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Abstract We investigate different Vickers indentation seg-
mentation methods and especially concentrate on active
contours approaches as these techniques are known to be
precise state of the art segmentation methods. Particu-
larly, different kinds of level set-based methods which are
improvements of the traditional active contours are ana-
lyzed. In order to circumvent the initialization problem of
active contours, we separate the segmentation process into
two stages. For the first stage, we introduce an approach
which approximately locates the indentations with a high
certainty. The results achieved with this method serve
as initializations for the precise active contours (second
stage). This two-stage approach delivers highly precise
results for most real world indentation images. However,
there are images, which are very difficult to segment.
To handle even such images, our segmentation method is
incorporated with the Shape from Focus approach, by includ-
ing 3D information. In order to decrease the overall runtime,
moreover, a gradual enhancement approach based on unfo-
cused images is introduced. With three different databases,
we compare the proposed methods and we show that the seg-
mentation accuracy of these methods is highly competitive
compared with other approaches in the literature.
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1 Introduction

Hardness, which is an important characteristic of solid mate-
rials, can be determined with the Vickers hardness test.
A pyramidal indenter is pressed into the material with a
defined force and causes an indentation. An important issue
is to measure the size (diagonal length) of the approximately
square indentation to determine the Vickers hardness [1]
(depends on the applied force and the diagonal length). As
the manual measurement of the indentation images not only
is expensive but also interpretive and subjective, a robust and
accurate automatized measurement method is highly benefi-
cial. Segmentation algorithms are used to get the positions of
the four vertices of the indentation. Having the four vertices,
the diagonal lengths can be calculated easily.

There are several proposals for image segmentation of
Vickers indentations. One group of algorithms rely on
wavelet analysis [2,3]. These methods assume that object
borders are perfectly straight lines, which is not always
true. Another approach [4] is based on edge detection fol-
lowed by Hough transform and least squares approxima-
tion of lines. Edge finding techniques are based on the
assumption that high differences between neighboring pix-
els imply that these pixels are part of the border. Espe-
cially in case of noisy images, this assumption is not right at
all. The method introduced in [5] applies thresholding fol-
lowed by a Hough transform. If thresholding is applied to
images, it is necessary to calculate a threshold value which
depends on the current image, because a fixed threshold
surely does lead to good results. Often a separation of the
object from the background with thresholding is not pos-
sible, since the assumption of different gray values between
object and background is not valid. Other suggested methods
also binarize the image using thresholding [6,7], followed by
morphological closing. Another approach is based on axis
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1184 M. Gadermayr et al.

projection and Hough transform [8]. This approach is based
on the assumption that the objects are perfectly aligned
(diagonals vertical/horizontal). Methods relying on template
matching [9,10] are quite robust to noise. This is because
big templates suppress noise as large regions are summed
up. The template-matching approach introduced in [10] pro-
vides robust as well as precise results, but requires an accu-
rate alignment (diagonals horizontal/vertical). A high degree
of accuracy is achieved by applying four corner templates
instead of one complete square template [9] (square tem-
plates in different sizes and different rotations are matched
with the image). The results of the approach using complete
square templates [9] are robust but only serve as approxima-
tions. A refinement strategy [11] adds accuracy.

In this work, first we investigate the active contours
approaches with reference to Vickers indentation images.
The aim of these approaches is that a contour with a defined
initialization converges to the real object boundaries. In
experiments, different energy functionals, which depend on
pixel values of the image on the one hand and homogeneity
criteria of the contour on the other hand are utilized. We found
out that this technique suffers from poor initializations and
we illustrate the reason for this behavior. To achieve appro-
priate initializations, a flexible Shape Prior approach, which
produces highly robust, but not accurate results, is investi-
gated [12]. In the two-stage segmentation approach, these
approximative, but robust results deal as initializations for a
subsequent active contour. Moreover, active contours as well
as the Shape Prior approach are joined with the existing Shape
from Focus approach [13], which extracts additional infor-
mation from a series of images (of the same indentation).
This increases the robustness of segmentation, especially
of low quality images. Furthermore, a gradual enhancement
approach [14] based on different unfocused images is inves-
tigated, in order to decrease the overall runtime and maintain
the robustness. With new image data, different combinations
of the mentioned approaches are evaluated in a uniform way
in order to compare the segmentation accuracy.

