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Abstract This paper deals with the task of semantic seg-
mentation, which aims to provide a complete description of
an image by inferring a pixelwise labeling. While pixelwise
classification is a suitable approach to achieve this goal, state-
of-the-art kernel methods are generally not applicable since
training and testing phase involve large amounts of data. We
address this problem by presenting a method for large-scale
inference with Gaussian processes. Standard limitations of
Gaussian process classifiers in terms of speed and memory
are overcome by pre-clustering the data using decision trees.
This leads to a breakdown of the entire problem into sev-
eral independent classification tasks whose complexity is
controlled by the maximum number of training examples
allowed in the tree leaves. We additionally propose a tech-
nique which allows for computing multi-class probabilities
by incorporating uncertainties of the classifier estimates. The
approach provides pixelwise semantics for a wide range of
applications and different image types such as those from
scene understanding, defect localization, and remote sens-
ing. Our experiments are performed with a facade recogni-
tion application that shows the significant performance gain
achieved by our method compared to previous approaches.
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1 Introduction

Semantic segmentation can be regarded as one of the most
difficult visual recognition problems, since it requires turn-
ing each pixel of an image into a suitable category label. Due
to the very general problem description, semantic segmenta-
tion approaches can be used in nearly every application that
requires a precise labeling. Especially in the context of facade
recognition, semantic segmentation has been found to be an
useful tool. In contrast to the direct categorization of objects
in a street scene [12], the general framework of semantic
segmentation can be often augmented with additional infor-
mation about the special task at hand. For instance, the con-
secutive nature of images drawn from a sequence can be
exploited to enhance classification accuracy [45] or to infer
a 3D reconstruction of streets [43]. In the work of [36], prior
information regarding the composition of facade parts, such
as the relative location of windows and doors, is enforced
using shape grammars.

Irrespective of the kind and amount of prior information
used, the semantic segmentation step remains a crucial part
in most facade recognition approaches. Usually, this task is
solved in a supervised manner by learning a classifier on
local patches with training examples obtained from pixel-
wise labeled images [9,11,30,31]. To cope with the large
amount of training data, previous works use piecewise lin-
ear classifiers as classification techniques such as logistic
regression [9], random decision forests [12,30,36] or boost-
ing [16,31,43,45]. In this area, the use of non-linear and non-
parametric learning machines, such as Gaussian process (GP)
classifiers [24], is limited due to their computational demands
and their need for a large memory capacity.

In this paper, we demonstrate how to perform inference
for GP classification with tens of thousands of training
examples occurring in supervised semantic segmentation
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Fig. 1 An outline of our approach: a decision tree is used to cluster
the data in a supervised manner and a GP classifier is used to separate
classes in each leaf node

scenarios. Our approach is based on pre-clustering the avail-
able training set with decision trees and learning a GP
classifier for each leaf of the tree (cf. Fig. 1). In con-
trast to large-margin-based learners, such as support vector
machines [28], GP classifiers implicitly allow us to calcu-
late the uncertainty of an estimate, which is particularly
useful to derive suitable multi-class probabilities or for nov-
elty detection. The resulting combined classifier offers to go
beyond the restrictions of piecewise linear classifiers. Due to
the large variability of local features belonging to different
object categories, the ability to discriminate classes in a non-
linear way is especially important for semantic segmentation
tasks. Furthermore, our approach is adaptive and allows for
handling the trade-off between accuracy and computation
time.

In comparison to other semantic segmentation methods
like conditional Markov random fields (CRF), our proposed
method models the image in multiple local features, which
are all analyzed in a continuous probabilistic framework. Fur-
thermore, the output of our framework can be used as unary
term in different CRF methods. With this, our probabilistic
framework is not in a direct competition with CRF methods,
but with typical classification methods like support vector
machines and logistic regression.

With the rich and meaningful representation of a pix-
elwise labeled image, a whole bunch of applications is
directly available. In the following work we concentrate on
facade recognition, which, for example, allows for automat-
ically generating facade models used for 3D city modeling
[14].

1.1 Related work on semantic segmentation and facade
recognition

Semantic segmentation is abstract name for all methods try-
ing to label any sort of image pixelwise. The goal is to

separate an image into homogeneous areas, where each
region represents an instance of one of the trained classes.
Due to the high need of computational resources, this
research topic got important in the second half of the
last decade. Csurka et al. [9] presented a straight forward
approach very similar to ours. The main parts are unsuper-
vised segmentation, feature extraction, feature classification
and region labeling.

Further approaches focused on improving these local
results using conditional Markov random fields (CRF) [15,
19,44]. Yang and Förstner [47] present an approach to label
facades using a CRF, in which the unary potentials are com-
puted by applying a random forest classifier. A subsequent
work of the same authors [46] improves this method by con-
sidering a hierarchical CRF that exploits region segmenta-
tions on multiple image scales.

