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Abstract The paper presents a method for estimating the
number of moving people in a scene for video surveillance
applications. The method performance has been character-
ized on the public database used for the PETS 2009 and
2010 international competitions; the proposed method has
been compared, on the same database, with the PETS com-
petitions participants. The system exhibits a high accuracy,
and revealed to be so fast that it can be used in real time
surveillance applications. The rationale of the method lies
on the extraction of suited scale-invariant feature points and
the successive selection among them of the moving ones,
under the hypothesis that the latter are associated to moving
people. The perspective distortions are taken into account by
dividing the input frames into smaller horizontal zones, each
having (approximately) the same perspective effects. There-
fore, the evaluation of the number of people is separately
carried out for each zone, and the results are summed up.
The most important peculiarity of the proposed method is the
availability of a simple training procedure using a brief video
sequence that shows a person walking around in the scene; the
procedure automatically evaluates all the parameters needed
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by the system, thus making the method particularly suited
for end-user applications.
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1 Introduction

Knowing the number of people present in an area is such
an important issue in the framework of video analysis appli-
cations that an increasing number of papers on this topic
have been proposed in the recent past. Among the appli-
cations where this issue is encountered, we can cite video
surveillance (an excessive number of persons in an area may
constitute a security or safety hazard), public transportation
monitoring, and business intelligence (e.g. determining how
customers are distributed within a large shopping mall).

Despite the fact that recently some pioneering systems
have been made commercially available, further improve-
ments are still necessary, especially concerning their gener-
ality and flexibility. Many aspects make the problem really
challenging: systems are required to work in real time on
general purpose computers, possibly in parallel on differ-
ent video streams coming from megapixel cameras, so as to
supply up to date information on crowd density. Of course,
the computational load is crucial but it is a less important
issue than the expected accuracy, especially if the output is
used for safety issues. The estimation accuracy of the num-
ber of people must be sufficiently high, even in the presence
of dense crowds. To this concern, it is worth pointing out
that in these situations only parts of people bodies appear
in the image; the occluded parts generally cause significant
underestimation in the counting process; it means that the
partial occlusions must be forecast and suitably taken into
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account starting from the information about the crowd den-
sity. Another crucial point is the unavoidable presence of
perspective distortions: people far from the camera appear
small while the near ones are significantly bigger. Therefore,
counting methods must deal with these perspective issues, in
order to obtain an estimation independent of the local scale
of the image. Moreover, it is convenient that the system is
able to work with uncalibrated cameras, as a fine calibra-
tion is generally time consuming and demands for suitable
technical skills, not always possessed by the end user. Con-
sequently, the availability of simple tuning procedures that
require no knowledge about the internal organization of the
algorithm and depend only on simple geometric properties
derivable from the scene, is an extremely desirable feature.

The literature presents two different approaches. The
direct approach (also called detection-based), relies on the
individual detection of the single persons, using adequate
segmentation and object detection algorithms; in this way,
the number of people is then trivially obtainable. On the
other hand, in the indirect approach (also called map-based
or measurement-based), the number of people is estimated
by measuring the occurrence of suitably defined features that
do not require the separate detection of each person in the
scene; these features are then somehow put in relation to the
number of people.

The direct approach presents the advantage that people
detection is often already performed on a scene for other pur-
poses; as long as people are correctly segmented, the count
is not affected by perspective, people densities and, to some
extent, partial occlusions. On the other hand, people segmen-
tation is a complex task, often providing unreliable outputs,
especially in crowded conditions, which are of primary inter-
est for people counting. Recent and well-known examples of
the direct approach are [3,16] and [18].

Indirect approaches are based on the extraction of suitably
defined measurements and raise the problem of finding an
accurate correspondence between these measurements and
the number of people. Some methods belonging to this cat-
egory propose to base the people estimation on the amount
of moving pixels [6], blob size [9], fractal dimension [11] or
other texture features [15]. Despite their simplicity, promis-
ing performance in terms of estimation accuracy are obtained
by the approach proposed in [1,4,7]; all them have been
submitted to the PETS 2009 and 2010 contests on people
counting, and achieved very encouraging results. In par-
ticular, in Albiol’s paper [1], the authors use the corner
points (detected using the Harris’ algorithm [8]) as features.
Although Albiol’s method has proved to be quite robust, con-
firming the validity of its rationale, its accuracy decreases in
presence of highly complex scenes, with large depth vari-
ations (people moving in the direction of the camera) and
highly crowded moving groups. The authors in [7] explicitly
deal with the perspective effects and occlusions; a trainable

regressor (the ε-SVR algorithm) is used to obtain the num-
ber of people as a function of the moving points, a function
made complex by the above mentioned effects. Experimen-
tal results demonstrated the improvements with respect to
the method by Albiol et al. However, this is obtained at the
cost of complex set up procedures for training the ε-SVR
regressor.

In this paper, we present a method that is able to obtain
performance comparable to those obtained by the method in
[7], but at the same time it is much simpler to implement and
to set up. The proposed approach deals with the perspective
effects on the estimation by subdividing the entire scene in
horizontal stripes; the latter have a size depending on their
distance from the camera, justifying the hypothesis of a lin-
ear relationship between the number of feature points and the
people contained. Moreover, a fully automated procedure for
training all the needed parameters is presented; a brief video
sequence taking a person walking around in the scene is ana-
lyzed for directly obtaining all the parameters needed by the
system.

