candidates based on a color index.
The final segmentation is found by creating a fragmentation
of the set of candidate leaf pixels, whose fragments are then
merged in a procedure that favors the formation of convex
shapes.

Most works, however, applied traditional interactive seg-
mentation techniques in order to obtain reasonable results on
ImageCLEF’s photo images. Casanova et al. [12] used mean
shift [16] to produce an over-segmentation of the image. A
user would then indicate some background and foreground
segments, which were used in a merging phase as to label
the remaining segments. Cerutti et al. [13] used an interac-
tive version of their polygonal model method, in which a
user initially marks a region inside the leaf, providing a color
model for leaf pixels. Yanikoglu et al. [39] use the marker-
based version of the watershed transform, while Arora et
al. [5] adopted the interactive GrabCut system [35]. Though

user interaction is interesting in certain situations, it becomes
impractical for large datasets with thousands of images or
more [22]. In this study, we focused only on fully automatic
approaches.

A system capable of working with photos of leaves on
uncontrolled backgrounds would be very appealing from the
perspective of a user. However, it is not clear to what extent
such a system should rely on image segmentation. As noted
by Bakic et al. [6], shape boundary features of segmented
leaves become unreliable in this scenario, leading several
authors to work with interactive segmentation techniques or
avoid the problem altogether [22]. It is important to note that
dealing with uncontrolled conditions requires approaches
that are different in nature to the ones we study here, which
are more appropriate in our semi-controlled scenario.

We should note that for the task of plant identification,
leaf shape is an extremely important cue [7]. In order to
use the leaf’s shape for recognition, it is not sufficient to
provide only a coarse description of where the leaf is, but
it is required that segmentation boundaries faithfully repre-
sent the true leaf shape. Due to this challenge, the authors
of [7] collected datasets in which leaves were photographed
against a plain light-colored background. We approach the
leaf segmentation problem under this semi-controlled con-
dition. The current problem is thus substantially different
from previous work on segmentation in uncontrolled environ-
ments [22,32,38], in which a precise segmentation boundary
is not as crucial.

In our experiments, we use images taken in semi-
controlled conditions, either in a laboratory setting, or taken
with mobile devices against plain light-colored backgrounds
(see Sect. 4.1). Our datasets were collected from a real-world
functioning system for plant species identification via mobile
devices [26]. Images from our Lab and Field datasets are used
in practice as labeled training data within the system’s recog-
nition engine, while the User images were taken by users of
the mobile system, presenting us with a series of real chal-
lenges. We would like to point out that the leaf datasets from
the ImageCLEF plant identification task [22] are also rele-
vant for the segmentation task, but we did not experiment
with them. However, the datasets we have used are compre-
hensive and allow us to arrive at relevant conclusions, since
they include a wide variety of species and acquisition condi-
tions, and were taken from a real-world functioning system. It
is important to note that images from our Lab dataset, which
contain pressed leaves taken under controlled conditions, are
representative of those in ImageCLEF’s scan photos. At the
same time, our Field and User images, which were taken with
mobile devices with leaves placed against plain light-colored
backgrounds, represent to a good extent those in the scan-like
photos from ImageCLEF.

The segmentation method we present here extends upon
our previous work [26], in which color space clustering was

123

Efficient segmentation of leaves 1627

used to define foreground and background regions. Here,
we introduce two major extensions. First, we add a graph
cut [9] step, applied on the pixel probabilities provided by
the clustering method. The graph cut technique is widely used
and well established in image segmentation. Its attractiveness
comes from its global optimization formulation along with
the fast methods available to find its solution. The second
extension we introduce consists of estimating model para-
meters via a learning phase, using manual segmentations.
This removes the need for manual parameter tuning, though
it requires the availability of a dataset of manually segmented
images.

GrabCut was initially developed by Rother et al. for inter-
active image segmentation [35]. However, given an appro-
priate initialization, the method is shown to be very useful
for image segmentation in general, side-stepping the need for
user interaction. The GrabCut approach has some similarity
to the approach we adopt here, in that we perform color space
clustering, followed by a graph cut step. However, there are
two important differences. First, GrabCut makes use of mul-
tiple iterations, which alternate between model estimation in
pixel color space and graph cut in image space. Our approach
is faster, defining the model in a single step, after which graph
cut is applied. Second, GrabCut uses a Gaussian mixture to
model each class, instead of single Gaussians as we do here,
thus we require less computation. In Sect. 5, we present a
comparative evaluation of GrabCut and our method, demon-
strating these differences.

In this work, we learn certain graph cut parameters by
selecting a range of parameter values and choosing the one
that produces the lowest error on a training set of manu-
ally segmented images. This training strategy is able to work
in a reasonable amount of time, since we end up only hav-
ing two parameters to estimate. It has been noted—among
others by Kumar and Hebert [27]—that training of random
fields using pseudo-likelihood inference is known to produce
unreliable parameter estimates. Using more precise infer-
ence techniques becomes very time-consuming, so that more
recent work takes an alternative, two-phase approach, simi-
lar to what we adopt here. In this two-phase approach, first
unary potential parameters are learned in isolation. Then,
the parameters describing binary or higher order interactions
are learned by cross-validation (or hold out validation). An
illustrative example of this type of approach was presented
by Kohli et al. [24].

A problem somewhat related to leaf segmentation is that
of flower segmentation for species recognition. Nilsback and
Zisserman [32] developed a flower recognition approach
which relied on segmentation prior to feature extraction.
The flower segmentation problem is particularly challeng-
ing because image backgrounds are uncontrolled, while at
the same time the appearance of different classes of flow-
ers varies widely. The problem was dealt with by learn-

ing foreground and background color distributions, and by
defining a flexible shape prior to capture the structure of
petals.

Chai et al. [14] later proposed a co-segmentation method
for flower segmentation, which did not require manual
segmentations or modeling of a shape prior, yet showed
increased performance. In the current work, we make use
of manually segmented leaf images, following a more tradi-
tional supervised line of work.

3 Proposed segmentation method

The segmentation method we propose here is an extension of
our previous work [26]. Our method consists of the follow-
ing steps, illustrated in Fig. 3 and described in more detail
in the following sections. First, the image pixels are clus-
tered into two groups in saturation-value color space, so that
one group corresponds to leaf pixels, and the other, to back-
ground pixels. The clusters are found using the Expectation-
Maximization (EM) algorithm to fit two normal distribu-
tions to the pixel data. This provides us with a probability
indicating how likely each pixel is to belong to each clus-
ter, according to the model from the normal distributions.
The probabilities define the energies used in the graph cut

Fig. 3 Segmentation pipeline. The first step consists of EM clustering
in saturation-value space. This provides us with probabilities that are
used for defining energies in the graph cut formulation. After the graph
cut step, a post-processing procedure is applied in order to eliminate
false-positive regions

123

1628 J. V. B. Soares, D. W. Jacobs

step that follows. The graph cut formulation also allows us
to incorporate edge information, encouraging the segmenta-
tion boundaries to follow strong image edges. Finally, false-
positive regions are removed from the segmentation via a
post-processing procedure.

3.1 Expectation-Maximization in saturation-value space

The first step of our segmentation method uses the modi-
fied Expectation-Maximization (EM) clustering procedure
in saturation-value color space that was described in our
previous work [26]. For completeness, we summarize the
approach here, then explain the improvement that we intro-
duced for pixel weighting.

A mixture model composed of two normal distributions
is fit to the pixel data in saturation-value space. If we denote
a pixel’s saturation and value as x, the mixture model is

p(x|Θ) = 1

2
p(x|μ f ,Σ) + 1

2
p(x|μb,Σ), (1)

where p(x|μ f ,Σ) and p(x|μb,Σ) are normal distributions.
μ f represents the mean of the foreground (leaf) distribution,
while μb is the mean of the background distribution. A com-
mon shared covariance matrix Σ is used. The set of model
parameters is Θ = {μ f ,μb,Σ}. Note that each normal dis-
tribution is assigned an equal weight of 1/2.

The model is fit using the EM algorithm. From an initial
estimate of the model parameters Θ , EM proceeds to find a
local maximum of the data’s likelihood (see e.g., [8]). This
can lead to undesirable solutions if the initial parameters are
not set carefully. The means for the normal distributions are
thus initialized near their expected values, so that they con-
verge to the correct clusters when provided with pixel data
from a new image. The covariance matrix is simply initial-
ized as a multiple of the identity matrix.

In [26], a pixel weighting approach was used. Pixel
weighting was introduced in order to correctly segment pine
leaves in which only a small fraction of the total image pixels
were leaf. A region in saturation-value space that was likely
to contain leaf pixels was manually defined. Given a new
leaf image, the pixels inside and outside the region would be
weighted so that each set of pixels had equal total weight.
These pixel weights were then used during the EM proce-
dure. Here, we will adopt basically the same weighting pro-
cedure, except that we define the region that is likely to con-
tain leaf pixels using a training set of manually labeled leaf
pixels.