Another way to improve the results is by applying model-
based approaches with hard coded prior knowledge. Teboul
et al. [36] uses the so-called shape grammars. For this, the
authors of [36] propose to use a simple random decision
forest (RDF) for an initial result which will be improved by
optimizing the labels with respect to a given grammar. In [35]
the authors advanced the solving of the optimization problem
in speed and accuracy. Normally, model-based methods tend
to much better results than non-model-based methods like
ours, with the precondition that the analyzed images are in a
similar scenario as in the model encoded. Instead of that, clas-
sical semantic segmentation approaches like ours are much
more flexible and tends also to good results on more general
images.

In contrast to all those works, we focus on the essential part
of accurately classifying local patches without any contextual
knowledge. In our experiments, we show that we are even
able to outperform previous CRF approaches. We expect that
adding a CRF model to our approach, which is beyond the
scope of this paper, would further improve the recognition
performance.

1.2 Related work on efficient GP classification

In the last years, a large amount of scientific effort has been
spent to develop fast inference techniques for GP regres-
sion and classification [24]. Most of them usually rely on
conditional independence assumptions [4] with respect to a
small set of predefined variables which might either be part
of the training dataset [37] or learned during training [33].
A separate branch of methods is based on decomposition
techniques, where the original large-scale problem is bro-
ken down into a collection of smaller problems. Next to
simple Bagging strategies [7], unsupervised kd-trees neglect-
ing label information during clustering were recently pro-
posed [29] for GP regression. As a supervised alternative,
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Large-scale gaussian process multi-class classification 1045

Broderick et al. [3] combined a Bayesian decision tree with
GP classifiers. The approach of Urtasun et al. [40] performs
GP regression by selecting training examples from a local
neighborhood of a test point. The paper also compares the
local approach to global ones using a pre-clustering tech-
nique. Whereas, their local approach allows reducing bound-
ary effects, our pre-clustering method leads to a logarithmic
rather than a linear computation time during learning with
respect to the number of training examples.

Another important direction for fast inference with
Gaussian process models is Bayesian committee machines as
introduced by Tresp et al. [38]. The underlying idea is also to
decompose the training set into several subsets and to learn
a regressor or classifier for each set independently. However,
unlike our approach, each partition is used for classifying
test examples. Tresp et al. [38] also study fast GP classi-
fication with time-consuming approximate inference tech-
niques instead of relying on GP regression as done in this
work. Especially in the context of visual classification tasks
it has been shown that, despite its improper noise model, GP
regression directly applied to the labels is often sufficient
[26].

There is also a large number of related papers con-
cerning large-scale learning with support vector machines
(SVM). For example, Tsang et al. [39] improves the
core vector machine formulation of SVM by consider-
ing enclosing balls of fixed radius and presenting
corresponding approximation techniques. In contrast to our
approach, they do not focus on speeding up the prediction
time necessary to classify a new example. An approach
highly related to ours is proposed in Chang et al. [5],
where SVM are accelerated using a decomposition derived
from a decision tree. In their setting, standard SVMs are
employed resulting in a classifier which produces hard
decisions. In the context of scene recognition, Fröhlich
et al. [13] recently proposed a GP-based method relying
on a pre-clustering via random decision forests. However,
this approach is solely based on a-posteriori estimates of
the predictive distribution, neglecting available uncertainty
values.

1.3 Outline of the paper

The remainder of this paper is organized as follows. First
of all, we describe the basic principles of the semantic
segmentation approach used. Section 3 reviews Gaussian
processes for classification tasks and proposes a method
to obtain suitable probabilities from the one-vs.-all method
of [18]. Our tree-based acceleration technique for inference
with Gaussian processes is presented in Sect. 4. We perform
experiments for facade recognition applications as a special
case of semantic segmentation and evaluate them in Sect. 5.

Fig. 2 Overview of semantic segmentation using local features

A summary of our findings and a discussion of future research
directions conclude this paper.

2 Semantic segmentation framework

As described above, semantic segmentation is concerned
with assigning class labels (or probabilities) to each pixel
of a given image. Csurka et al. [9] proposed a simple, but
powerful framework for tackling this task. Relying on a
bottom-up methodology, their approach combines an initial
unsupervised over-segmentation of a given image with pix-
elwise classification results.

It has been recently shown on an empirical basis [12] that a
time-consuming feature transformation step from the original
framework [9] can be bypassed. Using a random decision
forest, training and prediction time is considerably reduced.

The whole processing pipeline of this approach is depicted
in Fig. 2. It mainly includes four steps:

1. Unsupervised segmentation an over-segmentation is
obtained using an image segmentation algorithm.

2. Local feature extraction to capture color and texture
information in a local neighborhood, feature descriptors
are computed on an equally spaced grid for various scales.

3. Pixelwise classification labels are softly assigned to
each grid point using a probabilistic classifier. To gener-
ate dense probability maps, all grid-based classification
results are convolved with a Gaussian filter. The final
probability map is generated by averaging all maps
obtained for different scales.

4. Combination of over-segmentation and probability map
one deterministic class label is assigned to each cluster
segment by choosing the category with maximum aver-
age probability within that region.

A detailed description of our experimental setup can be
found in Sect. 5.2.
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1046 B. Fröhlich et al.

