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Abstract Sensors for early fire detection based on visual
analysis have been under constant development and improve-
ment, especially during the last decade. However, there is
still a lot of room for advancement to increase the accu-
racy and reliability of such sensors. In this paper, a novel
method for wildfire smoke detection based on spatial con-
text analysis as well as motion detection, chromatic, texture
and shape analysis is introduced. Several measures for evalu-
ating quality of smoke detection are used, both on image and
pixel scale. Smoke is a semi-transparent and amorphous phe-
nomenon whose boundaries are hard to determine precisely;
therefore, fuzzy measures are introduced for assessing the
detection error. The proposed method is evaluated using the
proposed measures and compared with two existing meth-
ods. The results show that the wildfire sensor based on pro-
posed method is capable of detecting fire-smoke accurately
and reliably, and in most detection aspects it outperforms the
existing methods.

Keywords Wildfire smoke detection · Forest fire smoke
detection · Visual context · Fuzzy evaluation measures
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1 Introduction

Wildfires are a constant threat to ecological systems and
human safety, especially in sparsely populated rural areas
with high fire risk factors. Estimations indicate that the gen-
eral volume of the world forest stand is rapidly reducing and
wildfires represent one of the main causes for such trend
[1]. To minimize potential damage caused by wildfires, three
types of actions are available: preventive action in pre-fire
phase, early fire detection in initial fire ignition phase and
quick and efficient fire-fighting in active fire burning phase.
The focus of this paper is on fire detection in its initial stage so
the prompt reaction in terms of fire-fighting activities could
be executed. Traditional way of detecting wildfire is based on
human observers situated on fire lookout towers with good
visibility covering larger areas around the post. Thanks to
advances in visual systems technology, remote cameras can
be located on different posts enabling a single observer to
cover multiple remote areas. In the past 10–15 years, devel-
opment of automatic fire detection systems started to take
place as an aid to human wildfire observation. There are
many different approaches to wildfire detection using color
and motion information to detect fire flames [2–9]. However,
most of the visual detection systems are mainly designed
for smoke detection, since the appearance of smoke is in
most cases more visible than the fire itself. Terrain con-
figuration and other obstacles could often occlude the fire
flames. Methods dealing with smoke detection are mainly
based on fusion of several different approaches, such as
texture-based approach [10–12], chromatic-based approach
[13–15], neural networks [16], detection of smoke motion
[17–21], support vector machines [22,23], clustering on frac-
tal curve [24], detection based on fractal properties of smoke
[25], fuzzy-finite automata [26] and wavelet analysis [16,27–
32]. Smoke detection systems provide surveillance assistance
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for smoke detection, but cannot be used as a self-sufficient
solution. Such systems are capable of detecting smoke in
the image with high accuracy but they often need addi-
tional human confirmation for final decision. The goal of our
research is the increase in detection accuracy, bringing the
performance of the detection systems closer to the results that
could currently be obtained by human observers. We present
a novel method for visual smoke detection. The proposed
method is based on motion detection, chromatic analysis
and smoke-dynamics analysis followed by alarm verifica-
tion based on the spatial context information. The method is
named spatial context smoke detection method (SCSD). The
rest of the paper is organized as follows: the SCSD method
is presented in detail in Sect. 2. Evaluation methodology is
given in Sect. 3, followed by evaluation results in Sect. 4.
Conclusion is given in Sect. 5.

2 Smoke detection

Detection phases for SCSD method are presented in Fig. 1.
Sequence of visible spectrum images is used as an input for
the smoke detection system along with real-time meteoro-
logical data from the detection site. The smoke detection
process is divided into several phases dedicated to the dif-
ferent aspects of detection. In the motion detection phase,
moving regions are extracted and forwarded to the follow-
ing phases with the original image. In the chromatic analysis
phase, additional verification of motion regions is performed
based on region color characteristics. The wavelet-based

analysis is used for change detection in high frequency con-
tent of the image. Appearance of smoke over a region should
gradually change the energy of the region, and the edges
should loose their sharpness without vanishing instantly.