All these different approaches which are explained in the
consecutive sections are summarized in Fig. 1. The proposed
variable two-stage segmentation approach defines different
initialization stages (1A–1C) and enhancement stages (2A–
2C). One initialization and one enhancement stage must
be chosen and lastly, the local Hough transform has to be
applied. For high quality images, we propose the methods
1A and 2A. In the case of lower quality images, the seg-
mentation robustness can be increased, if in the first stage,
method 1B (Shape from Focus) is utilized. Very low quality
images even benefit if the method 2B is used. To decrease
the execution runtime, method 1C can be used for all images
(followed by 2A).

We found out that whereas a certain degree of inaccuracy
in the first approximative stage does not affect the overall

Fig. 1 Block diagram: two-stage approach with different methods for
each stage

segmentation accuracy, outliers cannot be refined in the pre-
cise stage 2. In the following, robustness means that the out-
liers ratio is low. Experiments showed, that a vertex position
can be refined without a loss of accuracy, until a detection
error of about 50 pixels is reached (in stage 1). Consequently,
we set the outliers threshold to 50 pixels.

In Sect. 2, different active contours approaches (stage 2,
especially 2A and 2C) are investigated with reference to
Vickers indentation images. In Sect. 3, the new approxi-
mative Shape Prior segmentation approach (stage 1, espe-
cially 1A) is introduced to achieve good initializations.
In Sect. 4, the Shape from Focus approach [15] is incor-
porated with traditional segmentation methods (stage 1B,
2B), in order to improve robustness. In Sect. 5, a new
gradual enhancement approach is introduced (stage 1C).
Experiments are shown in Sect. 6. Section 7 concludes this
paper.

1.1 Vickers images

The images to segment approximately fit the following
description:

• Square geometry of object to segment
• Dark object, bright background
• Diagonals are horizontally and vertically aligned
• Object is situated close to the center.
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 2 Different categories of Vickers indentation images

Figure 2a shows quite perfect images. Images in Fig. 2b
show different kinds of noise. Some bright images lack of
contrast (Fig. 2c), especially the diagonals’ gray scale is the
same as the background. Another inconvenience is the fact,
that in such images, possible noise is often darker than the
imprint. In Fig. 2d, the diagonals are not aligned horizontally
and vertically. In Fig. 2e, a concave and a convex curvature
is shown. The images in Fig. 2f represent the smallest and
largest imprints in our databases.

2 Active contours approaches

2.1 State of the art methods

The traditional active contours (snake) model has been intro-
duced in [16]. A snake is a closed curve which iteratively con-
verges at the object’s borders, by means of gradient descent
of an energy functional. The energy is computed from image
pixel values (e.g. gradients) and the homogeneity of the con-
tour. The curve is represented parametrically by a sequence of
pairs containing x and y coordinates connected with straight
line segments.

The level set method introduced in [17] is an alternative
to the traditional snake model. Apart from other inconve-
niences, traditional active contours suffer from an explicit
parametrization (by frontier points) of the contour. In the
level set formulation, the contour is given by its level set �.

� = {(x, y)|φ(x, y) = 0}. (1)

φ(x, y) is a function which is 1 inside, −1 outside of the
region and exactly 0 at the frontier of the evolved shape.

Fig. 3 Indentation image with inhomogeneous background

Evolution of the frontier happens by moving the level set
� in normal direction ∇φ

||∇φ|| with a specified speed v. There
exist lots of different ways of calculating the speed function
v, which influences the behavior of the evolving level set.