The organization of the paper is the following: in the next
two sections, we describe the proposed approach and the
procedure for automatic training. Finally, we discuss exper-
imental results and draw some conclusions.

2 Rationale of the method

In the literature, there are several interpretations of the prob-
lem of people counting, frequently with significantly differ-
ent assumptions on the conditions under which the counting
system is expected to operate. Therefore, before starting to
describe our method, it is important to highlight the specific
assumptions underlying our method.

We work under the following hypotheses (which, any-
way, are those used by most of the approaches in the litera-
ture): the camera is stationary; the only objects present in the
scene are people; we are interested in measuring only the den-
sity of the flow of moving people, not the direction, speed
or any other information. The generality of these assump-
tions is proven by the presence of numerous datasets and
benchmarking activities, including contests, sharing these
hypotheses.

It is also useful to clarify what we mean by crowded
scenes. From the viewpoint of the difficulty of the task, a
scene in which individual people images do not overlap with
each other is easy to deal with: a tracking algorithm can
be applied, and then the count can be easily derived from
its outputs. Seldom occlusions also do not present a great
problem, since many tracking algorithms can effectively fol-
low a person across a short occlusion. The problem become
tougher when the people are partially occluded for a signifi-
cant portion of the time they appear in the scene. Therefore,
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we consider as crowded scenes those in which most of the
people in the scene are occluded for most of the time they
appear.

Now, let us turn our attention to the proposed algorithm.
The underlying idea of our approach is that each person
framed by a camera can be represented through a small num-
ber of salient points. Such points might be located at the
boundary of the silhouette and in some other points with high
discontinuities as eyes, mouth, nose, clothes, etc. Under the
assumption that people are the only moving objects in the
scene, the total number of persons can be estimated from
the set of the detected salient points exploiting their motion
information.

A first attempt at expressing the relation between the
salient points and the number of people was proposed by
Albiol et al. [1]:

P = ω · N (1)

where P is the estimated number of persons in the scene,
N is the number of detected salient points, which can be
associated to persons by using motion information, while ω

is a proportionality constant.
Actually, the hypothesis of representing a person by a con-

stant number of salient points is too simplistic as it does not
take into account several issues as, just to name a few, the
optical set up of the camera, the position of the person in
the scene with respect to the camera, different appearances
of the same person across the sequence but also among dif-
ferent persons, obstacles between the person and the camera
causing occlusions, variations of the background in time and
space, etc.

Thus, a generalization of Eq. 1 is required in order to
take somehow into account the above-mentioned factors. Of
course, the more general formulation would be an expression
of the number of people as a function of the set of the salient
points (i.e. depending not only on their number N but on all
the information associated to them):

P = φ({p1, . . . , pN }) (2)

where p1, . . . , pN are the detected salient points. How-
ever, since function φ is unknown, and must be constructed
through a learning process, its structure must be somewhat
constrained. In order to have a formulation that is more gen-
eral than Eq. 1 while keeping a simple structure that allows
for the application of a learning algorithm, we can reinterpret
Eq. 1 as stating that each salient point pi gives an additive
contribution to the count P , which is assumed to be indepen-
dent of the point itself:

P = ω · N =
N∑

i=1

ω (3)

This reformulation lends itself very well to a generaliza-
tion that extends considerably the ability to incorporate other
factors in the counting without loosing the structural simplic-
ity of the equation: instead of assuming that the contribution
of each salient point is a constant, it can be considered as a
function of the point itself. Thus, the equation is reformulated
as:

P =
N∑

i=1

ω(pi ) (4)

Notice that this formulation makes very easy to include infor-
mation that is local to each single point (and to its neighbor-
hood); the underlying assumptions are that local information
is sufficient for the counting problem, and that this informa-
tion can be combined additively. Of course, the ω(.) function
may not use all the available information associated with each
pi , but only a suitably chosen subset.

An approach using this formulation is presented in [7]
where the ω(.) functions depends on the distance of the per-
sons from the camera and on the local salient points density.
The latter information is adopted as an implicit estimate of
the amount of occlusion due to high crowd density. An ε-SVR
regressor is used to learn ω(.) from a set of training frames
in which the points belonging to each person are manually
given a different label. This method showed to be much more
effective than [1] when used on difficult scenes. Neverthe-
less higher performance is obtained at the cost of complex
training procedures that have to be carried out for each cam-
era installation. Notice that the performance of this method
cannot be improved straightforwardly by incorporating more
information in ω(.): in fact, while in theory, the accuracy of
ω(.) would be increased given an infinite training set; in real
cases, the higher complexity of the ε-SVR estimator would
require a significant increment of the actual training set as
demonstrated in the framework of the Statistical Learning
Theory by Vapknik and Chervonenkis. This in turn would
make the system unsuitable for actual use, due to the higher
costs for its training.

In this paper, we propose a method that provides a good
compromise between the two opposite requirements of effec-
tiveness and ease of deployment. The result is a method that
is able to perform as well as the sophisticated method in
[7] but maintaining the overall deployment simplicity of the
method [1].