3 Gaussian process classification

In the following, we briefly review Gaussian process (GP)
regression and classification. We concentrate on the main
model assumptions and the resulting prediction equation. For
a presentation of the full Bayesian treatment, we refer to
Rasmussen and Williams [24].

3.1 Basic principles of GP priors

Given n training examples xi ∈ R
D denoting input feature

vectors and corresponding binary labels yi ∈ {−1, 1}, we
need to predict the label y∗ of an unseen example x∗. There-
fore, a learner has to find the intrinsic relationship between
inputs x and labels y. It is often assumed that the desired
mapping can be modeled by y = f (x) + ε, where f is a
latent function (which is not observed during training) and ε

denotes a noise term.
One common modeling approach is to assume that f

belongs to some parametric family and to learn the para-
meters which best describe the training data. However, the
main benefit of the GP framework is its ability to model the
underlying function f directly, i.e. without any fixed para-
meterization, by assuming that f is a sample of a specific
distribution. Defining a distribution over functions in a non-
parametric manner can be done with a Gaussian process,
which is a special stochastic process.

3.2 Bayesian framework for regression and classification
with GP

To use the modeling ideas described in the previous section,
we formalize and correctly specify the two main modeling
assumptions for regression and classification with Gaussian
processes:

1. The latent function f is a sample from a GP prior

f ∼ GP(0,K(·, ·))

with zero mean and covariance or kernel function K:

R
D × R

D → R .

2. Labels y are conditionally independent given latent func-
tion values f (x) and are described using some noise
model p(y | f (x)).

The Gaussian process prior enables to model the correla-
tion between labels using the similarity of inputs, which is
described by the kernel function. It is, thus, possible to model
the assumption of smoothness, i.e. that similar inputs should
lead to similar labels.
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Fig. 3 Gaussian process regression applied to a small one-dimensional
example. Training points are shown as blue circles and the predictive
mean is plotted in red color. The shaded area highlights the confidence
interval derived from the predictive variance (color figure online)

For classification purposes, sigmoid functions are often
employed as noise models [24]. In contrast, we follow
Kapoor et al. [18] and use zero mean Gaussian noise with
variance σ 2

n :

p(y | f (x)) = N (y | f (x), σ 2
n ), (1)

which is the standard assumption for GP regression. The
advantage of this label regression approach is that tractable
predictions for unseen points x∗ are possible, without using
approximate inference methods [24].

Let K be the kernel matrix with pair-wise kernel values of
the training examples Ki j = K(xi , x j ) and k∗ be kernel val-
ues (k∗)i = K(xi , x∗) corresponding to test example x∗. The
most likely outcome ȳ∗ given input x∗ and labeled training
data can then be predicted analytically using the following
equation:

ȳ∗(x∗) = kT∗ (K + σ 2
n I)−1y . (2)

with y ∈ {−1, 1}n being the vector of the binary labels of all
training examples. This prediction equation is equivalent to
kernel ridge regression, but with a clear probabilistic mean-
ing. For example, the GP framework allows for predicting
the standard deviation σ 2∗ of the estimation by:

σ 2∗ (x∗) = K(x∗, x∗) − kT∗ (K + σ 2
n I)−1k∗ + σ 2

n . (3)

Please note that standard support vector machines lack
this intrinsic probabilistic formulation and that the associated
optimization objective does not give rise to an uncertainty
estimate. An example of the result of GP regression is given
in Fig. 3.

3.3 Multi-class classification

In the previous section, GP classification is restricted to
binary tasks. However, by applying the one-vs.-all strategy
in combination with a majority voting scheme, multi-class
classification problems can be solved without much addi-
tional computational effort [18]. Let ym ∈ {−1, 1}n be
the vector of binary labels corresponding to class m ∈
{1, . . . , M} derived from the multi-class label vector y by:

ym
i = 2 δ(yi = m) − 1, (4)
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where δ(a) = 1 if and only if a is true. The final predicted
category is the one that achieves the highest predictive pos-
terior mean given by the corresponding binary problem:

ȳmulti(x∗) = argmax
m=1...M

ȳm∗(x∗) (5)

= argmax
m=1...M

k∗T (K + σn2 I)−1ym . (6)

3.4 Probability calibration

Due to additional smoothing applied to the probability maps,
the semantic segmentation framework presented in Sect. 2
requires that the classifier predicts benign probabilities for
each class. The one-vs.-all approach of [18] only offers a hard
classification decision as given in Eq. (6). To derive proba-
bility estimates for each class, we could squash the posterior
means using a softmax function [24]. However, this strategy
completely ignores the uncertainty of the estimate and hides
the fact that the one-vs.-all decision is also probabilistic in
its nature.