For the manually segmented images, we are provided
a ground truth label for each pixel, which can either be
leaf or background. For each of the leaf and background
classes of pixels, this allows us to estimate a probability den-
sity function in saturation-value space, using kernel density

estimation [8]. Given a new leaf image, we divide its pixels
into two sets: pixels that are more likely to be leaf according
to the kernel density estimate, and pixels that are more likely
to be background. As in the previous approach, each set of
pixels is then assigned a weight, so that each set has the same
total weight during EM.

3.2 Graph cut

After running the EM procedure, we are able to compute an
estimated probability that each pixel belongs to either leaf or
background. We then include a graph cut step that uses these
probabilities to determine the image segmentation, follow-
ing the work of Boykov and Jolly [9]. For quickly finding
the optimal graph cut, we employ the optimized algorithm
by Boykov and Kolmogorov [10], whose implementation is
provided by the authors.

Let y = (y1, y2, . . . , yN) denote the binary segmentation
we wish to solve for, with all yi ∈ {0, 1}, and N the total
number of image pixels. The graph cut minimizes the energy
function (or cost function)

E(y) = λR(y) + B(y). (2)

R is the regional term defined by the unary potentials of the
underlying Markov random field (MRF) formulation and B
denotes the boundary term, which penalizes discontinuities in
the cut, and corresponds to binary or higher-order potentials
in the MRF formulation. First, for the regional term, we will
use the posterior probabilities provided by the EM procedure.
Let Pr(yi = 0|xi) and Pr(yi = 1|xi) denote, respectively,
the probability that pixel i is background and leaf, given its
features xi . These probabilities are assigned according to the
model estimated by EM. Then the regional term is written

R(y) =
N∑

i=1

Ri (yi), with (3)

Ri (0) = − ln Pr(yi = 0|xi), (4)

Ri (1) = − ln Pr(yi = 1|xi). (5)

Following [9], the boundary term is given by

B(y) =
∑

{i, j}∈N
B{i, j} · δ(yi , y j), where (6)

δ(yi , y j) =
{

1, if yi �= y j

0, otherwise,
(7)

and N denotes the set of neighboring pairs of pixels in the
image, which in our case we take to be the pairs of four-
neighbors. From a grayscale version G of the image, we
adopt the commonly used boundary coefficients

123

Efficient segmentation of leaves 1629

B{i, j} ∝ exp

(
− (Gi − G j)

2

2σ 2

)
, (8)

where Gi and G j are, respectively, the gray values for pixels
i and j .

We work with a set of manually segmented training
images, which allow us to estimate the graph cut parame-
ters λ and σ (defined, respectively, in Eqs. 2 and 8). This is
done by selecting a grid of (λ, σ) pairs and choosing the one
that produces the highest average accuracy when applied to
the images in the training set.

3.3 Post-processing

After the graph cut step is applied to an image, we follow
a straightforward post-processing procedure [26] to remove
undesired false-positive regions. The procedure removes two
type of false positives. The first type, which is very common
to these images, consists of regions along the image bound-
aries which fall outside the light-colored sheet of paper or
background used to create a contrast against the leaf. The
second type consists of isolated regions present due to shad-
ows, uneven backgrounds, or extraneous objects.

Post-processing consists of first performing a morpholog-
ical dilation, then computing the connected components of
the result. A connected component that has a large intersec-
tion with the image border relative to its area is then excluded
as a false positive. Of the remaining connected components,
the largest one is chosen to be the leaf.

4 Experimental evaluation

The datasets used in our experiments are presented in
Sect. 4.1 below. In Sect. 4.2, we explain how methods that
produce multiple segments (over-segmentations) are evalu-
ated and compared to those that produce binary segmenta-
tions. All of the compared methods are listed along with
their relevant settings in Sect. 4.3. The performance met-
rics used in the quantitative evaluation are discussed in
Sect. 4.4, which are computed against ground-truth manu-
ally segmented images. To compute statistically significant
differences between the performances of methods, we use
the sign test, as described in Sect. 4.5. Later on, we present
the experimental results in Sect. 5.

4.1 Datasets

We experiment on three datasets of leaf images, which are
illustrated in Fig. 1.

1. The first dataset, which we refer to as Lab, consists of
leaves collected from trees in the Northeastern US by

field botanists. These images have important particulari-
ties: their leaves were flattened by pressing prior to being
photographed, and they were photographed under con-
trolled lighting with a high-quality camera. The complete
dataset has 4,221 images. The original images were man-
ually cropped close to the leaves and then resized so that
the size of their maximum dimension (width or height)
would be 512 pixels. Of the 4,221 images, 30 were ran-
domly selected to be manually segmented.

2. The second dataset, which we call Field, consists of 1,042
images collected by researchers in the field using dif-
ferent mobile devices. These present varying acquisi-
tion poses, illumination conditions and amounts of blur,
though an effort was made by the researchers for the
images to be reasonably uniform. Of the 1,042 images,
786 present a size of 1,600 × 1,200 pixels, while the
remaining 256 have a size of 2,048 × 1,536 pixels. 56
of the images were randomly selected to be manually
segmented.

3. Finally, the third dataset is from images uploaded by users
of the mobile leaf identification system, which we will
call User. 1,000 uploaded images were randomly selected
in the period from July to October 2011, from users near
New York City or Washington D.C. Only images that
were appropriately taken according to instructions pro-
vided to users were accepted, leaving only 497 images.
These images present more challenges than the ones from
the Field dataset, since they contain an even greater vari-
ety of conditions. Users could choose to upload images
in three different sizes: 640 × 480 pixels (small), 960
× 720 pixels (medium) and 1,024 × 768 pixels (large).
Of the 497 images analyzed, 317 were large, 147 were
medium, and 33 were small. Since we did not manually
segment these images, this dataset is only used for qual-
itative observations.

4.2 Evaluation of over-segmentations

Initially, we expected all methods we experimented with to
be able to produce two segments, such that one would cor-
respond to leaf and the other to background. In practice,
however, we found that some methods, when set to produce
just two segments, do not produce meaningful results on our
images. Since this was so common, instead of abandoning
these methods altogether, we resorted to experimenting with
them by producing over-segmentations.

The over-segmentations are evaluated in two different
manners. In the first evaluation, to obtain an upper bound
on a method’s performance, we assign each segment to leaf
or background as to yield the highest agreement with the
ground truth as measured by pixel accuracy. This provides an
optimistic evaluation, or upper-bound, on the method’s per-
formance. Secondly, for a more realistic evaluation, we use a

123

1630 J. V. B. Soares, D. W. Jacobs

simple heuristic strategy to assign each of the segments to leaf
or background, as follows. First we compute the median pixel
saturation value of each segment. Then, we take the mid-
point between the minimum and maximum of these median
values. Segments that have median saturation that are larger
than the mid-point are assigned leaf, while those with median
saturation below the mid-point are assigned background. The
heuristic provides a lower bound for a method’s performance,
though in practice the heuristic works well when the number
of segments is small, resulting in performance that is very
similar to that obtained from the best possible assignment
strategy.

For a fair overall comparison between methods, we would
like to somehow assess how well they are solving the orig-
inal leaf segmentation problem. The most relevant situation
for us is thus when the number of segments produced by the
over-segmentations is small. Conversely, when the number of
segments produced is large, the segmentation method itself
is not solving the original problem, but only part of it, so we
do not find these results relevant for comparison purposes.
As we will see in Sect. 5, when methods that produce over-
segmentations are set to produce a small number of segments,
the heuristic assignment strategy gives results that are very
similar to the results from the best assignment. Thus, when
performing comparisons to methods that produce binary seg-
mentations, we will always use the results obtained from the
heuristic strategy.

Though the upper bounds obtained by the best possi-
ble assignment strategy can be very high when the num-
ber of segments produced is large, for small and inter-
mediate numbers of segments, they provide us with rele-
vant information. First, when the number of segments is
small, the best assignment strategy provides similar perfor-
mance to the heuristic assignment strategy. This lets us know
that the heuristic strategy is performing as well as possi-
ble. Second, if we believe that for some particular interme-
diate numbers of segments, it is feasible to design a per-
fect assignment strategy, then for that number of segments,
the best assignment’s performance should be interpreted as
realistic.

4.3 Methods and settings

This section reviews the methods that were compared on our
datasets. Any relevant adjustments and settings of each par-
ticular method are also presented. The methods to be tested
were chosen due to their popularity and availability of imple-
mentation. The review of each of the evaluated methods fol-
lows below.

Otsu As a baseline method, we convert the images to gray
scale and apply a threshold, resulting in an image segmenta-
tion. The threshold is found using the method of Otsu [34].

We use the implementation provided in Matlab’s Image
Processing Toolbox.

In order to understand Otsu’s threshold selection method,
let us consider that the pixels in the image form an empirical
probability distribution. The distribution can be computed
from the image’s graylevel histogram by simply dividing all
of the histogram frequency counts by the total number of
pixels in the image. Otsu’s method considers classical crite-
ria used in discriminant analysis [20] on the distribution in
order to define a good threshold. A threshold on the gray level
divides the image pixels into two classes. Intuitively, the cri-
teria favor maximizing the resulting between-class variance
while at the same time minimizing the within-class variance.