In order to achieve this result, our method is based on the
following ideas:

– The ω(.) function depends only on the distance of the
salient point from the image plane:

P =
N∑

i=1

ω (d (pi )) (5)
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where d(pi ) is the distance. Note that implicitly ω(.)

depends also on the camera settings, since it has to be
trained separately for each camera.

– ω(.) is modeled as a piecewise constant function, by hav-
ing the scene divided into horizontal bands and using
a constant value for each band; this simplifies both the
computation (avoiding the need to perform an Inverse
Perspective Mapping) and the training.

– The learning of ω(.) is performed using an original auto-
matic procedure, that only requires the acquisition of
a short video sequence; the training does not require
that the persons in the video are manually segmented,
as needed by other techniques.

In the following subsections, we will present the details of
our method. First, we will describe the salient point extraction
and classification, and then estimation of the people count.
The automatic training procedure will be described in Sect. 3.

2.1 Salient points extraction and classification

In the literature, there is a wide variety of salient points detec-
tors and descriptors. Some comparative studies in [12] and
[13] have demonstrated that Hessian-based detectors have to
be preferred with respect to other approaches as they provide
better performance in terms of both stability and repeatabil-
ity. Drawing from the observation that real-world objects are
composed of different structures at different scales, Hessian-
based detectors, as many other ones, find salient points by
analyzing the image at different scales. In the category of
the Hessian-based detectors, the SURF algorithm in [2] has
gained a large popularity since its first appearance, because
of its effectiveness and efficiency. The interest points found
by SURF are more independent of scale and, thus, of distance
from camera than the ones provided by other detectors. They
are also independent of rotation, which is important for the
stability of the points located on the arms and on the legs of
the people in the scene.

The points detected are successively classified as static
or moving. Under the assumption that persons are the only
moving elements into the scene, the classification is aimed at
pruning the static points, as they are not associated to people.

We explore two different types of approaches for the clas-
sification of salient points: the classification by motion vector
estimation and the classification by local difference. With
the first one, we estimate the motion vector associated to
each salient point and discriminate between static and mov-
ing ones on the basis of the vector magnitude. With the
second approach, we rely on the color intensity variations
between a set of homologous pixels around the salient point
in the current and in a previous reference frame. We expect
that the first approach should assure better classification

performance, but at a higher computational cost, than the
second approach.

2.1.1 Classification by motion vector estimation

Each salient point p(x) detected in the position x in the frame
at time t is attributed a motion vector v(x), calculated with
respect to a reference frame at time t-�, and is consequently
classified:

p(x) =
{

moving point if |v(x)| > 0
static point if |v(x)| = 0

(6)

The motion vector v(x) is obtained using a block match-
ing technique, by which the block x is matched to a set of
candidate blocks in a reference (earlier) frame. Then, v(x) is
determined as the displacement of the best matching block in
the reference frame with respect to the location of the block
in the current frame. Matching is based on a criterion that
measures the dissimilarity between two blocks.

We used squared blocks (with sides of 2n + 1 pixels) and
evaluated the dissimilarity of the block centered in x = (x, y)

in the current frame Icurr and a block shifted by s = (k, l)
with respect to x in the reference frame Iref , as the mean of
the absolute values of the color differences of the pixels in
the two blocks:

M (x, s)

=
∑n

i=−n
∑n

j=−n
∑C

c=1

∣∣I c
curr(x + i, y + j) − I c

ref (x + k + i, y + l + j)
∣∣

(2n + 1)2

(7)

where C is the number of the image color channels and
I c(·, ·) is the intensity value of the pixel in the cth color
channel.

Furthermore, block matching requires the definition of
suitable searching algorithms for exploring a search area; the
latter, possibly containing the candidate blocks in the previ-
ous frame, can be made more or less wide. A fully exhaustive
approach extends the search everywhere in the frame with a
significant computational expense without considering that
the motion of the objects of interest (the persons) is much
smaller than the frame size. Simply limiting the search pro-
cedure to a window centered on the considered block with a
size slightly larger than the maximum possible motion of the
persons would significantly reduce the number of candidate
blocks without introducing estimation errors. Considering a
squared search area with side m, the number of candidate
blocks analyzed following this approach is Θ(m2). Here-
inafter, we will refer to this motion estimation algorithm as
window search.

A further reduction of the processing time is possible by
adopting other search methods [10] (as three step search,
2D-logarithmic search, cross search, ...) which determine a
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Fig. 1 Example of the three step search algorithm with step size s = 4.
Each number represents the location of candidate blocks at a given
iteration. The shaded boxes are the location of the best match at each
iteration, while the arrow is the estimated motion vector

suboptimal solution to the problem reducing the number of
candidate blocks to analyze to Θ(log s) where s is a parame-
ter called the step size; the search area has a size of 22·s pixels.
In Fig. 1, it is shown an example of the analysis performed
by the three step search algorithm.

In order to reduce the effect of noise, it is possible to incor-
porate zero-motion biasing into the block matching tech-
nique. The current block is first compared with the block
at the same location in the previous frame, before doing
the search: if the difference between these two blocks is
below a threshold (γZM), the search is terminated result-
ing in a zero motion vector without analyzing the neigh-
bor points. Zero-motion biasing allows to reduce the false
motion, due to image noise, and the processing time, by elim-
inating searches; unfortunately, it may produce some false
negatives by assigning a zero motion vector to a non static
point. Hence, the right value of γZM has to be determined as
the best trade off between the two opposite effects.