We propose to take the whole posterior distribution

N (ȳm∗ (x∗), σ 2∗ (x∗))

of each random variable ym∗ into account, so that the probabil-
ity of class m achieving the maximum score can be expressed
by

p(ymulti(x∗) = m) = p

(
max

m′=1...M
ym′
∗ = ym∗

)
. (7)

Unfortunately, it does not seem to be possible to derive
a closed-form solution for the probability on the right hand
side of Eq. (7) for a multi-class scenario with M > 2. There-
fore, we use a simple Monte-Carlo technique and sample
Z times, e.g. Z = 200, from all M Gaussian distributions
N (ȳm∗ (x∗), σ 2∗ (x∗)) and estimate the probability of each class
m by

p(ymulti(x∗) = m) ≈ Zm

Z
, (8)

with Zm denoting the number of times where the draw from
ym was the maximum value. A large variance σ 2∗ , i.e. a high
uncertainty of the estimate, leads to a nearly uniform distri-
bution p(ymulti(x∗) = m), whereas a zero variance results
in a distribution which is equal to one for the class which
corresponds to the highest posterior mean.

An alternative would be to directly use a multi-class clas-
sification approach with Gaussian processes, but this has to
be paid with time-consuming approximation techniques like
Laplace approximation [24].

4 Large-scale GP classification with tree-based models

In the following, we show how to speed up learning and clas-
sification with our tree-based Gaussian process approach.
The main advantage is that we are able to directly handle
the trade-off between accuracy and computation time, which
allows for using our approach in very different semantic seg-
mentation scenarios with varying requirements.

4.1 Learning

The major shortcoming of GP-based models is their run-
time and memory complexity. Since the inversion of K is
required for computing Eqs. (2) and (3) the runtime (the
needed memory) scales cubically (quadratically) in the num-
ber of training examples n. This fact often renders GP models
unsuitable for large-scale problems, where tens or hundreds
of thousand training examples are given. To circumvent this
problem, many techniques have been proposed to speed-
up the inference process using conditional independence
assumptions [4], kernel matrix approximation [42] or effi-
cient decomposition of the problem into several sub-tasks
[3,29].

For the latter point, deterministic decision trees [2] have
been found particularly useful in large-scale classification
problems [5,13] due to their ability to efficiently cluster the
input space in a supervised manner. Starting by a root node
which contains the whole training set, the input space is
divided using a simple classifier, e.g. a decision stump [17].
This directly induces a clustering of the training data and
new child nodes are associated with the resulting subsets.
This procedure is repeated until a stopping criterion is met.

By utilizing the above-mentioned tree decomposition,
powerful classifiers such as GP classifiers or SVMs [41] can
be trained in each leaf node. The training complexity hence
solely depends on the amount of data arriving at the leaves
of the tree. For large-scale applications, it is hence necessary
to avoid leaf nodes which contain many training examples.
As proposed in [5] and [13], this constraint can be directly
encoded in the termination criterion of the decision tree. In
this approach, leaf nodes exceeding a number � of training
examples are only allowed if they are homogeneous, i.e. all
training examples share the same label. Since classification
is only required on inhomogeneous leaf nodes, the runtime
complexity is O(�3) for each node. It can be shown that the
overall runtime complexity hence reduces toO(n log n+n�2)

(building a tree and additional O ( n
�

)
Gaussian process clas-

sifiers) for the whole training step including the calibration
method proposed in Sect. 3.4 (see Table 1). The parameter
� thus enables a trade-off between accuracy and efficiency
(arriving at the full GP classifier for � = n).

To avoid overfitting, the standard decision tree can be
replaced by a random decision forest (RDF [1]). This
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Table 1 Computational complexity of all presented methods

Training Classification

GP O(n3) O(n2)†

Decision Tree O(n log n) O(log n)

DT-GP O(n log n + n�2) O(log n + �)

DT-GP calibrated O(n log n + n�2) O(log n + �2)†

For the sake of simplicity, balanced trees are assumed
n the number of training examples, � the maximum number of
examples in inhomogeneous leaf nodes
† Time includes the calculation of the uncertainty

architecture is based on multiple trees, each of which is
trained on a randomly drawn training subset. Moreover, a
further randomization can be introduced using a random fea-
ture subset for each node. The resulting classifier is known
for its high stability with respect to input and label noise [1].
For a complexity assessment regarding the combination of a
GP classifier and RDF, we refer to [13].

In the following, we use the acronyms DT-GP and RDF-
GP to refer to GP classifiers augmented by decision trees and
random decision forests, respectively.

4.2 Prediction

Classifying a new test example with DT-GP is straightfor-
ward. The test example first finds its path through the deci-
sion tree by checking the decision stumps in each inner node.
Finally, the GP classifier associated with the resulting leaf
node is evaluated and returns the classification result as well
as scores for each category. For RDF-GP, the randomized
version of our approach, the scores returned by each tree in
the forest are summed up and the class with the highest score
is returned as a classification result. In total, this yields an
asymptotic runtime of O(log n + �2) for each test example
(see Table 1).

5 Experiments

The results of the following experiments can be summarized
as follows:

1. Tree-based Gaussian process classifiers can outperform
previously used machine learning methods for semantic
segmentation tasks.

2. The behavior of DT-GP and RDF-GP strongly depends
on the amount of label-noise and the intra-class variance
of the classification task.

3. Probability calibration can improve the classification
results for semantic segmentation.

4. Our method outperforms the approaches of [47] and [46]
that exploit structure information of facades with condi-
tional Markov random fields.