As with the snake approach, edge-based level set
approaches [18] require the propagation of edges to increase
the capture range (region where the contour converges to the
real boundary). To bypass this issues, in [19], a region-based
approach has been introduced, where the force of the con-
tour is not based on image gradients. This method is based on
the assumption that the object’s surface as well as the surface
outside of the object are homogeneous as far as its gray value
is concerned:

ECV =
∫

�in

(I (v) − ¯Iin)
2dv +

∫

�out

(I (v) − ¯Iout)
2dv

+ λ

∫

�

||∇φ(v)||dv. (2)

� is the image, I is the image gray value, ¯Iin ( ¯Iout) is
the average image value inside (outside) of the contour, �in

(�out) is the surface inside (outside) of the contour, ∇ is the
gradient operator and λ is the curvature weighting term.

The region based-approach is based on the assumption
that images do not necessarily have strong gradients at their
boundaries, but the regions inside and outside of the contour
have to be homogeneous as far as the gray value is concerned.
This assumption usually is quite appropriate, however it is
inappropriate for some kinds of images (e.g. the image in
Fig. 3: background consists of regions which are darker than
the object).

Consequently, a region-based model would state that such
dark noise pixels are more likely to be part of the object than
to be part of background (as background average color is
brighter). Obviously, this does not match with reality. To
overcome that inconvenience, a statistical approach has been
introduced [20]:

Estat = −
∫

�in

log pin( f (v))dv

−
∫

�out

log pout( f (v))dv + α|C |. (3)
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1186 M. Gadermayr et al.

Fig. 4 Problems: small capture range (left), noise gradient image
(right)

The regularization term α|C | prevents the contour from
developing zigzag patterns. pin and pout are the probabilities
of the feature vectors f inside and outside of the contour.
Intuitively, the energy is low, if both regions are homoge-
neous with respect to the feature vectors f .

This formulation allows not only to use the gray value
as feature but also each feature which could be defined for a
specific pixel might be included in an arbitrary feature vector.
In our experiments, the following feature vectors are used:

f (v) = (I (v), ||∇ I (v)||); (4)

f (v) =
(

I (v),
dI (v)

dx
,

dI (v)

dy

)
. (5)

2.2 Vulnerability to initialization

First, we discuss the edge-based approaches which are based
on image gradients. That means, the contour moves into the
direction, where the gradients are increasing. Close to object
boundaries, this actually is appropriate. However, we do not
already know where the objects are located approximately. In
Fig. 4 (left), the gradient image and a possible initial contour
are shown. Surely, a gradient descent of the contour would
never be successful as the capture range is too small. Espe-
cially, the segmentation of noisy images suffers because the
gradient image shows lots of regions with low image energy
(Fig. 4, right), where the contour potentially converges to.

To increase the capture range and decrease the effect of
noise, large edge operators instead of small ones (Sobel 3×3)
could be utilized. This causes a propagation of the edge infor-
mation and thus makes a gradient descent of the contour pos-
sible. However, the size of the gradient operator is limited as
small objects are blurred too much and moreover, the com-
putational costs become high. The effect of differently sized
edge operators is shown in Fig. 5. However, although a big
gradient operator is used in the right image, the segmentation
fails.

In [21,22], strategies to increase the capture range are
proposed. One big problem of these methods is that not only
edge information is propagated but also noise. Noisy edge
images affect the active contours as shown in Fig. 6.

Fig. 5 Differently sized gradient operators and the impact on the cap-
ture range

Fig. 6 Segmentation failed because of noisy edge image

Fig. 7 Region-based approach fails (left: initialization, right: wrong
segmentation)

Although region-based approaches (and the statistical
approach) which do not rely on gradients are less vulnerable
to the initial configuration, starting with a general level set is
often not successful as well. On the one hand, even region-
based algorithms do not succeed to converge at the desired
boundary, if the contour is too far away from the indentation.
The contour often does not shrink to converge at the bound-
aries, but grows instead. This is because the average gray
value of the background might be darker than the average
gray value within the contour (shown in Fig. 7). On the other
hand, if such long distances must be managed, computational
costs are tremendous.