2.1.2 Classification by local difference

Since we are not interested to the exact value of the motion
vector, but only in discriminating between moving and static
points, we propose to adopt an approach that simply classifies
a point as static or moving if the difference between the blocks
centered on it in the current and in the reference frame is
below or above γZM. In particular,

p(x) =
{

moving point if M(x, 0) > γZM

static point if M(x, 0) ≤ γZM
(8)

where p(x) is the interest point, while M(x, 0) measures the
dissimilarity of the block in x in the current frame and the
homologous block in the reference frame. We expect that this
approach should preserve the same classification accuracy
of the previous approaches, but could significantly reduce
processing time as it has to analyze just one candidate block.

2.2 People number estimation

According to the assumptions made at the beginning of this
section, the total number P of persons into the scene is esti-
mated using Eq. 5, which relates the contribution of each
salient point pi to its distance from the image plane d(pi )

through the use of the ω(.) function. The distance from the
image plane has been considered because, assuming that the
camera lens has a negligible nonlinear distortion, the appar-
ent size of the objects depends on this measure.

The value of d(pi ) could be computed from the position
of the point within the image using the Inverse Perspective
Mapping (IPM) [17], assuming that the points lie approxi-
mately on a common ground plane; however, this technique
would require an accurate calibration of the camera parame-
ters, which would complicate the deployment of the system.
In order to overcome this problem, we adopt an approach
based on two considerations exposed below.

First, if the camera is properly aligned with the ground
plane, the set of points having a given distance from the image
plane will lie on a horizontal line of the image; this alignment
is very easy to obtain during the camera installation if a great
accuracy is not required, and it is routinely performed on
cameras because a human viewing the scene would find it
somewhat disturbing if it is badly aligned with the horizon.
Thus, if we consider the points that are within a same narrow
horizontal band of the image, we can assume that they have
a very similar value for d(pi ), and so we do not incur in a
significant error if we use the same ω(.) value for all of them.

Second, while the above-mentioned approximation is
more accurate the narrower the band is, there is no real advan-
tage in having a band whose height is smaller than the appar-
ent height of a person. In fact, in that case, the accuracy on the
estimate of d(pi ) would be limited anyway by the error due
to the fact that the salient points do not lie all on the ground
plane, and, to a lesser extent, to the imperfect alignment of
the camera and to the nonlinear distortion of the lens.

Based on this considerations, our method partitions the
image into horizontal bands whose height corresponds to the
apparent height of an average person. Note that this height is
not uniform across the image: it is larger at the bottom, that
corresponds to an area closer to the image plane, and becomes
smaller when approaching the horizon line. The value of ω(.)
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Fig. 2 On top, sample frames
with (yi , hi ) couples; on bottom,
the analytical expression of the
function h = f (y)

is assumed to be constant for all the salient points lying in a
same band, and is determined using a training algorithm that
will be presented later.

Accordingly, Eq. 5 is modified as:

P =
N∑

i=1

ω
(
Bpi

)
(9)

where Bpi is the band the point pi belongs to.
Notice that since the values of ω(.) are obtained using a

training procedure, there is no need to compute explicitly the
distance from the image plane corresponding to each band,
and thus to obtain the calibration parameters for the IPM.

Once the set of the weigths Ω = {ω (Bk)} of the bands
have been determined, it is possible to calculate the total
number of persons in the scene by Eq. 9.

3 Automatic training procedure

The set up procedure of the method can be decomposed in
two phases: the partition of the image into a set of horizontal
bands, each having the height corresponding to the apparent
height of an average person in the corresponding portion of
the scene; and the computation for each band Bk of the value
of ω(Bk) to be used in Eq. 9.

The first phase requires the determination of the height of
the bands; these are depending on the geometrical parame-
ters of the systems, such as the focal length and the relative
position of the camera in the environment; a closed formula
is obtainable, at least in the more general case, if the camera
has been suitably calibrated.

However, camera calibration is a costly procedure that
requires skilled personnel, not always available at installa-
tion time. To overcome this problem, we propose here an
automatic procedure using a short video sequence with a per-
son (with height between 1.6 and 1.8 m) that randomly walks
within the scene in different directions, so as to obtain a good
coverage of the visual area. From each frame, we extract the
moving salient points and automatically determine the verti-
cal position yi of the person in the image coordinate system,
and the corresponding apparent height hi ; once a sufficient
number of these couples (yi , hi ) have been extracted, it is
possible to obtain, by a regression method, the analytical
expression of the function h = f (y) that gives the height in
pixel of the person in the position y of the image. More pre-
cisely, if we assume that the nonlinear distortion of the lens is
negligible, and the camera angle with respect to the horizon-
tal plane is not very large, f is reasonably well approximated
by a linear model:

h = f (y) ≈ a · y + b (10)

The a and b coefficients can be determined by linear regres-
sion of the (yi , hi ) data, using the method of least squares.
Fig. 2 shows an example with the obtained (yi , hi ) pairs and
the corresponding optimal f coefficients.