5.1 Experimental datasets

For our experiments, we follow [12] and use the eTRIMS [20],
LabelMeFacade and the Paris [35] databases. The eTRIMS
database contains 60 and LabelMeFacade 945 pixelwise
labeled images. The split in 100 training images and 845 test-
ing images for LabelMeFacade is the same as used in [12].
For the eTRIMS dataset, we use the same split proposed by
[47] where they use ten different random splits into 40 images
for training and 20 for testing. In the Paris dataset, we use the
same split as introduced by the authors of [35] in 20 train-
ing images and 84 for testing. A detailed description of the
experimental setup is presented in the next section.

5.2 Experimental setup

In our framework, we utilize mean shift [8] as unsupervised
segmentation method and Opponent-SIFT [27] for extract-
ing local features. For classification, any classifier which
can handle the large number of training examples can be
used. In our setup, we apply the combined classifiers intro-
duced in Sect. 4 (DT-GP and RDF-GP). For the eTRIMS
dataset, we compute local features on five different scales on
a 5 × 5 pixel grid leading to 19,275 training examples and
1,633,240 examples for testing. A higher number of train-
ing and test examples (22,976 and 3,140,040) was derived
from the LabelMeFacade dataset using a 20 × 20 pixel grid.
This large number of examples for training cannot be han-
dled by a standard Gaussian process classifier, but by a
DT-GP classifier. Note that due to the imbalanced nature of
the databases, both training sets are restricted to have equal
numbers of training examples for each category arriving at
above numbers.

For RDF learning, we use the following settings. At each
node, the data are split by decision stumps optimized by
employing the mutual information criterion. The maximal
depth of each tree is 10 and the number of trees is 5. As
shown in [13], the choice of the parameter highly depends
on the desired recognition performance and computational
speed. As a trade-off between both criteria, we are using 500
examples as the minimum number of examples in each leaf.

For evaluation, we use two different performance mea-
sures. Whereas the overall recognition rate denotes the
fraction of correctly classified results, the average recogni-
tion rate computes the mean of all class-specific recognition
rates such that all categories have the same impact on the
performance.
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Table 2 Recognition rates of
our experiments with different
classifiers in comparison to
previous work

In contrast to [12], we used
random splits of training and
testing for the eTRIMS dataset
to allow for fair comparison
with [47] and [46]

The bold values represent the
best results without contextual
knowledge

Dataset Approach Average recognition rate Overall recognition rate

eTRIMS Yang and Förstner [47] (CRF) 49.75 % 65.80 %

Yang and Förstner [46] (HCRF) 61.63 % 69.00 %

RDF [12] 63.68 % (±1.25) 68.86 % (±1.36)

SLR [12] 65.57 % (±2.47) 71.18 % (±2.69)

DT-GP 72.13 % (±0.65) 74.96 % (±0.25)

DT-GP CALIBRATED 72.36 % (±0.55) 75.05 % (±0.35)

RDF-GP 67.88 % (±2.19) 65.95 % (±1.08)

RDF-GP CALIBRATED 66.71 % (±0.35) 63.59 % (±0.53)

LabelMeF RDF [12] 44.08 % (±0.45) 49.06 % (±0.52)

SLR [12] 42.81 % (±0.89) 48.46 % (±1.58)

DT-GP 43.52 % (±1.04) 42.63 % (±1.02)

DT-GP CALIBRATED 41.86 % (±1.34) 43.52 % (±2.10)

RDF-GP 51.47 % (±0.09) 40.32 % (±0.09)

RDF-GP CALIBRATED 51.11 % (±0.09) 51.10 % (±1.13)

Paris Teboul et al. [34] (RDF) 55.00 % 52.57 %

Teboul et al. [34] (grammar-based) 77.00 % 82.14 %

Teboul et al. [35] (grammar-based) 84.14 % 84.21 %

DT-GP 58.38 %(±0.56) 62.25 % (±0.88)

DT-GP CALIBRATED 57.68 % (±0.77) 61.86 % (±0.81)

RDF-GP 63.20 %(±0.20) 66.44 % (±0.42)

RDF-GP CALIBRATED 62.25 % (±0.04) 65.86 % (±0.07)

Our approach is compared to the methods of [35,46,47]
and standard classifiers, like sparse logistic regression and
random decision forests [12]. Note that we do not use any
conditional random field models or any other method used to
incorporate local context information as done in several other
related work [10,16,23]. However, we believe that those
methods would benefit from integrating the output of our
non-linear classifier as an unary term respectively as initial-
ization for a grammar model [34–36]. A comparison with
standard GP without tree decomposition was done in [13]
and it turned out that the performance is comparable. For
semantic segmentation, this comparison is not possible, due
to the large number of training examples.

5.3 Results and evaluation

The results of the experiments are listed in Table 2. Along
with DT-GP, we give an overview of the results from [12] for
the sparse logistic regression (SLR) and the random decision
forest (RDF) for the eTRIMs and the LabelMeFacade dataset
and an overview of the results from [34,35] for the Paris
dataset.

In our experiment, the runtimes for the DT-GP (7.8 s per
image) and for the RDF-GP with five trees (19.14 s per image)

were longer as for the simple RDF (2.10 s per image). But
this fits very well to our expectation and the experimental
evaluation results from [13]. Please note that, as mentioned
above, it is not possible to apply standard Gaussian processes
to this high amount of features on current hardware.