Suppose we have fixed a threshold, as to divide the image
pixels into two classes. Let us denote the total density of the
pixels in each class by ω0 and ω1 (so that ω0 + ω1 = 1),
their means by μ0 and μ1, and their variances by σ 2

0 and
σ 2

1 . Additionally, let us denote the mean and variance of the
complete data distribution by μT and σ 2

T . Then we can define
the between-class variance as σ 2

B = ω0(μ0−μT)2+ω1(μ1−
μT)2. The criterion function that Otsu’s method maximizes
is η = σ 2

B/σ 2
T . In practice, the optimal threshold is found by

simply computing the criterion function η for each possible
gray level and choosing the one that maximizes it.

Graph-based image segmentation (GBIS) Felzenszwalb and
Huttenlocher proposed an efficient graph-based image seg-
mentation method [19], and have provided their own imple-
mentation, which we experiment with here.

The method begins by defining a graph where each pixel is
a vertex and edges connect nearby pixels together. Each edge
is assigned a weight that indicates the dissimilarity between
its pixels. The graph implicitly defines an initial segmen-
tation, such that each image pixel forms its own segment.
The segmentation algorithm proceeds to analyze the edges
in order of increasing weight, so that the most similar pixel
pairs are analyzed first. For each edge being analyzed, if its
pixels currently belong to different segments, we consider
whether or not we should merge these segments. Segments
are merged whenever the edge weight measuring pixel dis-
similarity is small relative to the minimum internal difference
(defined below) between the segments. Intuitively, we merge
segments when the pair of pixels analyzed does not indicate
that there is an image edge between them, by presenting low
dissimilarity relative to their minimum internal differences,
which measure the natural within-segment variations.

Here, we review the criterion used by the method for
deciding when to merge segments. Denote V the set of graph
nodes, which is initially the set of all image pixels. Denote
the set of m edges linking pixels together as E , and the weight
of an edge e ∈ E by w(e). The internal difference of a seg-
ment C ⊆ V is defined as the largest weight in the minimum
spanning tree MST(C, E) of the segment:

123

Efficient segmentation of leaves 1631

Int(C) = max
e∈MST(C,E)

w(e).

Given a pair of segments (C1, C2) being considered, their
minimum internal difference is defined as

MInt(C1, C2) =
min (Int(C1) + τ(C1), Int(C2) + τ(C2)) ,

where the threshold function τ is defined as τ(C) = k/|C |,
with |C | denoting the number of pixels in segment C .
The original internal difference Int(C) can occasionally (by
chance) be very small, especially when dealing with smaller
segments. Without the τ(C) term within MInt, this would
impede certain small segments from ever merging. The τ(C)

term corrects for this effect.
The most relevant parameter of the method is k above

which defines the threshold function τ , roughly controlling
the minimum size of a segment. We experimented with the
range k ∈ {1, 10, 100, 1,000, 4,000}.

In the implementation we use, there are edges between
four-neighboring pixels and their dissimilarity is defined as
the L2 (Euclidean) distance between their feature vectors. A
feature vector for a pixel is defined as (x, y, r, g, b), where
(x, y) is the location of the pixel in the image, and (r, g, b)

is the color of the pixel.
Throughout, we set the remaining relevant settings as fol-

lows. These settings have shown to work well on our different
sets of leaf images. The GBIS method applies a Gaussian fil-
ter to smooth the image slightly, in order to compensate for
digitization artifacts without significantly affecting the con-
tent. We set the standard deviation of the Gaussian used to
smooth the image to σ = 0.5 pixels. The final step of the
method is to apply a post-processing, where very small seg-
ments are merged to their most similar neighboring segments.
We have set the minimum size a segment is allowed to have
(so that it is not merged to a neighbor) to 0.5 % of the image
size.

Mean shift Comaniciu and Meer proposed the use of mean
shift [16] as a general clustering procedure, having applied
it to image segmentation. We used the speed optimized
implementation of mean shift provided in the EDISON sys-
tem [15]. Clustering is performed jointly in spatial coordi-
nates and in the L*u*v* color space.

For each pixel in an image, the mean shift procedure finds a
local maximum of a density function defined from the image
data. Each pixel is then associated with its respective max-
imum. The density function is defined as a kernel density
estimate, computed from the image data, and thus requires
a kernel bandwidth to be defined. When mean shift is used
for image segmentation, two bandwidths are used: hs , which
is defined in geometric image space, and hr , defined in the
feature space, which in this case is the L*u*v* color space.

The main advantage of the mean shift procedure is that the
local maximum of the density function associated with each
pixel can be found relatively quickly.

More specifically, a given image pixel x can be described
by its spatial coordinates xs and L*u*v* features xr , such that
x = (xs, xr). An image with N pixels x1, . . . , xN defines the
density function of interest

f̂ (x) = 1

N

N∑

i=1

K (x − xi), (9)

where K is the kernel function. The kernel function we adopt
is

Khs ,hr (x) = C

h2
s h3

r
k

(∥∥∥∥
xs

hs

∥∥∥∥
2
)

k

(∥∥∥∥
xr

hr

∥∥∥∥
2
)

,

where k is a function of a single variable called profile, which
defines the shape of the kernel, and C is a normalizing con-
stant.

Using large image space bandwidths, hs , is beneficial,
resulting in more correct and complete segmentations. In
practice, however, the use of a large spatial bandwidth is
very time consuming, so that we have fixed this bandwidth
at hs = 30 pixels. After having fixed this parameter, varying
the feature space bandwidth hr will determine the number of
segments in the result. We have experimented with the range
hr ∈ {5, 10, 20}.

Figure 4 presents mean shift execution times as a function
of the bandwidth parameters hs and hr . The times shown are
averages taken over the manually labeled images from the
Lab dataset, after having resized them so that their largest
dimension was 700 pixels. See Sect. 5 for specifications of
the machine used.

GrabCut Rother et al. presented the GrabCut [35] system
for the purpose of interactive image segmentation. An open
source implementation of the method is available within the
OpenCV library [33], which we use in this study.

Fig. 4 Average execution times of the mean shift algorithm on images
from the Lab dataset as a function of the bandwidth parameters hs
and hr

123

1632 J. V. B. Soares, D. W. Jacobs

Though our application is not interactive, we take advan-
tage of GrabCut’s sophisticated segmentation algorithm.
Their segmentation approach can be seen as an extension
to the graph cut algorithm, which was reviewed in Sect. 3.2.
The important difference is that GrabCut assumes that the
color distributions of the foreground and background classes
are unknown. The distributions are modeled in color space
each by a Gaussian Mixture Model (GMM). The segmenta-
tion problem then consists of jointly finding the best set of
pixel labels (which define the segmentation), along with the
best set of GMM parameters, as to minimize a Gibbs energy
function. The energy defined is analogous to the cost from
Eqs. 2–8, with the main difference being the addition of the
GMM terms.

More specifically, the energy to be minimized is

E(y, k, θ , z) = U (y, k, θ , z) + V (y, z),

where U denotes the data term, and will be defined as
the log-likelihood of the pixels’ GMM probabilities, and V
denotes a smoothness term, based on neighboring pixels, as
described further below. y = (y1, y2, . . . , yN) denotes the
binary segmentation, with all yi ∈ {0, 1}, and N the total
number of image pixels. Similarly, z = (z1, z2, . . . , zN)

with each zi containing the RGB values for pixel i , and
k = (k1, k2, . . . , kN) with each ki indicating the unique
GMM component to which pixel i is assigned (GrabCut uses
hard component assignments for speed purposes.) Finally, θ

contains the set of GMM parameters of both classes.
The smoothness term V (y, z) is analogous to the boundary

term in Eq. 8, but defined in color space:

V (y, z) = γ
∑

{i, j}∈N
δ(yi , y j) exp

(
−β‖zi − z j‖2

)
.

Each of the terms above is described in turn. γ is a model
parameter indicating the relative importance of the data and
smoothness terms U and V . N denotes the set of neighboring
pairs of pixels in the image, which is taken to be the pairs
of four-neighbors. δ is defined as in Eq. 7. zi and z j are,
respectively, the RGB values for pixels i and j . β is another
method parameter, which is computed on a per-image basis
from an estimate of the image noise. On the other hand, γ

above assumes a fixed value, which must be set manually. We
set γ = 2 so that the method works well across the different
varieties of leaf images.

In order to minimize the energy function, an iterative
scheme was devised [35]. Each iteration begins by updat-
ing the GMM models according to the running set of labels,
and then using the updated models to compute new class like-
lihoods for each pixel. The class likelihoods are then used to
find a new set of labels via the graph cut method, and the
whole process is restarted and iterated until convergence.