The f function is successively used for partitioning the
frame in bands by an iterative procedure; the first band, say
B0, is by definition located at the bottom of the frame, and
so y0 = 0 (in our reference system the y-axis has the origin
at the bottom of the frame); its height is so calculated as
h0 = f (y0). By iterating the process, the second band B1 is
positioned immediately on top of B0, at row y1 = y0 + h0 =
0+h0 = h0 of the image, and its height is h1 = f (y1). In the
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Fig. 3 Subdivision of the
frames of the video sequences
for the test coming from the
PETS 2009 dataset, view 1 (a)
and view 2 (b). The height of
each band approximatively
corresponds to the height of a
person in real world coordinates

most general case, the position and the height of the ith band
are yi = yi−1 + hi−1 and hi = f (yi ). The iterative process
is terminated when either the image has been completely
scanned or the height of a band is below a certain threshold.
The latter situation occurs in installations characterized by a
large field depth; in this case the upper part of the frame is
excluded from the analysis.

An example of the division of the frame in bands is shown
in Fig. 3 where it is possible to visually verify that the height
of some bands is perfectly coincident with the height of a
person.

The computation of the set of weights Ω is carried out
by acquiring another short video taking a group of persons,
whose number is known, walking at random across the scene.
Actually, it is not required that the number of persons is con-
stant, but this makes the training procedure easier for the
user, since he/she has to input this information to the training
software only once. Given the video, the values of ω(Bk) are
computed using the least square method, as detailed below.
For simplicity of notation, in the remainder of this section
we will use the shorthand ωk to represent ω(Bk).

Given the training video sequence, the system computes
for each frame f the salient points, and then classifies them
into static and moving points. The moving points are com-
pared with the previously defined bands, counting how many
points lie in each band; let N f k be the number of moving
salient points present at frame f in band Bk . The system also
knows the number of persons in frame f , that we will denote
as Pf (as previously said, Pf is usually constant, although
the training method does not require this).

From these data, the training algorithm finds the optimal
values for the ωk by minimizing the following quadratic error
measure:

E =
∑

f

(
Pf −

∑

k

ωk · N f k

)2

(11)

Since the error term is quadratic with respect to the
unknowns, ωk , we can find the minimum by computing the
gradient of E and setting it to 0; in this way we obtain for
each band Bk an equation:

∑

j

ω j ·
⎛

⎝
∑

f

N f j · N f k

⎞

⎠ =
∑

f

P f · N f k (12)

Having as many equations as unknowns, the equation sys-
tem is easily solvable as long as the corresponding matrix
is well conditioned. The matrix will be ill conditioned if
not all the bands have been crossed by the people in the
scene, or the scene is so crowded that the number of points
in some of the bands remains almost constant. The train-
ing system detects these situations by computing the con-
dition number of the matrix, and prompts the user for the
acquisition of more frames if the provided ones are not
sufficient.

4 Experimental results

The performance of the proposed method has been assessed
on the PETS2009 [14] dataset and the UCSD Pedestrian
Dataset [5] (UCSD in the following).

The PETS2009 dataset is organized in four sections, but
we focused our attention primarily on the section named
S1 that was used to benchmark algorithms for the “Per-
son Count and Density Estimation” PETS2009 and 2010
contests. The videos used for the experimentations refer
to two different views obtained by using two cameras that
contemporaneously acquired the same scene from differ-
ent points of view. The videos in the dataset were framed
at about 7 fps with a 4 CIF resolution (704 × 480 pix-
els). We used four videos of view 1, namely S1.L1.13-57,
S1.L1.13-59, S1.L2.14-06 and S1.L3.14-17, and four videos
of view 2, namely S1.L1.13-57, S1.L2.14-06, S1.L2.14-31
and S3.MF.12-43. The videos related to view 1 are the same
ones used in the people counting contest held in PETS2009.
The videos related to view 2 are characterized by a wide
field depth that makes the counting problem more difficult
to solve. For all the sequences we calculated the number of
people in the whole frame. The overall size of the UCSD
dataset is 2000 frames acquired at 10 frames per second.
Each frame is an 8-bit grayscale image, with dimensions
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Table 1 Some characteristics of the sequences of the datasets used for
assessing the performance of the proposed method

Video sequence View Avg # of people Max # of people

S1.L1.13-57 1 22 34

S1.L1.13-59 1 15 26

S1.L2.14-06 1 26 43

S1.L3.14-17 1 24 41

S1.L1.13-57 2 34 46

S1.L2.14-06 2 37 46

S1.L2.14-31 2 35 43

S3.MF.12-43 2 5 7

UCSD – 28 52

Fig. 4 Moving point classification performance of the WS, the TSS
and the LD methods for different values of the bias γZM given in terms
of Precision and Recall

238 × 158. The average and the maximum numbers of sub-
jects in the scene for each considered video are reported in
Table 1.

On these sequences, we have performed two groups of
tests. The tests in the first group were aimed at analyzing
the impact of the choice of the algorithm used for recog-
nizing the moving SURF points with respect to counting
accuracy and computational load. Specifically, we consid-
ered three approaches for points classification: the window
search and the three step search, both based on the motion
vector estimation, and the one providing classification by
local difference. Hereinafter, the above approaches are indi-
cated as WS, TSS and LD. In order to analyze the perfor-
mance of the proposed method when using the above three
points classification approaches, we carried out two types
of tests: the first test was aimed at evaluating their accu-
racy in static/moving points classification and the respec-
tive processing times, while in the second test we assessed
the estimation error of the proposed people counting method
when the above approaches are adopted.