Every detected region is iteratively examined for smoke
dynamics like growth and lateral or upward motion. Another
part of the detection system is the visual context analysis.
First, the image is divided into homogenous regions in the
segmentation phase. The classifier generates the possibil-
ity for a region belonging to a certain class, so only those
regions that have high classifying certainty are classified.
Regions that are not classified do not play a role in the spatial-
context analysis. Certain categories of false alarms could be
eliminated based on the spatial arrangement of the detected
regions and the classified regions. Real-time meteorological
data are obtained from the detection site using a meteorolog-
ical weather station. Meteorological analysis phase outputs a
value that indicates the potentiality of fire in the surroundings
given the current meteorological conditions. Finally, all the
information regarding color, texture, dynamics, meteorolog-
ical and spatial context is used as an input to the inference
engine. In the case that all the indicators imply that the region
in the image could be classified as smoke an alarm is raised
and a possibility of smoke for the given image is generated.

2.1 Motion detection algorithm

The first step in most fire and smoke detection systems is
motion detection. There are many approaches to motion
analysis used for smoke detection like detection based on

Fig. 1 SCSD method consisting of several detection phases calculates the possibility of smoke in the input image
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binning and clustering, motion segmentation using motion
history image or clustering motion on a fractal curve
[33–35]. Method used in SCSD is adaptation of a general
method for motion detection presented in [36], modified to
take into account smoke characteristic and smoke-detection
scenarios. First, a statistical background model is used

class(pn) =
{

foreground |pn−1 − pn| > δ · σn

background else
,

(1)

where pn represents value of pixel p in the nth frame, δ is the
relative deviation threshold and σn represents standard devi-
ation for a given pixel in the nth frame. Standard deviation
is calculated for every pixel using

σ n+1 = a|pn+1 − pn+1| + (1 − a)σ n, (2)

where a is a parameter defining responsiveness of the model
to the changes in the background, and pn is the running aver-
age for a given pixel, calculated by

pn+1 = a · pn+1 + (1 − a)pn . (3)

Parameters a and δ are variable parameters, and we have to
determine the values that give the best results on image testing
database. Testing algorithm performance for every parameter
combination is computationally expensive, since the qual-
ity of selected parameters has to be evaluated using several
different detection sequences and scenarios, so a heuristic
approach is adopted using genetic algorithms. Genetic algo-
rithm fitness function evaluates the motion detection error for
given set of parameters. Errors from all the test sequences are
accumulated and represent the fitness value. The aim of the
optimization is to find a global minimum of the fitness func-
tion in continuous search space. Calculating fitness value for
every individual in every generation could be computation-
ally expensive if the test database contains a large number
of images. So the population size is set to 20 to achieve a
compromise between search space coverage and computa-
tional requirements. Diversity is defined by limiting the ini-
tial range of the input variables to a ∈ [0, 1] and δ ∈ [1, 5].
Two of the best-scored individuals are labeled elite and are
guaranteed to survive to the next generation. The rest of the
parents create new children through crossover and mutation.
In this case, 80 % of children are generated using crossover,
and 20 % through mutation. Best fitness function values are
obtained for parameter values a = 0.026 and δ = 1.719.

2.2 Chromatic and texture analysis

Chromatic analysis is performed after the candidate regions
are detected. The analysis is based on results obtained
from database of ground truth segmentation containing
1,000 images. Ground truth images are analyzed taking into

Fig. 2 Smoke (red) and adjacent background (blue) pixels from
neighboring regions in RGB color space (color figure online)

account smoke regions mean value, pixel color space distri-
bution and first, second and third region moments. Based on
experimental results, certain rules are made concerning the
characteristics for the detected phenomenon that define the
range of chromatic properties specific to smoke. Since smoke
is semi-transparent phenomenon, in specific scenarios it is
difficult to distinguish it from the background based only on
color information. Figure 2 shows RGB values for neighbor-
ing smoke and background pixels taken for 5 images from
different scenes. However, color space covered by smoke
pixels is relatively limited, and diagonally positioned due to
the fact that smoke is always colored in light-to-dark gray
color interval. So by adopting color-spread rules and lim-
iting region intensity moment values, a certain number of
non-smoke regions could be eliminated. Smoke is visible
because of the effect of light scattering from smoke mole-
cules, and such effect is not the same in every color channel.
The light exhibits scattering effect when it comes in contact
with atmospheric molecules, known as Rayleigh scattering,
where the intensity of the scattered light is inversely pro-
portional to wavelength. This implies that the scattering at
400 nm is 9.4 times as great as that at 700 nm for equal inci-
dent intensity, so in performing chromatic analysis the blue
channel is more extensively used than other channels.