For the eTRIMS database, the DT-GP classifier clearly
achieves a higher average recognition rate compared to SLR,
RDF, and RDF-GP. On the LabelMeFacade dataset, RDF-
GP leads to the best recognition rates while the deterministic
variant DT-GP does not improve upon state-of-the-art clas-
sifiers used in [12].

This leads us to the question why DT-GP and RDF-GP
exhibit such an opposite behavior in their recognition per-
formance. By taking a closer look on the data, the fol-
lowing can be noticed: there are severe differences in the
amount of label-noise between both datasets. Whereas the
eTRIMS database was manually labeled with care focus-
ing on consistency, the LabelMeFacade dataset was derived
by combining annotations of several non-experts [12] who
often missed to label several important parts of a facade.
As stated by [1] random decision forests avoid overfitting
and are thus robust to the shortcomings of the LabelMe-
Facade dataset, which contains high label-noise. The DT-
GP uses all available information in the training data in a
deterministic manner to build a supervised pre-clustering.
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Since eTRIMS provides nearly perfect ground-truth data, a
suitable partitioning of the feature space can be successfully
estimated.

In the Paris dataset, our approaches outperform the basic
randomized decision forest approach from [34] significantly.
However, the shape grammars from Teboul et al. [34,35]
tend to significantly better results than the Gaussian Process

approaches. This is of course due to the hard coded infor-
mation in the shape grammar, which also could be used
to improve our results, but this is not the focus of current
paper.

The numbers in Table 2 also validate the third hypothesis,
i.e. semantic segmentation with the LabelMeFacade dataset
benefits from the soft decision calculated by the method

Original Ground-truth RDF SLR DT-GP RDF-GP

building car door pavement road sky vegetation window unlabeled

Fig. 4 Example images from eTRIMS (first four rows) and LabelMe-
Facade database (last three row) and corresponding results obtained
by random decision forest (RDF) [12], sparse logistic regression
(SLR) [12], decision trees augmented by Gaussian processes (DT-
GP), and random decision forest augmented by Gaussian processes

(RDF-GP). DT-GP and RDF-GP/LabelMe use the proposed probabil-
ity calibration. Note the correct recognition of the door in the first row
by DT-GP which was not labeled in the ground-truth data. Further-
more, the results shown in row five demonstrate the disadvantages of
our completely local classifier in complex scenes
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building 66.1 6.8 9.1 5.6

car 57.4 5.7 9.2 5.2 15.3

door 11.8 66.4 6.6 14.4

pavement 10.2 9.3 52.4 24.3

6.173.02daor

5.99yks

vegetation 86.4

window 15.2 73.6

(a)Our method: DT-GP

0.210.010.17gnidliub

car 12.0 35.0 12.0 11.0 30.0

door 42.0 16.0 6.0 8.0 27.0

pavement 11.0 15.0 22.0 36.0 14.0

road 8.0 44.0 35.0 9.0

0.80.870.31yks

0.70.660.81noitategev

window 19.0 75.0

(b)Yang and Förstner [47]

0.110.80.76gnidliub

car 17.0 36.0 11.0 9.0 26.0

door 50.0 14.0 8.0 7.0 16.0

pavement 6.0 85.0

road 11.0 21.0 53.0 15.0

0.80.080.11yks

0.60.870.9noitategev

window 15.0 80.0

(c) Yang and Förstner [46]

2.618.517.25gnidliub

car 8.3 40.1 13.7 6.0 6.5 18.7 6.6

door 14.5 31.1 14.0 38.4

pavement 16.6 7.0 43.2 22.0 9.2

4.513.666.8daor

6.99yks

vegetation 86.1

window 11.3 78.8

(d)Random decision forest [12]

3.77.51.37gnidliub

car 6.1 54.4 11.1 20.5

9.813.469.11rood

pavement 16.4 7.8 24.0 46.2

9.381.11daor

5.39yks

0.774.57.5noitategev

window 17.2 71.4

(e) Sparse Logistic Regression [12]

Fig. 5 Average confusion matrices achieved by our methods and the approaches of [47] and [46] on the eTRIMS dataset. Values are only displayed
above 5 %

presented in Sect. 3.4. While there is no significant differ-
ence on the eTRIMS dataset, a clear performance boost is
apparent for the LabelMeFacade database, where the overall
recognition rate is increased by 10.68 % from uncalibrated
to calibrated RDF-GP.

Another interesting observation, which can be seen in the
results of the eTRIMS dataset, is that we outperform the
approaches of [47] and [46], which exploit the structure of
facades by utilizing a (hierarchical) conditional Markov ran-
dom field. Those techniques can also be used to enhance our
results, however, they are beyond the scope of the current
paper.