3 An approximative Shape Prior method

The methods mentioned so far suffer from converging to local
minima if the initialization is inappropriate. In existing Shape
Prior level set approaches [23,24], a weighted shape term is
added to the energy function. This increases the robustness,
but for a standalone segmentation even these methods are
inappropriate. The same problem as shown in Fig. 7 arises.
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Fig. 8 The four degrees of freedom

We propose a quite different way for robust segmentation of
shapes which are known a priori [12].

Our approach requires a parametric description of the prior
shape. The object that will be segmented will have exactly
the prior shape, as not a contour (parametrized by points or
level set), but the object description parameters are directly
evolved by gradient means of descent. Whereas the tradi-
tional active contours as well as level set algorithms allow
arbitrary deformation of the initial contour, our approach only
allows the evaluation of the following four parameters (the
effect on the contour is shown in Fig. 8):

1. r0: scaling
2. x0: translation x axis
3. y0: translation y axis
4. α0: rotation

The contour of the square is given by the points (x, y)

with the distance d = r0 to a center (x0, y0). d is calculated
in the following way to ensure that the evolved contour has
a square shape:

d = |(x − x0) · cos(α) + (y − y0) · sin(α)|
+|(x − x0) · sin(α) − (y − y0) · cos(α)|. (6)

Of course, this algorithm will not be able to segment
Vickers images perfectly, as Vickers’ shape often cannot be
described by a perfect square. Though this is not our objec-
tive, we aim at a pretty good approximative segmentation of
a very high rate of images. These approximations deal as the
initializations for a precise segmentation method.

In order to reduce the computational effort, we previously
downscale the indentation images by factor 10. Although this
causes a further loss of accuracy, the results after the precise
segmentation stage are not affected.

The regions in- and outside of the square are given by �in

and �out:

�in = {(x, y) : d < r0}; (7)

�out = {(x, y) : d > r0}. (8)

As with the level set approach, we define an energy cri-
terion which is minimized by gradient descent. We investi-
gated different energy functions (edge based, region based).
Tests showed that the following statistical criterion, which
is derived from the statistical level set approach proposed in
[20], is the best choice:

E = −
∫

�in

log(p�in( f (v)))dv −
∫

�out

log(p�out ( f (v)))dv.

(9)

f (v) is an arbitrary feature of the point v. We investigate the
feature vectors in Eqs. (4) and (5). The evolved parameters
are collected in the vectors si = (x0, y0, r0, α). The vector
s0 is the initialization. sn+1 is defined recursively:

sn+1 = sn + λ(∇E). (10)

λ is defined to be signum function:

λ((x1, . . . , xn)T) = (sign(x1), . . . , sign(xn))T; (11)

∇E =
(

dE

dx
,

dE

dy
,

dE

dr
,

dE

dα

)T

. (12)

e.g. the partial derivative of the x dimension is calculated as:

dE

dx
((x, y, r, α)T) = E((x + 1, y, r, α)T)

−E((x − 1, y, r, α)T). (13)

Although the introduced approach is already able to deal
with local minima caused by noise, we still have not achieved
a total invariance to the initialization s0. Local minima still
prevent from a proper localization of the indentation in sev-
eral cases. The balloon approach [25] introduced for active
contours deals with this problem by adding an energy term,
forcing the contour to become smaller or larger. Our approach
allows to apply a kind of balloon force in an easy but effective
way. Instead of calculating the radius r0 by gradient descent,
r0 is simply decreased by one in each iteration of the gra-
dient descent. If the contour starts at the image boundaries
(r0 is large), it necessarily has to cross the object’s bound-
aries, when getting smaller and smaller.

Unlike unforced gradient descent, the proposed balloon
method does not stop before r0 becomes zero (or a defined
minimum). In a second step, the history of the gradient
descent has to be analyzed to get the best fitting vector sres

from a set of several local minima. In our case, the best
results are achieved when using the vector si with the highest
response (achieved by convolution) of the image information
to the template (parametrized by si ) shown in Fig. 9 with a
thickness of 3 pixels.