Besides the color information, texture of the region is also
used as an indicator about smoke characteristics. After the
initial change detection, region candidates are checked for
texture consistency. The appearance of smoke affects the
high frequency content of the image by gradually smoothing
the edges. Edges in the image represent local extrema in the
wavelet domain and the smoothing effect of the edges results
in a decrease in values in these extrema. Since the edges and
texture contribute to the high frequency information of the
image, energies of the wavelet subimages drop due to smoke
in the image sequence [31]. The possibility of frequency
analysis with different band-pass filters of different sizes
is the reason why wavelet analysis was chosen over other
image analysis tools. Deviation in texture content is analyzed
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using spatial discrete wavelet transformation (DWT). The
analysis is performed in the first four decomposition lev-
els, since the further decomposition does not contribute any
significant information regarding the possibility of smoke
in the analyzed region [27]. After testing several wavelet-
basis functions, Daubechies 10 wavelet was selected giving
equal or better results over other basis functions. The results
of the transformation in particular decomposition levels are
approximation coefficients matrix (cA) and detail coefficient
matrices in horizontal (cH), vertical (cV) and diagonal direc-
tion (cD). The total energy of the region is calculated using
standard wavelet energy equation:

Ew =
∑
r,c

cD2
(r,c) + cH2

(r,c) + cV2
(r,c) (4)

The energies of the detected region are normalized for every
decomposition level; components of all the directions are
taken into account and compared to the referent background
values. Significant deviation from the referent values is an
important indicator considered in further detection phases.

2.3 Motion dynamics and meteorological context

Regions detected using motion detection are checked for
smoke-like behavior. Smoke regions should exhibit grad-
ual growth without intensive variations in size. Size of
the detected region is measured in every iteration. Since
the distance between the camera and the real position of the
detected region is unknown, certain aberrations are allowed,
but the size of the region should gradually increase. Smoke
regions should also exhibit upward and lateral motion. The
upward shift of the center of gravity of the detected region
should be persistent in the first phase of the detection. These
motion characteristics are compared against referent values
obtained from the test. The correlation value between the
referent and current motion dynamics values is used as an
output from this phase. The meteorological context includes
information about wind speed, wind direction, air pressure,
humidity and temperature measured by appropriate mete-
orological stations. Meteorological information is used to
determine the weather conditions to automatically adjust the
sensitivity of the detection process, for example excessive
humidity implies rainy weather or after-rain period. Meteo-
rological analysis gives as its output a value that indicates
the potentiality of fire in the surroundings given the cur-
rent meteorological conditions. Wind speed and direction are
used in combination with motion dynamics analysis. The lat-
eral motion of the detected regions should not greatly deviate
from the wind direction readings of the station. However, a
certain extent of deviation is allowed due the possible differ-
ence of the meteorological conditions between the detection
site and the actual position of the region. In case the lateral
motion of the region is the opposite of the wind direction

readings from the station the region should not be classified
as smoke. It is important to emphasize that although wildfires
can affect the direction of the wind, for early fire detection
that is not the case. We are trying to detect the fire in its start-
ing, incipient phase when the fire is small, so fire influence
to the wind direction could be neglected.

2.4 Segmentation based on region merging

There are many approaches to image segmentation such
as clustering methods, compression based methods, graph
partitioning methods, histogram-based methods and region
merging methods [37]. SCSD uses statistical region merging
[38,39] for image segmentation. Statistical region merging
used in SCSD is adapted for segmentation that is more sen-
sitive to visual smoke characteristics, giving priority to cor-
rect segmentation of smoke regions over the segmentation
of other categories. In the start of the segmentation process,
every pixel is considered as a separate region, and the merging
is iteratively performed based on merging predicate P(R, R′)
that decides whether two regions R and R′ belong to the same
statistical region. Merging predicate is defined as:

P(R, R′)

=
⎧⎨
⎩

true |Rx
′−Rx |≤b(R, R′) and |Rb

′ − Rb|≤Tb

and |Rx − Ry |<TG,

false else
. (5)

where Rx and Ry represent average values of different color
channels from RGB color model, Rb represents blue color
channel, Tb and TG represent blue and general threshold,
respectively, where Tb < TG, and b(R, R′) is defined as:

b(R, R′) = g

√
1

2Q

(
1

|R| + 1

|R′|
)

ln
2

δ
, (6)

where | · | represents the cardinality, g is the maximum
allowed value for used color channel (usually 255), δ is
defined as δ = 1