The method requires an initial estimate of the GMM para-
meters to be supplied. This estimate is computed in prac-

tice by setting an initial image map, which provides one of
four possible labels for each pixel: “certainly foreground”,
“probably foreground”, “certainly background”, and “proba-
bly background”. We carefully initialize the image map in the
following manner: pixels on the image border are labeled as
“certainly background”; pixels with high saturation and low
value are labeled as “probably foreground”; and the remain-
ing pixels are labeled as “probably background”.

Multiscale normalized cut (MSNcut) The normalized cut
(Ncut) criterion for image segmentation was proposed by
Shi and Malik [37], along with a method to approximate its
solution. The normalized cut approach treats the segmenta-
tion problem as a node partitioning problem, where image
pixels are considered as nodes in a graph. Thus, the partition
also defines a cut of the graph edges. The novelty of the nor-
malized cut lies in allowing such a graph-based approach to
not only consider the dissimilarity between different groups
of pixels, but to also compensate for the within group simi-
larities.

We experimented with the normalized cut implementation
provided by its authors. The method seems to work better
as the graph connection radius increases, which adds more
edges to the graph being cut. However, increasing the con-
nection radius is prohibitively slow, rendering this method
impractical for our application. Thus, we did not include
experiments with normalized cut, and instead worked with
the multiscale version, described below.

Cour et al. [17] presented a multiscale algorithm to
solve a constrained version of the normalized cut prob-
lem (MSNcut). Their method allowed the use of graphs
with longer-range dependencies, in effect allowing for the
use of larger images with improved results. The method
decomposes the weight matrix, which represents all graph
edge weights, as a sum over multiple scales. At smaller
scales, more pixels are considered for forming edges, but
the connection radius is limited, while at larger scales, pix-
els are sub-sampled more sparingly, allowing the connec-
tion radius to increase. The problem formulation considers
the graphs at different scales simultaneously, with an added
explicit constraint that the segmentation obtained be consis-
tent across scales. The problem of finding the optimal parti-
tion is then approximated by a constrained optimization prob-
lem, whose solution can be found in time linear in the number
of pixels.

The authors provide an implementation on their website,
which we use here. The implementation allows graph edge
weights to be defined by a combination of two terms: pixel
color similarity, and an intervening contours [28] similarity.
Using the intervening contour produced worse results on our
images, so we only use pixel color similarities to define the
edge weights.

123

Efficient segmentation of leaves 1633

Increasing the graph connection radii improved results and
we have set them as large as possible, up to the memory lim-
itation of our machine. As an example of the memory con-
sumption of the algorithm, if we are working with an image
of size 700 × 525, we can choose to use four different scales
to work with, as done in the original authors’ implementa-
tion. Let us denote the set of connection radii associated to
each scale as R = {r1, r2, r3, r4}, where ri is measured in
pixels. Under this setting, if we set R1 = {6, 9, 12, 18}, the
method consumes a peak of 2.1 GB, whereas for a larger
R2 = {10, 15, 20, 30}, the memory peak is of 4.9 GB. In
practice, when dealing with images of this size, we use the
set of radii R2. We varied the number k of segments output
by the method within the range k ∈ {2, 10, 20, 30, 40}.

Segmentation by weighted aggregation (SWA) Sharon et
al. [36] introduced segmentation by weighted aggregation
(SWA). SWA is a multiscale graph-based approach based
on forming aggregates, which are represented as nodes in
graphs. Edges initially link neighboring pixels, with weights
that represent pixel similarity. The overall objective of the
method is to segment an image into multiple salient regions.
A saliency criterion is defined, which measures the weight
of edges that leave the group of graph nodes relative to the
weight of edges within the group of nodes. This is in the same
spirit of the normalized cut criterion (see Sect. 4.3), though
the exact formulated criterion is different.

The main part of the method proceeds in a bottom-up fash-
ion. It begins by assigning every pixel to one of a large group
of small aggregates, each with a representative node. These
assignments are done based on pixel affinities, which are
stored in the graph edge weights. Aggregates are then recur-
sively aggregated together, leading to a series of graphs, each
at a different level of coarseness. The result is a pyramid of
graphs, from which the segmentations will be later obtained.
At any given level, aggregation is done by selecting a set of
representative nodes, such that each of the non-representative
nodes are strongly connected to at least one representative.
The relationship between the aggregates at successive lev-
els is stored in an interpolation matrix, computed from the
edge weights. The main observation here is that the saliency
computed at a given level can be approximately represented
by the saliency at its corresponding successive coarser level.
The aggregation process is such that at any given level of the
pyramid, aggregates are allowed to have pixels that overlap.

After building the pyramid of aggregates, a segmentation
can finally be obtained through a top-down procedure. First,
from the pyramid, a set of the most salient aggregates is
selected. Note that in principle the selected salient aggregates
can be from different levels of the pyramid. Each aggregate
in this set is repeatedly projected down onto finer levels via
the interpolation matrices that were computed when build-
ing the pyramid as to compute weights that link the finer

level aggregates with their higher level representatives. At the
finest level, each image pixel will be assigned to the aggregate
with which it has the highest linking weight.

Compared to other methods, an important advantage of
this type of approach is that the larger aggregates allow for
an appropriate extraction of texture features, which would not
be possible at finer levels [21]. At the same time, descend-
ing to lower levels allows the fine details of the segments to
be preserved. Also of importance is that the multiscale strat-
egy allows the method to be linear time in the number of
pixels.

The authors have provided an implementation of the
method on their website. It has a series of adjustable parame-
ters, though we have found reasonable results by using the
default parameter settings. The algorithm is capable of pro-
ducing a collection of segmentations, each with a different
level of coarseness, corresponding to a different level of the
pyramid. We denote the pyramid level here by c, whose range
starts at 1 (which produces the coarsest segmentation, usu-
ally containing only two segments). We experimented with
c ∈ {1, 2, 4, 6, 8} and left the other parameters at their default
values.

Global Pb with Oriented Watershed Transform and Ultra-
metric Contour Map (gPb+OWT+UCM) Arbelaez et al. [4]
presented an approach for segmentation with a series of steps.
It starts out by computing a multiscale version of the proba-
bilistic boundary detector due to Martin et al. [30]. From this
initial boundary map, a global boundary map is computed
using a spectral clustering formulation. This global bound-
ary map is used to produce a super-segmentation of the image
via the Oriented Watershed Transform. Finally, a hierarchical
collection of segmentations, represented using the Ultramet-
ric Contour Map, is computed from the Oriented Watershed
Transform. We have experimented with the implementation
provided by the authors of the method. Due to its memory
requirements and our required image resolution, we were
not able not perform comprehensive experiments with this
method. See Sect. 5 for a discussion.

Expectation-Maximization (EM) We experiment with a Mat-
lab implementation of our previous leaf segmentation method
as described by Kumar et al. [26]. We follow the segmentation
steps as proposed in the paper, including the pixel weighting
procedure during EM. For consistency between the methods,
we do not include their stem removal step. It should be noted
that we do not include the speed optimizations from [26], so
that the times reported here are significantly larger.

Expectation-Maximization with trained pixel weighting
(EM+TW) This version of the method includes the trained
pixel weighting used during EM, as opposed to using a hand-
drawn delineation for the weighting scheme (see Sect. 3).

123

1634 J. V. B. Soares, D. W. Jacobs

Since this method requires a training set of manually seg-
mented images, it is evaluated via twofold cross-validation.

Expectation-Maximization with trained pixel weighting and
graph cut (EM+TW+GC) The method we propose here,
based on Expectation-Maximization, and followed by a
graph cut step, is described in Sect. 3. As with the previous
method, it is evaluated via twofold cross-validation.

4.4 Performance metrics

We evaluate the following performance measures for each of
the different methods compared. For the quantitative analy-
sis, we experimented on the images from the Lab and Field
datasets which have manual segmentations. This allows us to
compute measures of the following three important segmen-
tation characteristics: how well the pixels from a segmenta-
tion agree with the ones from its respective manual segmen-
tation; how well its boundary matches the boundary from
the manual segmentation; and how similar the features com-
puted from a given segmentation are to the ones computed
from the manual segmentation. We will describe the metrics
used to assess these characteristics further below. We also
time the methods, since we are concerned with using them
in an interactive application.

For quantifying the degree of agreement between pixels
from a method’s segmentation and a manual segmentation,
accuracy is a very intuitive measure. However, when only
a fraction of the pixels belong to the leaf class, accuracy is
very insensitive. We also measure pixel precision, recall and
F-measure (F1 score) in this case, with the F-measure acting
as a reasonable overall summary of performance [2].

The pixel agreement measures defined above are not sen-
sitive to important image features that have only a small num-
ber of pixels, such as leaf serrations, or thin leaf tips. Thus,
we also include measures of boundary agreement. Again,
we use precision, recall and the F-measure, but computed
over the boundary pixels. For deciding whether a point on
the boundary is considered a true positive, false positive,
true negative or false negative, we find a correspondence
between the points of the boundaries produced by the method
and the ground truth. The correspondence is done using the
assignment procedure described by Martin et al. in the appen-
dix of [30], whose code is provided along with the Berke-
ley Segmentation and Boundary Detection Benchmark and
Dataset [3].