Fig. 5 Classification performance of the WS, the TSS and the LD
methods in terms of the f-index for different values of the threshold
γZM

In the second group of tests, we compared the proposed
method with respect to other state of the art people count-
ing approaches on the considered datasets. In order to per-
form this comparison, we used a ground truth reporting the
number of visible persons in each frame. The output of each
considered method was confronted with the ground truth,
computing both an absolute and a relative error measure. The
following subsections provide more details on the performed
tests and a discussion of the obtained results.

4.1 Accuracy of moving point classification

We collected few dozens of sample frames equally distrib-
uted from view 1 and view 2 of the PETS 2009 dataset,
using videos that are distinct from those that have been used
for evaluating the algorithm performance. The SURF points
within these frames have been manually classified as mov-
ing or static. The resulting dataset was composed by almost
8.000 points of which about 10 % were moving ones.

We evaluated the classification performance of the WS, the
TSS and the LD methods in terms of Precision and Recall,
as a function of the bias threshold γZM. Results are shown in
Fig. 4. It is interesting to note that for low values of γZM (on
the left side of the plot), the three approaches tend to have low
values of the Precision and high values for the Recall. This
can be explained by considering the fact that the lower is γZM

the lower is the immunity to the noise introduced by the zero
motion biasing. The extreme case is represented by γZM = 0,
that is zero motion biasing is not used, for which we obtain
the minimum value of the Precision for each approach. How-
ever, the most interesting aspect is represented by the fact
that for higher values of γZM the differences among the three
curves are not appreciable. This behavior is more evident
when considering the plots in Fig. 5 where the classifica-
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Fig. 6 Processing time per frame of the WS, the TSS and the LD
methods for different values of the threshold γZM. The y-axis is in log
scale

tion performance is reported in terms of the f-index (the har-
monic mean of Precision and Recall), that allows to compare
directly the considered methods. The maximum value of the
f-index = 0.925 is obtained by WS with γZM = 4, while TSS
and LD have respectively f-index = 0.919 with γZM = 11 and
f-index = 0.918 with γZM = 11.5. This means that, at least
on the considered dataset, the WS guarantees a slightly bet-
ter accuracy in moving point classification with respect the
other approaches, while TSS does not provide any significant
advantages with respect to LD.

In Fig. 6 the plots of the processing time of the WS, the
TSS and the LD for different values of the threshold γZM are
shown. These results were obtained using a notebook with
an Intel(R) Core(TM)2 Duo CPU L9400 @1.86 GHz and the
following configurations for the moving point classification
algorithms: each point was represented through a 9×9 pixels
block and 21 × 21 pixels search area (this second parame-
ter is only for WS and TSS). It is possible to note that the
processing time of WS is one and two orders of magnitude
higher than TSS and the LD, respectively.

From the above-described experiment, we can draw the
conclusion that for values of γZM ≥ 8 the results of the three
approaches are quite similar in terms of Precision and Recall
(see Figs. 4, 5). From the point of view of processing time,
instead, LD is extremely faster than the other two search
strategies (see Fig. 6).

4.2 Accuracy of people number estimation

The training of the system was performed using the proposed
automatic training procedure on a video obtained by collect-
ing some short clips from the two datasets containing just
one person walking into the scene at different distances from
the camera. The frames were selected from other sequences
available in the PETS2009 dataset that where not used for the
tests. Similarly, we used the first 100 frames of the UCSD
dataset for training and the remaining 1900 frames for the
test.

Testing has been carried out by comparing the actual num-
ber of people in the video sequences and the number of people
calculated by the algorithm. The indices used to report the
performance are the Mean Absolute Error (MAE) and the
Mean Relative Error (MRE) defined as:

MAE = 1

Q
·

Q∑

i=1

|G(i) − T (i)| ,

MRE = 1

Q
·

Q∑

i=1

|G(i) − T (i)|
T (i)

(13)

where Q is the number of frames of the test sequence and
G(i) and T (i) are the guessed and the true number of persons
in the i th frame, respectively.

In Table 2, we have reported the performance of the pro-
posed method when the WS and the LD methods for points
classification are adopted. Performance are reported in terms
of the two indices MAE and MRE; we have also reported the

Table 2 Counting estimation
error and processing time
(in seconds) per frame of the
method with the WS and the LD
searching strategies

Video (view) WS LD

MAE MRE (%) Time MAE MRE (%) Time

S1.L1.13-57 (1) 1.37 6.9 1.730 1.36 6.8 0.208

S1.L1.13-59 (1) 2.58 15.6 1.395 2.55 16.3 0.201

S1.L2.14-06 (1) 5.44 20.7 1.678 5.40 20.8 0.208

S1.L3.14-17 (1) 2.74 15.1 1.629 2.81 15.1 0.218

S1.L1.13-57 (2) 9.13 23.9 0.952 4.45 15.1 0.207

S1.L2.14-06 (2) 17.74 43.6 0.871 12.17 30.7 0.203

S1.L2.14-31 (2) 6.61 21.7 1.347 7.55 23.6 0.222

S3.MF.12-43 (2) 1.60 34.6 0.637 1.64 35.2 0.206

USCD 4.44 15.1 0.244 3.20 10.9 0.046
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Table 3 Counting estimation
error of the Albiol’s algorithm,
of the Conte’s and of the
proposed ones on the considered
datasets