3|I |2 , where |I | represents the number of
pixels in the image and Q is a tunable parameter used for
varying the general number of the segmented regions. Pred-
icate P(R, R′) defines three conditions to be satisfied in
order for merging to occur. First condition is a statistical
region merging criterion defined by |Rx

′ − Rx | ≤ b(R, R′)
[38]. Using this criterion, visually homogenous regions
could be extracted based on their chromatic characteristics.
This enables the method to perform under variable light-
ing conditions, since the segmentation is based on statistical
region homogeneity, rather than intensity differentiation con-
straints. Regions satisfying the region homogeneity condition
for every color channel are further analyzed. To make the
segmentation procedure more sensitive to smoke regions,
additional conditions are introduced in the predicate. Appear-
ance of smoke in the image region results in change in the
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chromatic characteristics that is most noticeable in the blue
channel. To make the segmentation procedure more rigorous
when dealing with smoke regions, conditions concerning the
aberration in the blue channel are limited using a thresh-
old Tb. Another characteristic of smoke is its neutral color-
ing, spanning from light to dark gray. Average values for the
regions should be similar in every color channel, so a general
threshold TG is introduced. These conditions are introduced
to reduce partial blending of smoke regions with the back-
ground regions in the process of segmentation. However, the
process of segmentation is not the replacement for smoke
detection, it is rather used to improve segmentation of regions
adjacent to smoke for false alarms reduction using spatial
context analysis in the following phases. The experimen-
tal testing performed with test database images and ground-
truth segmentation shows that the segmentation gives the best
results in the interval Q ∈ [195, 207], Tb ∈ [17, 21] and
TG ∈ [35, 39] for various scenarios, but there is not a single
optimal value for every situation. For evaluation purposes,
values Q = 202, Tb = 19 and TG = 38 are used giving
the best average segmentation results on segmentation test
database.

2.5 Categorization of segmented regions

Fire detection systems are placed in nature surroundings, and
for the task of general categorization six main categories are
defined as:

– Smoke
– Low clouds and fog
– Sun and light effects
– Water surfaces (sea, lakes, rivers, etc.) and sky
– Distant landscapes
– Vegetation.

The phase of categorization is not used for detection itself.
It is used in validation process for false alarms elimination,
so it is not necessary to categorize the whole image. Catego-
rization of a certain region should be performed only if the
classifier decision with high degree of confidence could be
made. Regions that are not classified do not play a role in the
alarm validation process. In this phase, regions are not cate-
gorized into Smoke category as well as Low clouds and fog
category, because these phenomena are of our prime interest.
Method used for general categorization is Naïve Bayes (NB)
classification based on kernel density estimation [40]. NB is
selected for the classification process for several reasons. NB
classifiers are effective, efficient, robust and support incre-
mental training. Furthermore, NB classifiers can deal with a
large number of variables and large data sets, and they han-
dle both discrete and continuous attribute variables. Features
such as average RGB and HSI values, first and second region

moments, and the size of the region are selected for the clas-
sification process. Let ck be the possible semantic class from
one of the defined six categories. The probability that a region
having a feature vector F belongs to a class ck is given by the
Bayes’ theorem

p(ck |F) = p(F|ck)
p(ck)

p(F)
, (7)

where p(ck) represents the prior probability of region belong-
ing to the class ck , that can be obtained from the ground
truth segmentation, and p(F) represents the probability of
the given feature vector from the prior feature distribution.
Probability of an observed value could be easily obtained
using kernel density estimation. Gaussian kernels are used
with estimated density averaged over a large set of kernels

p(F|ck) = 1

n

∑
i

g(F;μi , σk) (8)

g(F;μi , σk) = 1√
2πσk

e
− (F−μi )

2σ1
k , (9)

where i ranges over the training points of feature vector F.
The training of the classifier is performed using a ground truth
image database containing over 6,000 regions belonging to
one of the previously defined classes.

2.6 False alarms reduction

Primary causes for false alarms are natural phenomena visu-
ally similar to smoke that could be in certain conditions mis-
interpreted as smoke even by human observer such as fog,
clouds low to the ground particularly when video cameras are
located on mountain tops, dust from the ground, water evapo-
ration, etc. On the other side, there are also other types of false
alarms caused by natural phenomena but human observer
could easily dismiss these alarms. Examples are rain drops
on camera (Fig. 3a), or sun effects (Fig. 3b). These occur-
rences can easily adduce the system to trigger a false alarm.