Finally, to give us an idea of the effect of the different
methods on system performance, we use shape features com-
puted from the segmentations. The shape features we use are
the histograms of curvature over scale (HoCS) [26], with an
implementation provided by the authors. After normalizing
the histograms, we compute their similarity. Denote a =
(a1, . . . , an) the features obtained from a given segmenta-

tion method and b = (b1, . . . , bn) the corresponding features
from the manual segmentation. The similarity is defined by
their histogram intersection as s(a, b) = ∑n

i=1 min(ai , bi).

4.5 Testing for statistically significant differences

We use hypothesis tests in order to compare a given pair of
methods according to a performance metric. In general, a
reasonable idea about which method performs better can be
obtained by simply comparing the means or medians of the
methods on a given dataset. However, especially on smaller
datasets, there is some variance associated with these mean
and median values. Hypothesis testing allows us to attach a
confidence to a comparison, by computing the probability
of the observed outcome under the (null) hypothesis that the
two methods in fact have equivalent performance.

In our quantitative experiments, we adopt the sign test. The
discussion and notation below follow Dixon and Mood [18].
Given a metric and a pair of methods to be compared, we treat
the value of the metric obtained by each method when applied
to leaf images as a random variable. It is difficult to make
any strong assumptions about the probability distributions of
our metrics, due to their complex nature. Thus, we resort to
the sign test, which makes very few assumptions about its
underlying distributions. A downside of the sign test is that
it has reduced statistical power relative to others such as the
paired t test (i.e., it is more conservative).

Suppose an observed leaf dataset has n images. For each
image i ∈ {1, . . . , n}, we compute a pair of metrics pro-
duced by the two segmentation methods, which we denote
(xi , yi). The sign test takes into consideration only the signs
of the differences xi − yi . The main assumptions of the test
are the following. First, it assumes that there is a fixed (and
unknown) probability p = Pr(xi > yi), with 0 < p < 1. In
other words, p is the probability that, for any pair of obser-
vations (xi , yi), we will have xi > yi . Second, it is assumed
that the different observation pairs (xi , yi), i = 1, . . . , n are
independent of each other. These weak assumptions contrast
with, for example, those of the paired t test, which requires
that the differences between paired observations be normally
distributed.

Our null hypothesis is that p = 1/2, which is equivalent to
assuming that the median difference in the metrics resulting
from the two methods is zero. Given the nature of our metrics,
it is safe to assume that Pr(xi = yi) = 0, so that Pr(xi <

yi) = 1− p. Thus, if we denote by w the number of pairs for
which xi > yi , then under the null hypothesis w will follow
a binomial distribution of probability 1/2.

All tests we perform are two-tailed, since we cannot make
any prior assumptions about which of the two methods being
compared is better. To perform the test, we count the number
of pairs w for which xi > yi and n−w for which xi < yi . Let
r denote the smaller of the two counts, i.e., r =min{w, n−w}.

123

Efficient segmentation of leaves 1635

Given an observed value of r , the corresponding p value is
Pr(R ≤ r), where R denotes a random variable from the
same distribution that generated r . Computation of the p
value Pr(R ≤ r) is done by adding up the values of the
binomial distribution that correspond to R ≤ r , which will
span both of its tails [18]. We set the significance value to the
commonly adopted α = 0.05. That is, if we obtain a p value
smaller than 0.05, we reject the null hypothesis and we call
a given difference between methods significant.

In our quantitative experiments, we study two different
leaf populations in turn: the first is that of images taken in
laboratory settings (for which we experiment with the Lab
dataset), and the second is that of images taken by researchers
in the field (for which we use the Field dataset). These
datasets are described in Sect. 4.1.

5 Results

We first present a comparison of execution times. All exper-
iments were performed on a machine with 2 quad-core Intel
Xeon CPUs, at 2.13 GHz clock speed and 4 MB cache. The
machine had 12 GB RAM. All manually labeled images from
the Lab dataset were used for measuring average times. Each
image was resized so that its maximum dimension (either
height or width) was set to a predetermined value, while pre-
serving its aspect ratio. Figure 5a presents the average exe-
cution time per image as a function of image size. In order
to better visualize the times for the faster methods, these are
again plotted in greater detail in Fig. 5b. Observe in partic-
ular that, when the largest image dimension is set to 700
pixels, GrabCut takes around 7 s per image. Though Grab-
Cut is among the fastest tested methods, this speed will not
be satisfactory for many interactive applications. For mean
shift, MSNcut, SWA, and gPB + OWT + UCM, the average
computation times for images with their largest dimension
set to 700 are above 50 s, which restricts their applicability
to our problem.

It is important to point out some particularities of the pre-
vious experiment when the largest image dimension was set
to 700 pixels. Note first that, at 700 pixels, the execution times
are not available for gPB + OWT + UCM. This was due to the
memory requirements of the method, which were not met by
the machine. Note also that in general the time for MSNcut
increases with image size. However, for the case when the
largest image size is 700 pixels, due to our limited mem-
ory, we decreased the graph connection radii across scales.
This had the side effect of not increasing the method’s exe-
cution times, though the results with smaller radii tend to be
worse.

For the remaining experiments that follow, we resized all
images so that their maximum dimension was 700 pixels.
This resolution preserves most of the leaf image details,

Fig. 5 Average execution times per image on the Lab dataset as a
function of image size. a shows the times for all methods, while b
shows a detail with only the fastest methods

allowing us to capture thin stems and small-scale leaf ser-
rations. We have excluded the gPB + OWT + UCM method
from the remaining analysis, since it would require introduc-
ing some major modifications in order to run at the desired
resolution without running out of memory.

As a principal metric to summarize performance, we mea-
sure the boundary agreement between the segmentation pro-
duced by a given method and the corresponding ground-truth
manual segmentation. This agreement can be quantified by
the F-measure, computed as described in Sect. 4.4. A more
complete set of results is presented in the supplementary
material, though usually all of the measures follow the same
trends. The boundary agreement F-measure has the advan-
tage of being sensitive to differences in the shapes of the
segmentations, which will finally be used for leaf identifica-
tion. A brief discussion on the merits of the different metrics
was presented in Sect. 4.4.

123

1636 J. V. B. Soares, D. W. Jacobs

Fig. 6 Performance of methods which produce over-segmentations
and require a parameter to be chosen. (For a summary of the results
of all methods, including those without parameters to be chosen, refer
to Fig. 7.) Boundary agreement F-measures are shown for images from
the Lab and Field datasets. Higher values indicate better performance.
There were a total of 30 Lab images and 56 Field images. Methods

marked with an asterisk (whose over-segmentations were evaluated
according to the best possible assignment of segments to leaf and back-
ground) have been shaded in gray. The boxes in the plots contain the sec-
ond and third quartiles, while the vertical red line indicates the median
value

Figures 6 and 7 show the distribution of F-measures on
the Lab and Field datasets. These were computed on the 30
Lab images and 56 Field images for which manual segmen-
tations were available. In Fig. 6, when a method’s name is
marked with an asterisk, it indicates that the method was
used to produce over-segmentations of the images, which
were then evaluated according to the best possible assign-
ment of the segments to leaf and background. The best
possible assignment was determined using the ground truth
manual segmentations, and provides an upper-bound on the
method’s performance (see Sect. 4.2). On the other hand,
the absence of an asterisk on a method that produces over-
segmentations indicates that the segments were assigned
according to the heuristic strategy described in Sect. 4.3. In
order to obtain a fair comparison with methods that produce
binary segmentations, in Fig. 7, methods that produce over-
segmentations always had their segments assigned accord-
ing to the heuristic strategy (denoted without an asterisk).
All methods were run with and without the post-processing
procedure described in Sect. 3.3. We report only the result
that produced the best mean boundary F-measure: in the

figures, when a method is marked with a superscript P , it
indicates post-processing improved the result and is there-
fore reported, whereas the absence of the P indicates post-
processing did not improve the results, so that the result with-
out post-processing is reported. This gives us a more mean-
ingful comparison between methods. In any case, it is impor-
tant to point out that the post-processing procedure can be
very beneficial for certain methods, as shown later in Fig. 12.

Figure 6 shows only the methods which produce over-
segmentations, having a parameter that is varied throughout
a range. Table 1 shows the average number of segments pro-
duced by these methods for each of their parameter settings.
In Fig. 6, note first that the methods marked with an asterisk
improve with the number of segments that they produce, up
to the point of achieving very high F-measures.1 For very fine
segmentations, though, the methods are not really solving the
original leaf segmentation problem, but only part of it. Thus,
we are not interested in comparing its results in this case to

1 GBIS is an exception, since even at the smallest observation scale
(k = 1), it still does not produce a fine enough segmentation.