Video (view) Albiol [1] Conte [7] Our

MAE MRE (%) MAE MRE (%) MAE MRE (%)

S1.L1.13-57 (1) 2.80 12.6 1.92 8.7 1.36 6.8

S1.L1.13-59 (1) 3.86 24.9 2.24 17.3 2.55 16.3

S1.L2.14-06 (1) 5.14 26.1 4.66 20.5 5.40 20.8

S1.L3.14-17 (1) 2.64 14.0 1.75 9.2 2.81 15.1

S1.L1.13-57 (2) 29.45 106.0 11.76 30.0 4.45 15.1

S1.L2.14-06 (2) 32.24 122.5 18.03 43.0 12.17 30.7

S1.L2.14-31 (2) 34.09 99.7 5.64 18.8 7.55 23.6

S3.MF.12-43 (2) 12.34 311.9 0.63 18.8 1.64 35.2

UCSD 4.57 16.58 13.96 50.71 3.26 10.88

average processing time per frame (the experimental settings
are the same used for the experiments in Fig. 6).

It is worth noting that although LD is simpler than
WS, the people estimation accuracy still remains practi-
cally unchanged; surprisingly, there are some cases with a
significant performance improvement (videos S1.L1.13-57,
S1.L2.14-06 of view 2 from PETS2009 and the video
sequences from USCD). Furthermore, it is possible to note
that using LD allows to reduce drastically the computational
charge making possible to process the video sequences in
real time.

4.3 Comparison with other methods

Table 3 presents the comparison between the counting accu-
racy of our system and that of two other systems participating
to the PETS competition; in particular, methods in [1] and
[7], both belonging to the category of indirect methods and
top ranked as regards the counting accuracy. From the results
reported in Table 3, it is evident that the proposed method in
almost all cases outperforms Albiol’s technique with respect
to both MAE and MRE performance indices, while its per-
formance is often very close to those obtained by Conte’s
method. This aspect is more evident if we refer to the results
obtained on view 2. On ths UCSD dataset Conte et al. method
has particularly poor results (high underestimation), due to
the low resolution of the videos. In this case the proposed
method has better performance than both the others methods.

In order to have a deeper insight into the behavior of the
considered algorithms, Fig. 7 shows the estimated number of
people with respect to time for our algorithm, Albiol’s and
Conte’s over four video sequences of PETS dataset while
Fig. 8 shows the same estimations for the UCSD dataset.

The behavior of the considered algorithms with respect to
the video sequences of Fig. 7 can be explained by recall-
ing the main hypothesis at the basis of each of them.
Albiol’s method hypothesizes a linear relation between the

number of detected interest points and the number of per-
sons without taking into account the perspective effects
and the people density. As a result, this method provides
better results when tested on videos characterized by con-
ditions that are similar to those present in the training
videos. Conversely, the method by Conte et al. takes specif-
ically into account both the perspective and the density
issues, thus globally it provides better results. The proposed
method uses the same hypothesis of Albiol, using a lin-
ear relation between points and persons, but the adopted
proportionality factor depends also on the distance from
the camera in order to cope with perspective effects. Thus,
good performance have to be expected also in cases where
perspective is more evident, as in view 2 of the PETS
dataset.

Figure 7a refers to view 1 of video sequence S1.L1.13-
59 of the PETS dataset. This video is characterized by iso-
lated persons or very small groups of persons that gradually
enter and cross the scene with no or very small occlusions.
Figure 7b refers to the same camera view sequence S1.L2.14-
06 of the PETS dataset, but in this case, the persons cross the
scene in a large and compact group, resulting in a high degree
of occlusions among them. In both sequences, all the persons
move in a direction that is orthogonal to the optical axis of
the camera, so that their distance from the camera does not
change significantly during their permanence in the scene. In
this regard, the perspective effect is not the main issue. If we
consider these sequences, it is possible to observe that the
proposed algorithm shows different behaviors if compared
to the remaining two techniques: in fact, in one case, it pro-
vides the lowest value of the absolute estimation error, while
the other one performs the worst. The presence of occlusion
affects the performance of the proposed method; the higher
is the degree of occlusion the higher is the estimation error.
This can be simply explained by taking into account the fact
that the proposed method has been trained by considering
more samples of isolated persons than samples of groups of
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Fig. 7 Curves of the number of people in each frame estimated by the
Albiol’s algorithm, Conte’s and the proposed ones (using LD) together
with the ground truth on the video sequence S1.L1.13-59 view 1 (a),

S1.L2.14-06 view 1 (b), S1.L1.13-57 view 2 (c) and S3.MF.12-43 view
2 (d). On the x-axis, it is reported the frame number

persons. However, it should also be noted that if we consider
the relative estimation error the above described behavior
changes quite significantly as the performance of the pro-

posed method are much better. This fact is very interesting:
this means that even when the absolute estimation error is
higher in the average, this error is better distributed with
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Fig. 8 Curves of the number of people in each frame estimated by the Albiol’s algorithm, Conte’s and the proposed ones (using LD) together with
the ground truth on the video sequences of the UCSD dataset