4 Including Shape from Focus

The approaches mentioned so far only rely on one single
image, which has to be segmented. All the information must
be gathered from this single two dimensional signal. How-
ever, the real world cannot be described by two dimensions,
as space has got three. To be able to exploit also 3D infor-
mation, we utilize the Shape from Focus [15] approach.
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Fig. 9 Directed edge template (thickness 1)

This method uses a set of images, with different focus setups
(as shown in Fig. 11) to generate a depth map.

In order to acquire focused images, the Vickers hardness
testing facilities rely on autofocus systems. The autofocus
system takes pictures, computes the focus metric [26] and
moves the camera for one step until the peak of the focus
metric (i.e. the focused image) is reached. Consequently, a
number of images of the same indentation is already avail-
able, which can be utilized to compute the shape.

4.1 Shape computation

Intuitively, the Shape from Focus approach exploits the fact
that focus can only be achieved for a specific distance from
the camera. That means, it is not possible to focus an object
in the foreground as well as the background simultaneously.
Consequently, if pictures with different focus setups of a three
dimensional object are taken, information of the third dimen-
sion (depth) can be obtained, as in the different images, dif-
ferent regions are focused.

First of all, to compute the shape of an object, a series
of images Ik of an object with different focus levels k ∈ L
must be gathered (L is the set of focus levels). After that, for
each point v = (x, y) in each image Ik of a focus series, a
focus measure F(v) must be computed. Next, for each point
v, the focus level k ∈ L with the highest focus measure Fk(v)

is calculated. Each focus level k represents a defined depth
level d:

d(v) = k ∈ L : ∀l ∈ L : Fk(v) ≥ Fl(v). (14)

Although the depth is not measured absolutely, relative dif-
ferences are sufficient to determine peaks and valleys of the
surface.

4.2 Focus measures

As mentioned, a focus measure F is necessary to deter-
mine the focus level k with the highest response. In [15], the

sum-modified-Laplacian (SML) operator FSM L is proposed,
which is based on the second order derivation:

FSML(i, j)=
i+N∑

x=i−N

j+N∑
y= j−N

M L(x, y), if M L(x, y) ≥ T ;

(15)

ML(x, y)=|2 · I (x, y)− I (x − s, y) − I (x + s, y)|
+|2 · I (x, y)− I (x, y−s)− I (x, y+s)|. (16)

s is the step size of the metric, which can be adjusted accord-
ing to the image properties.

The SML operator not only consists of a simple gradient
operator. To increase the robustness, a threshold T is intro-
duced, which suppresses very small responses. Moreover,
some neighboring pixel responses are summed up to achieve
a more steady output (adjustable with N ).

Alternatively, we investigate a generalization of the
Tenengrad focus measure FT [26] that is based on the first
order derivation, which could be used instead of the proposed
SML measure.

FT(i, j) =
i+N∑

x=i−N

j+N∑
y= j−N

T (x, y), if T (x, y) ≥ T . (17)

T (i, j) = S∗2
x (i, j) + S∗2

y (i, j) and S∗
x and S∗

y are convo-
lutions of the Sobel operators in x and y direction with the
image.

Moreover, we investigate the range metric, which is based
on the histogram:

Frange(i, j) = max(r(i, j)) − min(r(i, j)); (18)

r(i, j) = {(x, y)|(|x − i | + |y − j |) ≤ T }. (19)

T defines the size of the considered region.

4.3 Introduction of Shape from Focus knowledge
into segmentation

As shown in Fig. 10, the depth estimation based on the Shape
from Focus approach often is not able to appropriately sep-
arate the indentation from the background. The depth in
regions marked white cannot be reliably determined (i.e.
region is homogeneous). Otherwise, the darker the region,
the farther it is away.