Such scenarios can be avoided by introducing specific
methods for false alarms elimination using alarm shape char-
acteristics.

2.6.1 Shape analysis based false alarm reduction

Smoke has irregular convex shape that is not compact, while
raindrops on the other hand have high compactness factor.
Measure of compactness and curvature can be calculated
using Eqs. (10) and (11), respectively, taking into account
the perimeter and area of the object:

c = 4π A

l2 (10)

B = 1

l

∑
i

α2(i), (11)
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Fig. 3 Generated false alarms caused by a raindrop on camera, b sunlight effect

where c represents compactness, l is the perimeter, A is the
area, B is curvature, i is the index of border point of the region
and α is the angle between two lines intersecting at point i .
Each line is passing through a different boundary point with
distance of three neighboring boundary points in opposite cir-
cular directions from i . The method used for reducing alarms
generated due to sunlight effects is based on specific char-
acteristic for sunrays that have a rather elongated shape very
distinguishable from smoke. The goal of the method is to
calculate the elongation factor for the detected region and
determine if it could be rejected as sunray using this prop-
erty. The axis of the least moment of inertia is calculated
by

θ = 1

2
arctan

(
2μ11

μ20 − μ02

)
, (12)

where θ is the angle of this axis with the positive x axis, and
μxy represents the moment of the xy order. When the axis
is determined a bounding box for the region can be found,
and the elongation factor obtained. From experimental expe-
riences, the data show that the smoke regions have elongation
less than factor 3, while the sunrays have elongation factor
greater than 5. Presented methods are used for two particular
types of false alarms, and by using the spatial context infor-
mation additional scenarios resulting in false alarms could
be dismissed.

2.6.2 Spatial-context based false alarms reduction

Most of the cameras used for smoke detection have pan-tilt
ability and cover a 360◦ area around the mounting point.
In some situations, large water surfaces appear in part of
the scenes, where water motion and spray in windy weather
could be a trigger for false alarms. It is also possible that
clouds, which by shape and chromatic characteristic resem-
ble smoke, could trigger a false detection, as well as partial
capture of sun contours on the edge of the image. All potential
detections are compared with categorization results. In most

Fig. 4 The bounding boxes, centers of gravity and relative angle α

define spatial relation between regions R1 and R3

cases, categorized regions do not cover the whole area of the
image because only those regions that are classified with high
certainty factor are used in this phase. Relative positions of
the candidate alarm regions and categorized regions in their
vicinity are analyzed. Figure 4 shows a possible spatial rela-
tion between two regions. These relative relations could be
divided into directional and topological. Directional relations
describe the relative positions of the regions to each other,
e.g. left, above, completely below, mostly right, etc. Topo-
logical relations describe the non-directional relations such
as near, far, surrounds, excludes, connects, borders, etc. [41].
Absolute positions of the regions are also used, such as left
corner, middle of the image, bottom, etc. Relative relation
between two regions can be acquired using regions bound-
ing box, center of gravity and relative angle between two
regions as Fig. 4 shows.

Depending on the relative position of the candidate regions
for detection and classified categories in the vicinity, cer-
tain rules can be introduced for elimination of specific
scenarios. Examples of spatial-context based elimination
rules are
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Rule1:
if - detected region is surrounded with

water_surfaces subcategory
-> water waves and spray - (reject)
Rule2:
if - detected region is surrounded with

sky subcategory
-> clouds - (reject)
Rule3:
if - detected region is above sky

subcategory
-> partial sun contour - (reject)

The set of elimination rules contains all the constraints
regarding spatial arrangement of specific region classes.
Based on this information, certain categories of false alarms
could be dismissed in this phase of the post-detection false
alarm reduction. There are possible scenarios where smoke
could occur beyond direct vision of the camera and gradu-
ally appear in the scene (e.g. behind a mountain). In such
cases, the smoke candidate regions would be detected after
emerging behind the occluding terrain. Such scenarios are
not eliminated as false alarms due to the base-line contact
of the emerging region with regions categorized as vegeta-
tion or distant landscape. In case of the base-line contact of
the region with the mentioned categories, the rejection is not
performed. This prevents the elimination of valid alarms that
appear out of the context of their origin.