Unfortunately, in some cases pure recognition rates do not
allow us to make sufficient statements about visual quality of
the resulting segmentations. For this purpose, Fig. 4 contains
a few images from both datasets along with their ground-truth
data and the resulting segmentations calculated by [12] and
our approach. Figure 5 shows the result for the same train-
ing and testing split of the different methods as confusion
matrices. It can be seen that especially the discrimination
between door and window benefits from the incorporation
of the DT-GP method into the semantic segmentation frame-
work. The matrices also highlight cases that are still difficult
to differentiate, such as pavement and road or window and
building.

6 Conclusions and further work

In this work, we presented an approach to semantic segmen-
tation that allows accurate prediction for very large datasets.
Our method employs a fast Gaussian process (GP)-based
classifier which relies on a pre-clustering of the input space
using decision trees. We additionally proposed a fast method
for generating probabilistic outputs in the multi-class set-
ting without resorting to costly inference methods [24]. We
validated our approach on different challenging facade image
datasets and compared it to existing work. The results clearly
show that a significant performance boost is achieved using
our tree-based GP framework. Furthermore, our probability
calculation method can provide an additional performance
benefit.

Semantic segmentation with a predefined list of categories
is in general ill-posed in its nature, since there are always
some regions in the image which belong to unknown cat-
egories or where no decision can be made even by human
annotators. One idea for further work is to use the estimation
uncertainty given by the GP classifier to mark such image
areas or to identify outliers in the training data using leave-
one-out estimates [24].

Another direction for future research is semi-supervised
methods, which use all information available in only partially
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annotated images. In our case, the combination of semi-
supervised extensions of random forests [22] and Gaussian
process classifiers [21] seems to be promising.

Facade recognition clearly benefits from additional prior
knowledge, such as periodicity and typical structure. Our
approach is completely local and it would be interesting to
model the dependencies with conditional Markov random
fields [10,16,23,46] and do inference based on our estimated
probability maps. However, facades have a structure that can-
not be completely modeled with standard CRF models, which
are mostly restricted to pair-wise dependencies between pix-
els or regions. A solution would be to use grammar techniques
[25,32,35,36] or to incorporate topological constraints using
the minimal perturbation idea of [6].

Apart from facade recognition, we are planning to evaluate
our methods on remote sensing data and common datasets of
semantic segmentation like MSRC21 and Pascal VOC [9].

Acknowledgments This work was partially supported by the Grad-
uate School on Image Processing and Image Interpretation funded by
the state of Thuringia/Germany.
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20. Korč, F., Förstner, W.: etrims image database for interpreting
images of man-made scenes. Technical report, Department of Pho-
tography, University of Bonn (2009). http://www.ipb.uni-bonn.de/
projects/etrims_db/

21. Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via
gaussian processes. In: Advances in Neural Information Processing
Systems, pp. 753–760 (2005)

22. Leistner, C., Saffari, A., Santner, J., Bischof, H.: Semi-supervised
random forests. In: Proceedings of the 2009 International Confer-
ence on Computer Vision (ICCV’09), pp. 506–513 (2009)

23. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E.,
Belongie, S.: Objects in context. In: Proceedings of the 2007
International Conference on Computer Vision (ICCV’07), pp. 1–8
(2007)

24. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learn-
ing). MIT Press, Cambridge (2005)

25. Ripperda, N., Brenner, C.: Evaluation of structure recognition using
labelled facade images. In: Proceedings of the DAGM, pp. 532–541
(2009)

26. Rodner, E., Hegazy, D., Denzler, J.: Multiple kernel gaussian
process classification for generic 3d object recognition from time-
of-flight images. In: Proceedings of the International Conference
on Image and Vision Computing (2010)

27. van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descrip-
tors for object and scene recognition. PAMI 32, 1582–1596 (2010)

28. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge (2001)

29. Shen, Y., Ng, A., Seeger, M.: Fast gaussian process regression using
kd-trees. In. Advances in Neural Information Processing Systems,
pp. 1225–1232 (2006)

30. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for
image categorization and segmentation. In: Proceedings of the 2008
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’08), pp. 1–8 (2008)

31. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost:
joint appearance, shape and context modeling for multi-class object
recognition and segmentation. In: Proceedings of the European
Conference of Computer Vision (ECCV’06), pp. 1–15 (2006)

32. Simon, L., Teboul, O., Koutsourakis, P., Paragios, N.: Random
exploration of the procedural space for single-view 3d modeling of
buildings. Int. J. Comput. Vis. 93, 253–271 (2011)

33. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using
pseudo-inputs. In: Advances in Neural Information Processing Sys-
tems (2006)

123

http://dx.doi.org/10.1007/s11263-008-0140-x
http://dx.doi.org/10.1109/CVPR.2008.4587417
http://www.ipb.uni-bonn.de/projects/etrims_db/
http://www.ipb.uni-bonn.de/projects/etrims_db/


Large-scale gaussian process multi-class classification 1053

34. Teboul, O.: Shape Grammar Parsing: Application to Image-Based
Modeling. PhD thesis, Ecole Centrale de Paris (2011)

35. Teboul, O., Kokkinos, I., Koutsourakis, P., Simon, L., Paragios, N.:
Shape grammar parsing via reinforcement learning. In: IEEE Inter-
national Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2313–2319 (2011)

36. Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.: Segmentation
of building facades using procedural shape priors. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (2010)