123

Efficient segmentation of leaves 1637

Fig. 7 Boundary agreement
F-measures for images from the
Lab and Field datasets. Higher
values indicate better
performance. There were a total
of 30 Lab images and 56 Field
images. The boxes in the plots
contain the second and third
quartiles, while the vertical red
line indicates the median value

Table 1 Mean number of segments produced by over-segmentation
methods with different parameter settings

Method Mean number of
segments on Lab

Mean number of
segments on Field

GBIS, k = 1 35.9 ± 4.6 35.7 ± 5.6

GBIS, k = 10 35.7 ± 8.2 47.7 ± 4.7

GBIS, k = 100 14.3 ± 7.8 5.9 ± 3.7

GBIS, k = 1,000 6.8 ± 4.5 4.3 ± 2.1

GBIS, k = 4,000 4.0 ± 2.4 3.1 ± 1.2

Mean shift, hr = 5 67.4 ± 72.4 97.0 ± 51.0

Mean shift, hr = 10 17.5 ± 24.5 14.3 ± 8.3

Mean shift, hr = 20 10.8 ± 16.5 4.5 ± 3.1

MSNcut, k = 2 2.0 ± 0.0 2.0 ± 0.0

MSNcut, k = 10 10.0 ± 0.0 10.0 ± 0.0

MSNcut, k = 20 20.0 ± 0.0 20.0 ± 0.0

MSNcut, k = 30 30.0 ± 0.0 30.0 ± 0.0

MSNcut, k = 40 40.0 ± 0.0 40.0 ± 0.0

SWA, c = 1 2.1 ± 0.3 2.4 ± 0.6

SWA, c = 2 3.7 ± 1.0 5.0 ± 2.0

SWA, c = 4 14.9 ± 7.9 25.4 ± 14.7

SWA, c = 6 74.7 ± 46.3 157.9 ± 115.4

SWA, c = 8 455.4 ± 323.0 1,189.3 ± 1,001.3

The mean number of segments generated is indicated along with its
respective standard deviation. The methods were run on the subsets of
Lab and Field images for which manual segmentations were available

those of methods that directly produce binary segmentations.
On the other hand, when the number of segments produced
is small, note from Fig. 6 that the performance of the heuris-
tic assignment is very close to the upper bound performance
given by the best assignment. This lets us know that in this
case the heuristic is working as well as possible. This is the
most interesting case for us for comparison purposes: a fairer
comparison to methods that produce binary segmentations
is obtained when the over-segmentation methods are set to
produce few segments as to try, as much as possible, to solve
the original segmentation problem. Finally, note that, for the
methods evaluated with heuristic assignments, the perfor-
mance has a peak at a certain parameter setting, at which
point using either a finer or coarser segmentation will result
in a performance decrease.

In Fig. 7, all methods are present, with only the best per-
forming parameter settings reported, chosen according to the
highest mean boundary F-measure. In the figure, the meth-
ods that produce over-segmentations were evaluated using
the heuristic assignment strategy, as to allow for a fair com-
parison. Figure 7 shows that EM + TW, and EM + TW + GC
are consistently the highest scoring on both datasets. They
are followed closely by EM, GrabCut, MSNcut and SWA. As
was previously shown in Fig. 5, MSNcut and SWA are signif-
icantly slower than other methods, which puts them at a prac-
tical disadvantage. On the other hand, EM and EM + TW are

123

1638 J. V. B. Soares, D. W. Jacobs

the fastest of the best performing methods, followed closely
by EM + TW + GC, then GrabCut. Otsu, GBIS, and mean
shift in general produce worse results.

We performed several sign tests to compare different pairs
of methods, as described in Sect. 4.4. The p values for the
tests comparing boundary F-measures are shown in Tables 2
and 3, respectively, for the Lab and Field datasets. Again, here
the methods that produce over-segmentations were evaluated
using the heuristic assignment strategy. The performance dif-
ferences follow the same trends on both datasets, but note
that statistical significance appears much more frequently
on the Field dataset. The corresponding tables for the other
performance measures are presented in the supplementary
material.

Figure 8 presents the results from Table 3 in the form of
a graph. When there is a statistically significant difference
between a pair of methods, as measured by boundary agree-
ment F-measures on the Field dataset, there is an arrow going
from the better method to the worst. The absence of an arrow
indicates that the difference between methods was not sig-
nificant. Methods are grouped together into the same node
when they present the exact same set of differences between
other methods and no difference amongst themselves. Note
in Fig. 8 that SWA was better than many of the other methods.
Upon further investigation, it was noted that, most of the time,
SWA produces results that are only slightly superior. How-
ever, there are some few images for which SWA produces
large mistakes that would interfere with recognition,whereas

Table 2 p Values of two-sided sign tests comparing boundary F-measures between different methods on the Lab dataset

OtsuP GBIS,
k = 10

EM EM + TW EM + TW
+ GCP

GrabCutP Mean
shift,
hr = 10

MSNcut,
k = 20

SWAP ,

c = 6

OtsuP – 0.3616(−) 0.0428(−) 0.0987(−) 0.0161(−) 0.0987(−) 0.0987(−) 0.4583(−) 0.5847(−)

GBIS, k = 10 0.3616(+) – 0.3616(+) 0.8555(−) 0.8555(−) 0.8555(+) 1.0000(+) 1.0000(−) 0.8555(+)

EM 0.0428(+) 0.3616(−) – 0.7111(+) 0.1360(+) 0.3616(+) 0.3616(−) 0.2005(+) 0.8555(+)

EM + TW 0.0987(+) 0.8555(+) 0.7111(−) – 0.8555(+) 0.2005(+) 0.3616(−) 0.8555(+) 0.3616(+)

EM+TW+GCP 0.0161(+) 0.8555(+) 0.1360(−) 0.8555(−) – 0.5847(+) 0.8555(−) 1.0000 0.3616(+)

GrabCutP 0.0987(+) 0.8555(−) 0.3616(−) 0.2005(−) 0.5847(−) – 0.2005(−) 1.0000(−) 0.8555(−)

Mean shift,
hr = 10

0.0987(+) 1.0000(−) 0.3616(+) 0.3616(+) 0.8555(+) 0.2005(+) – 0.2649(+) 0.0428(+)

MSNcut, k = 20 0.4583(+) 1.0000(+) 0.2005(−) 0.8555(−) 1.0000 1.0000(+) 0.2649(−) – 0.2005(+)

SWAP , c = 6 0.5847(+) 0.8555(−) 0.8555(−) 0.3616(−) 0.3616(−) 0.8555(+) 0.0428(−) 0.2005(−) –

These values were computed on the Lab dataset using manual segmentations. Bold values indicate a significant difference at α = 0.05. A plus-sign
(+) after the p value indicates that the method on the row is better than the method on the column, while a minus-sign (−) indicates the converse
is true

Table 3 p-values of two-sided sign tests comparing boundary F-measures between different methods on the Field dataset

Otsu GBIS,
k = 100

EMP EM + TWP EM + TW
+ GCP

GrabCutP Mean
shift,
hr = 10

MSNcut,
k = 10

SWAP ,
c = 2

Otsu – 0.6889(−) 0.0000(−) 0.0000(−) 0.0000(−) 0.0018(−) 0.0018(−) 0.1770(−) 0.0007(−)

GBIS, k = 100 0.6889(+) – 0.0105(−) 0.0105(−) 0.0046(−) 0.0007(−) 0.0018(−) 1.0000 0.0001(−)

EMP 0.0000(+) 0.0105(+) – 0.2806(+) 0.6889(−) 0.6889(−) 0.8939(+) 0.0222(+) 0.0440(−)

EM + TWP 0.0000(+) 0.0105(+) 0.2806(−) – 0.6835(−) 1.0000 0.8939(−) 0.0222(+) 0.0440(−)

EM+TW+GCP 0.0000(+) 0.0046(+) 0.6889(+) 0.6835(+) – 0.1409(+) 0.8939(+) 0.0046(+) 0.1409(−)

GrabCutP 0.0018(+) 0.0007(+) 0.6889(+) 1.0000 0.1409(−) – 0.6889(−) 0.0440(+) 0.0440(−)

Mean shift,
hr = 10

0.0018(+) 0.0018(+) 0.8939(−) 0.8939(+) 0.8939(−) 0.6889(+) – 0.0105(+) 0.5044(−)

MSNcut,
k = 10

0.1770(+) 1.0000 0.0222(−) 0.0222(−) 0.0046(−) 0.0440(−) 0.0105(−) – 0.0222(−)

SWAP , c = 2 0.0007(+) 0.0001(+) 0.0440(+) 0.0440(+) 0.1409(+) 0.0440(+) 0.5044(+) 0.0222(+) –

These values were computed on the Field dataset using manual segmentations. Bold values indicate a significant difference at α = 0.05. A plus-sign
(+) after the p value indicates that the method on the row is better than the method on the column, while a minus-sign (−) indicates the converse
is true

123

Efficient segmentation of leaves 1639

Fig. 8 Graph showing statistically significant differences between
boundary agreement F-measures on the Field dataset. An arrow indi-
cates that there was a statistically significant difference between a pair
of methods. Methods are grouped together into the same node when
they present the same set of differences between other methods and no
difference amongst themselves

other methods do not. This is reflected in the lower average
performance of SWA, which is shown in Fig. 7. The sign test
ignores the severity of these mistakes, as it avoids making
any assumptions about the distributions of the performance
metrics.