Table 4 Counting estimation
error and processing time (in s)
of the proposed approach (using
LD) at 4 CIF and CIF
resolutions

Video (view) CIF 4CIF

MAE MRE (%) Time MAE MRE (%) Time

S1.L1.13-57 (1) 2.31 11.4 0.052 1.36 6.8 0.208

S1.L1.13-59 (1) 2.83 17.4 0.052 2.55 16.3 0.201

S1.L2.14-06 (1) 5.60 23.0 0.053 5.40 20.8 0.208

S1.L3.14-17 (1) 2.53 11.2 0.062 2.81 15.1 0.218

S1.L1.13-57 (2) 10.26 26.8 0.053 4.45 15.1 0.207

S1.L2.14-06 (2) 20.89 51.5 0.051 12.17 30.7 0.203

S1.L2.14-31 (2) 8.53 26.4 0.057 7.55 23.6 0.222

S3.MF.12-43 (2) 2.27 42.9 0.051 1.64 35.2 0.206

respect to Albiol’s approach and comparably with respect
to Conte’s one. More precisely, Albiol’s algorithm shows a
significant counting error even on frames with few people,
while both Conte’s and our method are always more accurate
in this situation.

Figure 7c, d is related to view 2 of the PETS dataset.
In this case, the correction of the perspective effects plays a
fundamental role in the performance improvements obtained
by the proposed method. In fact, in this case, the method of
Albiol et al. tends to overestimate or underestimate the num-
ber of persons when they are close to or far from the camera,
while it provides a good estimate only when the persons are
at an average distance from the camera (this is evident by
considering the Albiol and the ground truth curves in the
figure). On the contrary, the proposed method and Conte’s
one are able to keep the estimation error low along almost
all the sequence. The exception is represented by the last
part of sequence S1.L1.13-57 where all approaches tend to
underestimate the number of the persons: however, this can
be explained by considering that in this part of the video
the persons are very far from the camera and most of their
interest points are considered static. Sequence S1.L1.13-57
is characterized by a quite large and dense crowd that crosses
the scene in a direction that is almost parallel to the optical
axis of the camera. Interestingly, in spite of the high degree
of occlusion that characterizes the sequence, the proposed

method performs better than Conte’s method (Fig. 7c). This
can be explained by considering the fact that the latter method
infers the number of persons for each group obtained after the
clustering procedure assuming that the bottom points of the
cluster lie on the ground plane. This is a correct assumption
when the clustering algorithm provides groups constituted
by single persons or by persons close to each other and at
the same distance from the camera: in these cases, the error
in the estimation of the distance of the people from the cam-
era is negligible. As highlighted by the same authors, when
several persons at different distances from the camera are
aggregated in a single cluster, the distance estimation error
can be significant. On the contrary, the proposed method is
able to better cope with this situation due to the fact that the
contribution of each interest point to the final estimation of
the people number depends on the band which it belongs to.
The curve reported in Fig. 7d, related to view 2 of sequence
S3.MF.12-43, shows that when there are few isolated per-
sons in the scene Conte’s method can provide more accurate
results.

Figure 8 refers to the video sequence from the UCSD
dataset. This video does not present strong perspective
effects. Therefore, Albiol’s method does not suffer from the
above cited problems, but anyway the proposed method per-
forms better. Because of the low resolution, Conte’s method
underestimates the number of people on almost all frames.
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In Table 4, we report the results of a test aimed at assessing
the robustness of the approach with respect to frame resolu-
tion. In particular, we considered the same sequences of the
PETS dataset used in the previous tests, but at CIF resolution
352 × 240 pixels). The results show that a lower resolu-
tion causes a reduction in the counting accuracy, which still
remains acceptable, especially if we consider the relevant
decrease of the processing time.

5 Conclusions

In this paper, we have proposed a method for counting peo-
ple in video surveillance applications. The method has been
experimentally compared with the algorithm by Albiol et
al. and by Conte et al. that were among the best perform-
ing ones at the PETS 2009 and 2010 contests. The proposed
approach is in several cases more accurate than Albiol’s one
while retaining the same robustness and low computational
requirements. On the other hand, our method obtains accu-
racy results comparable to those yielded by the more sophisti-
cated approach by Conte et al., even on very complex scenar-
ios as the one occurring in view 2 of the PETS2009 dataset;
however, differently from the approach of Conte et al. the pro-
posed method does not require a complex set up procedure.

In this paper, we addressed also the complexity of the
set-up procedures during installation. In particular, we have
proposed a procedure for the automatic training of the system
that simply requires the acquisition of two short sequences
with a known number of persons that randomly cross the
scene.

Among the future works on this topic, we will also investi-
gate recognition-based approaches, using descriptors suited
to the recognition of the human shape (such as the Shape Con-
text descriptors), to perform the counting in scenes with the
simultaneous presence of different kinds of moving objects
(e.g. pedestrians and vehicles), which are out of the scope of
the assumptions of our current method.
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