Especially in case of high quality images, the shape infor-
mation often is very unreliable, whereas in case of (noisy)
low quality images, the shape information seems to be more
reliable than the original image. Consequently, we incorpo-
rate the active contours and the Shape Prior method with the
Shape from Focus approach [13]. We concentrate on the sta-
tistical energy criteria [Eqs. (2), (9)], which allow (unlike the
other criteria) the inclusion of arbitrary feature vectors.
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Fig. 10 Original images (top) and corresponding depth informations
(bottom): reliable (left) and unreliable (middle, right) depth information

Fig. 11 Different focus settings, reaching from f l << 0 (left) to
f l >> 0 (right)

We investigate the following feature vectors, instead of
the traditional ones in Eqs. (4) and (5):

f (v) = (I (v), DI (v)); (20)

f (v) = (I (v), ||∇ I (v)||, DI (v)). (21)

DI is the depth image generated with the Shape from
Focus approach. The new feature vectors can be used straight-
forward in the statistical Shape Prior method as well as in the
statistical active contours method in the same way. The only
difference is that we use downscaled images in the Shape
Prior approach. That means, the depth image DI also has to
be calculated from the downscaled image, which is signifi-
cantly less computationally expensive.

5 Gradual enhancement with unfocused images

The following two facts motivate us to propose one more
approach dealing with differently focused images [14]:

• Actually, with appropriately unfocused images, the seg-
mentation robustness can even be improved (see Sect. 6).
This is because the unfocused images are not just similar
to low pass filtered images, but in addition, the indenta-
tion is reinforced if the focus plane is chosen appropri-
ately (see Fig. 11, left images).

• Furthermore, the autofocus system takes a significant
amount of time to provide the focused image. To get the
focused image, our system starts with a focus plane far-
ther away than the surface and incrementally gets nearer.

Active contours incrementally converge at the object
boundaries. That means, the image might be changed during

the segmentation process. Our intention is to start with unfo-
cused images, which can be segmented robustly. Incremen-
tally, when a “better” image is available, the segmentation
approach continues to process the new image in order to
refine the results. The focused image is defined to have the
focus level zero ( f l = 0). If the focus plane is farther away
from the camera than the specimen, the focus level is smaller
than zero and vice versa. The chosen step size between two
focus levels is explained in Sect. 6.

We propose the following three steps based on the Shape
Prior gradient descent approach:

1. The focus starting setting is chosen that the focus plane
is farther away than any part of the specimen ( f l << 0).

2. Start the proposed first stage gradient descent segmenta-
tion algorithm (see Sect. 3) on the unfocused image which
is taken with the mentioned focus setting. Approximative
results are achieved.

3. Until the end-criterion is reached:

• Increase the focus level by one step and get the image.
• Initialize the gradient descent algorithm with the cur-

rent approximative results and the new image.
• Increase the initialization variable “radius” by e.g.

2 pixels. As a balloon force is used, otherwise the
contour could only shrink.

• Run the algorithm with only 5 iterations to enhance
the approximative results.

• New approximative results are achieved.

The first image to segment is highly unfocused. Conse-
quently, an exact segmentation surely cannot be achieved.
However, the blurred image can be segmented robustly.
Whereas the first image is segmented as proposed in Sect. 3,
the enhanced images are not. These images are initialized
according to the current approximative results and only 5
iterations of the gradient descent approach are applied. The
proposed policy allows to start the segmentation before the
final focused image is available.

5.1 Appropriate end-criterion

The intention is that the results could be enhanced until the
focused image is reached. Actually, this cannot be done since
the best results are achieved, when stopping with the image
of a focus level below zero. In practice, this is not possi-
ble, as the focus levels are defined relatively to the focused
image (which is not known apriori). However, when saving
the result history, these results can be recovered.

5.2 Speeding up the initial segmentation

Whereas an enhancement step 3 is fast, the initial step 2 takes
quite a long time. As the initial contour starts at the boundary
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of the image, has to shrink until it collapses and shrinks one
pixel per iteration, about h

2 iterations are necessary (h is the
image height).

Whereas a further reduction of the image size affects the
segmentation accuracy, increasing the step size of the con-
tour does not, as far as robustness is concerned. Instead of
modifying the evolving shape parameters by one per itera-
tion, we propose to increase the step size (i.e. in one iteration,
each parameter is adjusted by the positive or negative step
size or stays the same). Increasing the step size to e.g. 4, we
achieved less accurate results after the initial segmentation
step, but after the enhancement steps, the results were exactly
the same (the results are shown in Sect. 6).