We would also like to point out the following regarding the
hypothesis tests. On the Field dataset, among all four metrics
(pixel accuracy, pixel F-measure, boundary F-measure, and
HoCS feature similarity), at significance α = 0.05, there is a
fairly consistent separation of the methods into two groups.
The first group contains the better performing methods, and is
composed of EM, EM + TW, EM + TW + GC, GrabCut, mean
shift and SWA. Their performances are not consistently dif-
ferent amongst themselves and are fairly consistently better
than the methods in the second group. The second group is
composed of Otsu, GBIS, and MSNcut, which can also be
seen grouped into the bottom node of Fig. 8.

Finally, we experimented on the larger datasets: all of the
Lab images (excluding the ones that have manual segmen-
tations, which were used for parameter adjustment); all of
the Field images (again excluding those with manual seg-
mentations); and all of the User images, whose segmen-
tation parameters were set using images with manual seg-
mentations from the Field dataset. Due to the large number
of images in these datasets, it was only practical to exper-
iment with the fastest methods, namely Otsu, GBIS, EM,
EM + TW, EM + TW + GC, and GrabCut. The other methods
showed themselves to be too slow for our application (see
Fig. 5).

In order to make differences between methods evident on
these large datasets, we adopt the following procedure. Given
a pair of methods that we would like to compare, we order all
the images in the dataset by how similar the segmentations

produced by both methods are. For example, given methods
A and B, the image for which the segmentations produced
by A and B are most dissimilar should appear first, while the
image which produces the most similar segmentations should
appear last. Here, we measure similarity between segmenta-
tions using their overlap ratio (see e.g., [23]), defined simply
as the number of pixels in the intersection of the segmenta-
tions, divided by the number of pixels in their union.

The above procedure for comparing pairs of methods is
motivated by the following observations. It would be pro-
hibitively time-consuming to provide manual segmentations
for very large sets of images, given that manually segmenting
out the complex shapes of leaves is a labor-intensive process.
At the same time, given a pair of methods, by viewing the
images for which the resulting segmentations are most dis-
similar, we are able to quickly understand some of their major
differences. Examples of this behavior will be shown in the
figures that follow. In particular, in the majority of cases,
simply by looking at the most dissimilar results on a given
set of images, it is easy to see which method is performing
better.

A major mode of failure for all methods is small pine
leaves, which only occupy a small fraction of the image. EM,
EM + TW, and EM + TW + GC perform much better on this
type of image due to the pixel weighting procedure, though
there is still some room for improvement. Figure 9 com-
pares EM + TW + GCP with GrabCutP on the complete Lab
dataset, making evident the difficulty of traditional methods
on small pine leaves. Next, we would like to note that on
the Lab dataset, trained pixel weighting brings an important
improvement over weighting using a manually delineated
region in saturation-value space. Figure 10 illustrates this by
comparing EM and EM + TW on the Lab images. We would
also like to note the effect of adding a graph cut step to EM.
Graph cut improves the results by requiring more compact
segmentations and by being able to position the segmenta-
tion boundaries over image edges. This tends to fix errors
such as those due to specularities, cast shadows, or leaves
with uneven colors. Figure 11 illustrates this by showing a
comparison between EM + TW and EM + TW + GC on the
User dataset, where the difference between the two meth-
ods is more pronounced. Finally, another common issue is
the presence of false positives in the outer regions of the
images. These are caused either due to poor illumination
or an unexpected absence of the light-colored background.
The post-processing step we add to the various methods is
able to fix this problem in most cases, as exemplified in
Fig. 12.

After visually assessing all of the results, we have the
following qualitative observations. As noted in Sect. 1,
the following general difficulties were noted on these
datasets: images with small pine leaves; complex compound
leaves; uneven illuminations; cast shadows; specularities;

123

1640 J. V. B. Soares, D. W. Jacobs

Fig. 9 Segmentation results on the Lab dataset illustrating the diffi-
culty of traditional methods with pine leaves. From top to bottom: orig-
inal image, result of GrabCutP (GrabCut, plus post-processing), and
result of EM + TW + GCP (EM with trained pixel weighting and graph
cut, followed by post-processing). The images are ordered by overlap
ratio between the two segmentations, so that the left-most image has

the most dissimilar segmentations, with the similarity increasing as we
move right. In order to better illustrate the range of differences, every
eighth image is shown. Most images have been cropped closely to the
leaves after segmentation, for better visualization. The original image
sizes range from about two to five times larger in each dimension

Fig. 10 Segmentation results on the Lab dataset illustrating the effects
of training for EM pixel weighting. From top to bottom original image,
result of EM (with pixel weighting using a manually delineated region),
and result of EM + TW (EM with trained pixel weighting). The images
are ordered by overlap ratio between the two segmentations, so that the

left-most image has the most dissimilar segmentations, with the simi-
larity increasing as we move right. In order to better illustrate the range
of differences, every eighth image is shown. The first image and the
third to last image show zoomed-in details of the originals for better
visualization

natural variations in color; and venations. Overall, even for
EM + TW + GC, which performs very well, there appears to
be a good amount of room for improvement due to these
difficulties. The User images proved to be much more chal-
lenging than the Field and Lab, due to the large variety of
imaging conditions.

6 Conclusion

We have presented a study on efficient segmentation of leaves
in semi-controlled conditions. The recent development of
interactive applications for plant species identification based
on computer vision created a situation in which this kind of

123

Efficient segmentation of leaves 1641

Fig. 11 Segmentation results on the User dataset illustrating the effects
of adding the graph cut step. From top to bottom original image, result of
EM + TW, and result of EM + TW + GC. The images are ordered by the

overlap ratio between the two segmentations, so that the left-most image
has the most dissimilar segmentations, with the similarity increasing as
we move right

Fig. 12 Segmentation results on the User dataset illustrating the effects
of post-processing. From top to bottom original image, result of EM,
and result of EMP (EM with post-processing). The images are ordered
by the overlap ratio between the two segmentations, so that the left-
most has the most dissimilar segmentations, with the similarity increas-
ing as we move right. In order to better illustrate the range of differ-
ences, every eighth image is shown. Note the post-processing procedure
was in error on the left-most image, though in all the other images it
improved the segmentations. The post-processing error on the leftmost

image occurred due to the following. In post-processing, we begin by
dilating the segmentation, so that close by segments get merged together.
This caused the leaf part of the segmentation to merge to the large seg-
ment that surrounds it. This merger was not expected by our algorithm
and resulted in the error. The surrounding segment with which the leaf
segment merged falls outside the sheet of paper in the original image,
and ideally should be eliminated. However, in this case the complete
merged segment was later judged to be lying along the image boundary,
and was eliminated as a whole

segmentation method would be useful. The results showed
that several general-purpose segmentation algorithms do not
work satisfactorily on this problem when they are tested
over large datasets containing a variety of species. Some of
the methods experimented with are too slow, or have steep
memory requirements. Other methods were able to work rea-
sonably well, but would require important modifications in

order to produce competitive results across the different leaf
species.

In order to address the segmentation problem, we have
extended a previous segmentation method, based on color
space clustering [26]. First, we use the graph cut formu-
lation on top of the EM clustering results to help over-
come problems due to shadows and specularities. This allows

123

1642 J. V. B. Soares, D. W. Jacobs

us to incorporate image edges as an important cue. Sec-
ond, we adjust the method’s parameters using training. By
introducing training with manual segmentations, the method
was able to work well on different leaf datasets with min-
imal manual parameter adjustment. In practice, the result-
ing method is fast and presents state-of-the-art results. In
our quantitative experiments, it consistently showed to be
among the top performing methods, while the qualitative
results clearly showed the benefits of the newly proposed
extensions.

Considering that segmentation will be applied within an
interactive application, one line of improvement is to allow
a user to guide the segmentation process, by interactively
indicating leaf and background regions such as in the work
of Boykov and Jolly [9]. Another line of improvement could
consider more complex models, by adding pixel classes cor-
responding to cast shadows, specularities, or venations, and
restrictions on the relative colors and positions between dif-
ferent classes, or on their shapes.

Acknowledgments The authors would like to gratefully acknowledge
Peter N. Belhumeur, Neeraj Kumar, and Arijit Biswas for helping orga-
nize the collections of images used in this work. W. John Kress, Ida
C. Lopez, and collaborators at the Smithsonian Institution’s Depart-
ment of Botany collected and curated the Lab and Field datasets. The
authors are grateful to Aditya Malik for manually segmenting several
of the leaf images and for helpful discussions. We would also like to
acknowledge the authors of the several segmentation methods whose
publically available implementations we have used. This work was sup-
ported by National Science Foundation grants #0968546, #0325867,
and #1116631.