2.7 The inference engine

The results from all detection phases are used as inputs to the
inference engine. Every input value represents the extent of
deviation from the referent values for the given input type.
All the values are mapped to the interval [0,1], where 1 rep-
resents significant deviation from the referent values, and
0 represents no deviation. The mapping function is specific
to every input type, e.g. the deviation for the shape elon-
gation parameter is mapped to 0 if the calculated elonga-
tion is 2.5, which is the actual referent value, and in case
the calculated elongation is greater than 7 the parameter is
mapped to 1. Similarly, mapping functions are defined for
every input type based on the referent values from the train-
ing set and the allowed range. The mapping is performed
for every input type except for meteorological information.
Meteorological input is used for the adjustment of the detec-
tion sensitivity. In the case of weather conditions that imply
low fire risk (e.g. excessive humidity implies rainy weather
or after-rain period), the sensitivity of the system is adjusted
accordingly. Every region detected by the motion detection
phase is recorded in the system, and the analysis methods are
performed in several iterations. This ensures the consistency
of smoke-like behavior. The system uses elimination-based

detection, where every input is used as a basis for poten-
tial elimination. Significant deviation from the referent value
in any of the input parameters results in elimination of the
region from the detection process. One example would be
the deviation in chromatic characteristics. If the chromatic
values of the candidate region fall out of the allowed range
predefined in the testing phase of the system, the deviation
values would be significant and would act as a trigger for the
region elimination. The same rule applies for motion analy-
sis, dynamics analysis and texture analysis. The deviation
tolerance is additionally adjusted based on the current sensi-
tivity of the system. In the case of weather conditions where
fire occurrence is highly unlikely, the tolerance to deviation
is decreased for 10 % in all the detection aspects. If the candi-
date region persists through the confirmation period an alarm
is raised along with the actual calculated possibility of smoke.
The possibility of smoke is calculated as a complement of
average deviation values from all the inputs. Examples of
detection images are shown in Figs. 3 and 6.

2.8 Computational complexity

The computational complexity could be obtained through
analysis of the computationally significant phases of the
algorithm. The most computationally demanding phases are
motion detection, wavelet analysis and segmentation based
on region merging. Other detection phases could be omit-
ted from computational complexity analysis, since they are
not computationally expensive in relation to the mentioned
phases.

The motion detection phase can be shown to have com-
plexity of O(4N + 5M), where N denotes the number of
pixels in the image, and M is the number of foreground pix-
els. The complexity of the wavelet analysis phase is O(8M)

for four decomposition levels, where only pixels from the
candidate regions are taken into account. The segmentation
based on region merging can be shown to have complexity
of O(N log(g)), where g is a constant defined in Sect. 2.4,
so the complexity is linear in N . The overall complexity
of the algorithm is cumulative complexity of all the phases
O((4+ log(g))N +13M) ≈ O(k1 N +k2 M) which is linear
in N and as such suitable for real-time operation.

3 Evaluation methodology

To evaluate and compare different smoke detection algo-
rithms certain evaluation measures have to be defined. A
novel approach to smoke detection quality assessment is
introduced through the definition of fuzzy measures. They
have been used in evaluation process in combination with
the state of the art measures that are best suited for smoke
detection.
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3.1 General detection quality

Quality measures for such systems can be divided in two
categories: evaluation on global and local scale. Evaluation
on global scale is performed using classifier results from
multiple consecutive images or multiple image sequences.
Classifiers are evaluated based on true–false detections on
the image level. When evaluating on local scale, focus is
on detection quality on a single image [42]. A pixel is
considered to be the smallest detection unit when evaluat-
ing on local scale, and a single image is considered to be
the smallest detection unit on the global scale. In detec-
tion theory, various detector evaluation measures could be
defined [43,44] and for wildfire smoke sensor evaluation
seven measures for general detection quality assessment
have been used: cd—sensitivity measure or true positive
rate defined by (13), cr—specificity measure or true negative
rate defined by (14), md—false negative rate (complement
to sensitivity) defined by (15), fd—false positive rate (com-
plement to specificity) defined by (16), acc—accuracy mea-
sure defined by (17), ppv—precision or positive predictive
value defined by (18), and mcc—Matthews correlation coef-
ficient [45] defined by (19).