6 Experiments

6.1 Database

For testing, two different databases with 150 (DB1) and 216
images (DB2) (resolution 1,280 × 1,024 pixels) provided
to us were used. These focused images have been evaluated
manually with respect to identifying the four vertices, by four
experts independently. The ground truth was determined by
taking the mean of all four measures. Moreover, one more
database (DB3) consisting of 25 indentation series, each con-
sisting of 40 images with different focus settings is used to
evaluate the Shape from Focus and the gradual enhancement
approach. The quality of these images is considerably lower.
The ground truth of these images has been determined by
two people.

Our aim is to detect the four vertices of the approximately
square Vickers indentations. In the following analyses, the
distances between detected vertices and the ground truth are
measured. In these figures, for each deviation bin (Euclid-
ean distance in pixels) on the x axis, the number of vertices
detected within this deviation is shown on the y axis.

6.2 Traditional two-stage approach without Shape
from Focus

The following strategy turned out to be competitive as far as
segmentation performance is concerned:

• Stage 1A, Localization: approximative segmentation
with the Shape Prior algorithm (Sect. 3) on downscaled
images (factor 10).

• Stage 2A, Refinement: the precise region-based level set
method based on the results (as initializations) of the
localization stage.

• For a further improvement of the segmentation accuracy,
the local Hough transform [4,8] is applied in an area of
60 pixels around the corners as a postprocessing strategy.

(a)

(b)

Fig. 12 Results of the overall two-stage approach (left most line) and
interim results (without refinement)

The approximative Shape Prior localization stage already
is highly robust, as a high rate of vertices can be located
within a deviation of, e.g., 50 pixels, as can be seen in
Fig. 12a and b. The region-based refinement stage based on
the Shape Prior results but without a Hough transform is able
to improve the accuracy (e.g., more vertices with deviations
≤5 pixels). With the local Hough transform, the accuracy can
be improved further more.

In Fig. 13a and b, different energy criteria of the refinement
stage are compared. The region-based criterion is the best
choice. The edge-based criterion is very vulnerable even with
good initializations, as small edge operators are used. In this
case, the traditional active contours approach (snake) is used
instead of the level set approach. The edge-based level set
approach is more competitive, but not as competitive as the
statistical or the region-based level set approach.

In Fig. 14a and b, we compare the proposed two-
stage active contours approach with two existing template
matching approaches [10,11]. In the high accuracy range
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(a)

(b)

Fig. 13 Comparison of different energy criteria in the second stage

(0–1 pixels), our two-stage approach is the best choice. As
far as deviations of about 3–8 pixels are concerned, the
three-stage template matching approach [11] is slightly more
competitive. However, when regarding higher deviations, the
corner template matching approach [10] and our proposed
method are more reliable. Over the whole range, the pro-
posed 2-stage method seems to be the best alternative. The
deduced knowledge seems to be reliable, as both databases
show a similar behavior.

6.3 Shape from Focus

We compare the traditional proposed two-stage approach
without depth information with the versions with depth infor-
mation. As the Shape from Focus approach requires series
of images with different focus levels, for the experiments the
image database DB3 is chosen. We decided to utilize seven
images per indentation with the focus plane farther away than
the specimen and the focused image.

(a)

(b)

Fig. 14 Comparison of our two-stage approach with other known
approaches in the literature [10,11]

First, we investigate the impact of the depth information
on the first approximative stage. The best results are achieved
with the two dimensional feature vector (Eq. 20). The distrib-
utions pin and pout are calculated by convolving the empirical
distributions with a Gaussian Parcen window (σ = 2).

The choice of the focus measure is not very decisive as
the results are quite similar. The achieved segmentation per-
formance with the different measures is shown in Fig. 15a.
The Shape from Focus method in the following experiments
is based on the SML focus measure (T = 7, N = 1, s = 3)
which is slightly more competitive as far as outliers are con-
cerned. In Fig. 15b, the results of the statistical method with
depth information (Eq. 20) is compared with the statisti-
cal method without depth information (Eq. 4). Whereas the
number of edges detected quite exactly (0–25 pixels) is sim-
ilar, the number of outliers (deviation >50 pixels) can be
decreased significantly with the Shape from Focus informa-
tion. As we concentrate on a low outliers ratio (i.e. a high
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(a) (b)

(c) (d)

Fig. 15 Comparisons: changes if Shape from Focus information is used only in the first approximative stage

degree of robustness) in the localization stage, the achieved
results seem to be more appropriate as initialization for the
exact segmentation stage.