References

1. Agarwal, G., Belhumeur, P., Feiner, S., Jacobs, D., Kress, W.J.,
Ramamoorthi, R., Bourg, N.A., Dixit, N., Ling, H., Mahajan, D.,
Russell, R., Shirdhonkar, S., Sunkavalli, K., White, S.: First steps
toward an electronic field guide for plants. Taxon 55(3), 597–610
(2006)

2. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by
probabilistic bottom-up aggregation and cue integration. In: Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

3. Arbelaez, P., Fowlkes, C., Martin, D., Malik, J.: Berke-
ley segmentation and boundary detection benchmark and
dataset (Accessed 2011). http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/resources.html

4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection
and hierarchical image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 33(5), 898–916 (2011)

5. Arora, A., Gupta, A., Bagma, N., Mishra, S., Bhattacharya, A.: A
plant identification system using shape and morphological features
on segmented leaflets. In: Working Notes of CLEF 2012 Confer-
ence (2012)

6. Bakic, V., Yahiaoui, I., Mouine, S., Litayem, S., Ouertani, W.,
Verroust-Blondet, A., Goëau, H., Joly, A.: Inria IMEDIA2’s partic-
ipation at ImageCLEF 2012 plant identification task. In: Working
Notes of CLEF 2012 Conference (2012)

7. Belhumeur, P., Chen, D., Feiner, S., Jacobs, D., Kress, W., Ling,
H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L.:
Searching the world’s herbaria: A system for visual identification

of plant species. In: European Conference on Computer Vision, pp.
116–129 (2008)

8. Bishop, C.M.: In: Pattern recognition and machine learning. Infor-
mation Science and Statistics. Springer, New York (2006)

9. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal bound-
ary & region segmentation of objects in N-D images. In: Inter-
national Conference on Computer Vision, vol. 1, pp. 105–112
(2001)

10. Boykov, Y., Kolmogorov, V.: An experimental compari-
son of min-cut/max-flow algorithms for energy minimization
in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9),
1124–1137 (2004)

11. Camargo Neto, J., Meyer, G.E., Jones, D.D.: Individual leaf extrac-
tions from young canopy images using Gustafson-Kessel cluster-
ing and a genetic algorithm. Comput. Electron. Agric. 51(1), 66–85
(2006)

12. Casanova, D., Florindo, J.B., Gonçalves, W.N., Bruno, O.M.:
IFSC/USP at ImageCLEF 2012: Plant identification task. In: Work-
ing notes of CLEF 2012 Conference (2012)

13. Cerutti, G., Antoine, V., Tougne, L., Mille, J., Coquin, D., Vacavant,
A.: ReVeS Participation—Tree species classification using random
forests and botanical features. In: Working Notes of CLEF 2012
Conference (2012)

14. Chai, Y., Lempitsky, V., Zisserman, A.: BiCoS: A bi-level co-
segmentation method for image classification. In: International
Conference on Computer Vision (2011)

15. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level
vision. In: International Conference on Pattern Recognition, vol.
4, pp. 150–155 (2002)

16. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward
feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell.
24(5), 603–619 (2002)

17. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale
graph decomposition. In: Computer Vision and Pattern Recogni-
tion, pp. 1124–1131 (2005)

18. Dixon, W.J., Mood, A.M.: The statistical sign test. J. Am. Stat.
Assoc. 41(236), 557–566 (1946)

19. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image
segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

20. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd
edn. Academic press, San Diego (1990)

21. Galun, M., Sharon, E., Basri, R., Brandt, A.: Texture segmentation
by multiscale aggregation of filter responses and shape elements.
In: Computer Vision and Pattern Recognition (CVPR), pp. 716–
723 (2003)

22. Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthélémy, D., Bou-
jemaa, N., Molino, J.: The ImageCLEF 2012 plant identification
task. In: Working Notes of CLEF 2012 Conference (2012)

23. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Ham-
mers, A.: Automatic anatomical brain MRI segmentation combin-
ing label propagation and decision fusion. NeuroImage 33(1), 115–
126 (2006)

24. Kohli, P., Ladick, L., Torr, P.H.S.: Robust higher order potentials
for enforcing label consistency. Int. J. Comput. Vis. 82(3), 302–324
(2009)

25. Kumar, M., Torr, P., Zisserman, A.: Obj Cut. In: Computer Vision
and Pattern Recognition, vol. 1, pp. 18–25 (2005)

26. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J.,
Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for
automatic plant species identification. In: European Conference on
Computer Vision, pp. 502–516 (2012)

27. Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Com-
put. Vis. 68(2), 179–201 (2006)

28. Leung, T., Malik, J.: Contour continuity in region based image
segmentation. In: European Conference on Computer Vision, pp.
544–559. Springer, Berlin (1998)

123

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

Efficient segmentation of leaves 1643

29. Manh, A.G., Rabatel, G., Assemat, L., Aldon, M.J.: Weed leaf
image segmentation by deformable templates. J. Agric. Eng. Res.
80(2), 139–146 (2001)

30. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE
Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

31. Nilsback, M.E., Zisserman, A.: Delving into the whorl of flower
segmentation. In: BMVC (2007)

32. Nilsback, M.E., Zisserman, A.: Automated flower classification
over a large number of classes. In: Indian Conference on Computer
Vision, Graphics and Image Processing (2008)

33. Open source computer vision library (OpenCV). http://opencv.org/
34. Otsu, N.: A threshold selection method from gray-level histograms.

IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
35. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive fore-

ground extraction using iterated graph cuts. In: SIGGRAPH, pp.
309–314 (2004)

36. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierar-
chy and adaptivity in segmenting visual scenes. Nature 442(7104),
719–846 (2006)

37. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

38. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie,
S., Perona, P.: Caltech-UCSD birds 200. Tech. Rep. CNS-TR-2010-
001, California Institute of Technology (2010)

39. Yanikoglu, B., Aptoula, E., Tirkaz, C.: Sabanci-Okan System at
ImageClef 2012: Combining features and classifiers for plant iden-
tification. In: Working Notes of CLEF 2012 Conference (2012)

Author Biographies

João V. B. Soares received his B.S. and M.S. degrees from the Depart-
ment of Computer Science at the University of São Paulo, Brazil, respec-
tively, in 2004 and 2006. He then worked for a year in the same depart-
ment as a research scientist. In 2007, he spent a year as a Ph.D. student
with the Computer Science and Engineering department of the Pennsyl-
vania State University. Since 2008, he is a Ph.D. student in the Depart-
ment of Computer Science at the University of Maryland. João V. B.
Soares has research interests in computer vision and machine learning.
His prior work includes segmentation of blood vessels from images
of the human retina, to be applied in their automated analysis. He has
participated in the work on Leafsnap, an app that uses computer vision
for plant species identification and that currently has over a million
downloads.

Dr. David W. Jacobs is a professor in the Department of Computer
Science at the University of Maryland with a joint appointment in the
University’s Institute for Advanced Computer Studies (UMIACS). He
received the B.A. degree from Yale University in 1982. From 1982 to
1985, he worked for Control Data Corporation on the development of
data base management systems, and attended Graduate School in Com-
puter Science at New York University. From 1985 to 1992, he attended
M.I.T., where he received M.S. and Ph.D. degrees in Computer Sci-
ence. From 1992 to 2002, he was a Research Scientist and then a Senior
Research Scientist at the NEC Research Institute. In 1998, he spent a
sabbatical at the Royal Institute of Technology (KTH) in Stockholm, and
in 2008 spent a sabbatical at the Ecole normale supérieure de Cachan.
In 2002, he joined the Computer Science department at the University
of Maryland. Dr. Jacobs’ research has focused on human and computer
vision, especially in the areas of object recognition and perceptual orga-
nization. He has also published articles in the areas of motion under-
standing, memory and learning, computer graphics, human computer
interaction, and computational geometry. He has served as an Associate
Editor of IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, and has assisted in the organization of many workshops and
conferences, including serving as Program co-Chair for CVPR 2010.
He and his co-authors received honorable mention for the best paper
award at CVPR 2000. He also co-authored a paper that received the best
student paper award at UIST 2003. In collaboration with the researchers
at Columbia University and the Smithsonian Institution he created Leaf-
snap, an app that uses computer vision for plant species identification.
Leafsnap has been downloaded over a million times, and has been used
in biodiversity studies and in many classrooms. Dr. Jacobs and his col-
laborators have been awarded the 2011 Edward O. Wilson Biodiversity
Technology Pioneer Award for the development of Leafsnap.

123

http://opencv.org/

	Efficient segmentation of leaves in semi-controlled conditions
	Abstract
	1 Introduction
	2 Related work
	3 Proposed segmentation method
	3.1 Expectation-Maximization in saturation-value space
	3.2 Graph cut
	3.3 Post-processing

	4 Experimental evaluation
	4.1 Datasets
	4.2 Evaluation of over-segmentations
	4.3 Methods and settings
	4.4 Performance metrics
	4.5 Testing for statistically significant differences

	5 Results
	6 Conclusion
	Acknowledgments
	References