cd = |TP|
|TP| + |FN| (13)

cr = |TN|
|FP| + |TN| (14)

md = |FN|
|TP| + |FN| = 1 − cd (15)

fd = |FP|
|FP| + |TN| = 1 − cr (16)

acc = |TP| + |TN|
|TP| + |TN| + |FP| + |F N | (17)

ppv = |TP|
|TP| + |FP| (18)

mcc = |TP| · |TN| − |FP| · |FN|√
(|TP|+|FP|)(|TP|+|FN|)(|TN|+|FP|)(|TN|+|FN|),

(19)

where TP is the number of correctly classified positive detec-
tions, FP is the number of falsely classified positive detec-
tions, TN is the number of correctly classified negative
detections and FN is the number of falsely classified neg-
ative detections. In ideal case FP and FN are zero, so ideal
classifier has cd = 1, fd = 0, cr = 1, md = 0, acc = 1, ppv =
1 and mcc = 1.

3.2 Quality evaluation based on fuzzy logic

Individual pixels could be classified as partially smoke or
background, based on degree of membership to each of
these classes. Using fuzzy evaluation, the classification error
is determined based on membership difference of referent

(ground-truth) and observer decision regarding individual
pixels for each class [42]. Error errp of an observer for a
pixel p is calculated by

errp(R, O) =
{

α · R · (R − O) R > 0
O − R O ≥ R

, (20)

where R is the referent fuzzy value for the pixel p, O is the
value given by the classifier, and α is the parameter defining
the cost of the error. This error measure takes into account
the type of error as well as the extent of the error. The case
where the assessed value for the smoke membership is grater
than the referent ground-truth (O > R) fuzzy-segmentation
is called fuzzy false detection. The real cost or impact on the
environment of such scenario is significantly less than in the
case of fuzzy missed detection when. The error cost for fuzzy
missed detection increases with referent fuzzy value for that
pixel and with the difference between observer and referent
values. When both values are equal (O = R), the error is
zero. The parameter α is defined experimentally, and value
α = 3 gives the best cost proportion between the two types
of errors. This parameter takes into account the impact of the
error on the environment as well as on the practicality of the
detection system.

4 Results

The proposed SCSD method is compared with two other
existing methods: method denoted as Method 1 presented in
[32], and method denoted as Method 2 presented in [46].
Figure 5 shows comparison flowcharts for all three methods.
Method 1 consists of several detection steps. First, a motion
detection algorithm is used to obtain moving regions from
the image. Motion detection is based on background estima-
tion and recursive thresholding. The following phase is the
detection of decrease in high frequency content using spatial
wavelet transform. Image is divided into blocks of size 8 by 8
pixels and wavelet coefficients are calculated for each block.
Single-level discrete wavelet transform is used in the imple-
mentation. The following phase is the detection of decrease in
U and V color channels caused by the appearance of smoke
in the region. In the next step, the flicker on the smoke bound-
aries is used as additional information for detection. Finally,
shape analysis is performed determining the convexity of
the detected region. The algorithm gives the best results at
close range (<100 m), but is also very reliable at greater dis-
tances (<2 km). The authors have also designed algorithms
that deal primarily with long range smoke detection such
as [47,48].

Method 2 is based on detection of changes in the blue
channel of the image and dynamics analysis of the detected
regions. The first step of the method is the binning of the
image, based on calculations of the average variation in the
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Fig. 5 Flowcharts of sequential
detection phases for a novel
SCSD method, b Method 1, and
c Method 2

number of smoke pixels. Mean value for every bin is com-
pared with referent background value. Background bin values
are periodically updated to avoid significant change in scene
lighting that could trigger false alarms. In case that the dif-
ference in the blue channel between current and the referent
bin is greater than the calculated threshold, the detected bins
are declared as candidate bins and the confirmation phase is

initiated. During the confirmation phase, a predefined min-
imum number of clustered candidate regions should exist
in the scene, or the confirmation phase is interrupted and
the process reverts to pre-detection state. Also, the detected
regions should exhibit gradual growth, so the regions that are
exceeding the growth speed specific to smoke are dismissed.
Regions satisfying all the detection conditions for a sufficient
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Fig. 6 Original input image
and final detection outputs for
the same frame in one of the
testing sequences for all
compared methods

Table 1 Global measures for all compared methods

SCSD Method 1 Method 2 Ideal
case

cdgl 0.760 0.508 0.385 1

crgl 0.978 0.984 0.984 1

validation time period are declared as smoke regions and a
smoke alarm is raised. Evaluation is performed on the set
of 2,870 test images from 10 different video-sequences [10].
Meteorological data were not used in the evaluation process.
Figure 6 shows samples of detection outputs for the same
frame in one testing sequence.