37. Tipping, M.E.: Sparse bayesian learning and the relevance vector
machine. J. Mach. Learn. Res. 1, 211–244 (2001)

38. Tresp, V.: A bayesian committee machine. Neural Comput. 12,
2719–2741 (2000)

39. Tsang, I.W., Kocsor, A., Kwok, J.T.: Simpler core vector machines
with enclosing balls. In: Proceedings of the 24th international con-
ference on Machine learning, pp. 911–918 (2007)

40. Urtasun, R., Darrell, T.: Sparse probabilistic regression for activity-
independent human pose inference. In: Proceedings of the 2008
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’08) (2008)

41. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer,
Berlin (1995)

42. Williams, C.K., Seeger, M.: Using the nyström method to speed up
kernel machines. In: Advances in Neural Information Processing
Systems, pp. 682–688 (2001)

43. Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based
street-side city modeling. ACM Trans. Graph. 28(5) (2009)

44. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database:
Large-scale scene recognition from abbey to zoo. In: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3485–3492 (2010). doi:10.1109/CVPR.2010.5539970

45. Xiao, J., Quan, L.: Multiple view semantic segmentation for street
view images. In: Proceedings of 12th IEEE International Confer-
ence on Computer Vision, pp. 686–693 (2009)

46. Yang, M.Y., Forstner, W.: A hierarchical conditional random field
model for labeling and classifying images of man-made scenes.
In: 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pp. 196–203 (2011). doi:10.1109/
ICCVW.2011.6130243

47. Yang, M.Y., Förstner, W.: Regionwise classification of build-
ing facade images. In: Photogrammetric Image Analysis. Lec-
ture Notes in Computer Science vol. 6952, pp. 209–220. Springer,
Berlin (2011)

Author Biographies

Björn Fröhlich earned the
Diploma degree in Computer
Science from the Friedrich
Schiller University of Jena in
the year 2009. He is currently
a holder of a scholarship in
the Graduate School on Image
Processing and Image Inter-
pretation from the Free State
of Thuringia (Germany) and
a Ph.D. student at the Chair
of Computer Vision, Institute
of Computer Science, Friedrich
Schiller University in Jena. His
research interests are focused on

object recognition and image segmentation.

Erik Rodner earned the Diploma
degree in Computer Science with
honours in 2007 from the Uni-
versity of Jena, Germany. He
received his Ph.D. in 2011 with
summa cum laude for his work
on learning with few examples,
which was done under supervi-
sion of Joachim Denzler at the
Computer Vision Group of the
University of Jena. Erik is cur-
rently continuing his research as
a postdoctoral researcher at UC
Berkeley and the International
Computer Science Institute. His

research interests include kernel methods, visual object discovery,
domain adaptation, scene understanding, as well as exploring every
National and State park in California.

Michael Kemmler received
the Diploma degree in Com-
puter Science with honors in
2009 from the Friedrich Schiller
University of Jena, Germany.
As a Ph.D. student at the
Jena Graduate School for Micro-
bial Communication, he pursued
his studies under the super-
vision of Joachim Denzler at
the Computer Vision Group of
the University of Jena. His
research interests are in the
area of machine learning, object
recognition and bioinformatics,

including kernel methods, visual image and scene classification as well
as bacterial classification.

Joachim Denzler earned the
degrees “Diplom-Informatiker”,
“Dr.-Ing.,” and “Habilitation”
from the University of Erlan-
gen in the years 1992, 1997 and
2003, respectively. Currently, he
holds a position as full time
professor for Computer Sci-
ence and is head of the Chair
for Computer Vision, Faculty
of Mathematics and Informat-
ics, Friedrich Schiller University
of Jena. His research interests
comprise active computer vision,
object recognition and tracking,

3D reconstruction, and plenoptic modeling, as well as computer vision
for autonomous systems. He is author and coauthor of over 90 jour-
nal papers and technical articles. He is a member of the IEEE, IEEE
Computer Society, DAGM, and GI. For his work on object tracking,
plenoptic modeling, and active object recognition and state estimation,
he was awarded the DAGM best paper awards in 1996, 1999 and 2001,
respectively.

123

http://dx.doi.org/10.1109/CVPR.2010.5539970
http://dx.doi.org/10.1109/ICCVW.2011.6130243
http://dx.doi.org/10.1109/ICCVW.2011.6130243

	Large-scale gaussian process multi-class classification  for semantic segmentation and facade recognition
	Abstract 
	1 Introduction
	1.1 Related work on semantic segmentation and facade recognition
	1.2 Related work on efficient GP classification
	1.3 Outline of the paper

	2 Semantic segmentation framework
	3 Gaussian process classification
	3.1 Basic principles of GP priors
	3.2 Bayesian framework for regression and classification with GP
	3.3 Multi-class classification
	3.4 Probability calibration

	4 Large-scale GP classification with tree-based models
	4.1 Learning
	4.2 Prediction

	5 Experiments
	5.1 Experimental datasets
	5.2 Experimental setup
	5.3 Results and evaluation

	6 Conclusions and further work
	Acknowledgments
	References