Basic type of evaluation is based on the most impor-
tant global measures: sensitivity measure (cd) and specificity
measure (cr) shown in Table 1. The results show that none
of the methods performs flawlessly since for all methods
cdgl 	= 1 and crgl 	= 1. Results for measures mdgl and fdgl

are not presented, since these measures are complementary to
cdgl and crgl, respectively. Local measures could be used for
more detail detectors quality comparison in the case when
compared methods have similar results concerning global
measures.

Various graphical representations of detection quality
measures have been proposed like ROC curves [32] or DET
curves [44], but they are suitable for analysis when discrim-
ination threshold is varied. For detection algorithm quality
comparison quality graphs [42] are more appropriate (Fig. 7).
Quality graphs have image rank on x axis and increasingly
sorted appropriate quality measure values on y axis. It is
important to emphasize that image rank is not the same for
all quality measures. There are specific situations where cer-
tain measures could not be calculated, for example, when
TP + FN = 0, cd measure could not be calculated due to
division by zero, hence in Fig. 7 the number of sample images
was not 2,870 (number of images in test sequences), but 185.

Table 2 shows average numerical values of local measures
for all compared methods.

The last quality evaluation of SCSD method against other
two methods from literature is error measure errp(R, O)

based on fuzzy logic described in Sect. 3.2. Equation (21)
defines fuzzy quality measure for one pixel errp and average
error for one individual image errI is calculated by

errI = 1

N

N∑
p=1

errp(R, O), (21)
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Fig. 7 Quality graph for measures cdlc, crlc, acclc and mcclc

Table 2 Average local measures for all compared methods

SCSD Method 1 Method 2 Ideal
case

cdlc 0.37 0.19 0.18 1

crlc 0.9999 0.9997 0.9999 1

acclc 0.9998 0.9995 0.9997 1

ppvlc 0.61 0.61 0.53 1

mcclc 0.029 0.017 0.015 1

errI 1.45 10.03 5.84 0

where N represents the number of pixels in the image. Simi-
lar to positive predictive measure, quality graphs are not suit-
able for this measure so average err I values for all test set
are given in Table 2. The target value is 0, so it is evident that
SCSD method has the best results. It is important to empha-
size that the evaluation for fuzzy measure was performed on
only one sequence due to complexity of gradational hand-

segmentation for every image. Based on the presented eval-
uation results it is clear that the proposed method delivers
accurate detections when compared with similar detection
methods. The evaluation shows that the sensitivity of the
proposed method (cdgl) exceeds the results obtained by the
referent methods while retaining high the specificity (crgl)
of the system. High sensitivity of the system allows for a
more prompt reaction that is a very important characteristic
of any sort of detection system, especially systems dealing
with detection of phenomena with great impact to human and
ecological safety. The results regarding the accuracy of the
systems (acclc) show that the proposed method outperforms
the referent methods. A similar measure describing the over-
all detector quality (mcclc) shows the best performance of the
proposed method taking into account all detection classifica-
tion types. And finally, the results regarding the cumulative
fuzzy error of the systems show that the proposed method
generates the lowest fuzzy error when compared to referent
methods.
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5 Conclusion

Method is evaluated using measures that provide both global
and local evaluation of smoke detection systems. Since
smoke is a semi-transparent and amorphous phenomenon,
it is hard to precisely determine the clear border between
smoke and background pixels, so in order to minimize the
evaluation error fuzzy evaluation metrics were also used in
evaluation process. The proposed SCSD method was com-
pared with two existing methods for smoke detection. The
most important indicator of smoke detection system quality
is evaluation on global scale and SCSD method outperforms
other compared methods, having the highest sensitivity mea-
sure cdgl. More precise evaluation could be performed using
local measures evaluated on local scale where SCSD gives
better results for measures cdlc, acclc, and mcclc. Evaluat-
ing all three methods using fuzzy measures also shows that
SCSD method generates the lowest average fuzzy error, tak-
ing into account the extent of the error as well as error type.
The overall conclusion is that newly proposed SCSD method
presented in this paper could be appropriate for implemen-
tation in a wildfire smoke sensor used in wildfire monitoring
and surveillance system that could provide prompt reaction
in the case of wildfire, resulting in environmental damage
minimization.
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