Now we investigate the impact of the shape information on
the second stage. First of all, in Fig. 15c, the impact of the ini-
tialization on the traditional region-based level set segmen-
tation is shown. If the method is initialized with the results
achieved with the Shape Prior method including the depth
information, the results are superior. The depth information
used by the Shape Prior approach definitely increases the
segmentation performance as far as robustness is concerned.

In Fig. 15d, we compare our methods from Fig. 15c with
the corner template-matching approach [10] and the three-
stage template-matching approach [11]. The corner template-
matching approach definitely suffers from the low quality
of the images. The robustness highly declines. The three-
stage template-matching approach is slightly more accurate
than the two-stage active contours approach applied to the
low quality images. However, the active contours approach

additionally based on the shape information delivers even
better results than the three-stage approach, especially as far
as outliers are concerned.

Now we compare different stage 2 methods (statisti-
cal level set approach including shape information, tradi-
tional region-based level set method [11] and statistical level
set approach without shape information). The methods are
initialized with the results achieved with the Shape Prior
approach including the depth information (Stage 1B). The
results are shown in Fig. 16.

In contrast to the approximative Shape Prior approach,
the results of the precise level set segmentation approach
are more similar. The approach including the depth infor-
mation seems to be slightly more robust than the region-
based approach (regarding deviations of e.g., ≤40 pixels).
However, the region-based approach tends to be more accu-
rate (regarding deviations of e.g., ≤5 pixels). The statistical
approach without the depth information tends to be in the
middle of the other mentioned approaches.
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Fig. 16 Comparison: changes if Shape from Focus information is used
only in the precise second stage

Fig. 17 Achieved corner points with traditional method (⊕) and Shape
from Focus based approach (⊗) (left) and the corresponding depth infor-
mation (right)

Table 1 Focus step size dependent on the optical zoom factor

Zoom factor Step size
(nm)

10× 10,000

20× 5,000

40× 1,000

To understand this behavior, we consider the different
depth images provided by the depth from focus method
(Fig. 10). Images with low noise and high contrast, which
can be segmented well without any depth information (mid-
dle and right image) often have poor depth information [large
regions without reliable depth information (marked white)].
Consequently, the segmentation of these images suffers from
the additional information. In opposite, the depth information
of highly noisy images (left image) usually is quite accurate,
so the segmentation performance increases. Such an image
is also shown in Fig. 17. In this image, the addition of depth
information leads to a successful segmentation.

Consequently, we recommend to use the second stage
Shape from Focus approach only, if the image is very hard to

(a)

(b)

Fig. 18 Comparisons: impact of unfocused images used in the approx-
imative stage 1

segment by the traditional algorithms as the execution run-
time increases considerably (Sect. 6.5) if the second stage is
based on shape information. In the first approximative stage,
the additional computational costs are low and the perfor-
mance significantly raises.

6.4 Gradual enhancement with unfocused images

As this approach also requires differently focused image,
DB3 is chosen with the low quality images. The step size
between two focus levels is chosen in dependence on the
optical zoom of the camera (see Table 1). E.g. with a magni-
fication of 10, one focus level less means that the camera with
a fixed-focus lens moves 10,000 nm towards the specimen.

First of all, we investigate the effect of single unfocused
images instead of focused ones on the proposed approxima-
tive Shape Prior indentation segmentation approach (tradi-
tional stage 1A, with unfocused images). Figure 18a and b
shows the results of the approximative methods. In Fig. 18c,
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(a) (b)

(c) (d)

Fig. 19 Comparisons: gradual enhancement approach

the focus plane is farther away from the camera compared
with the best-focus setting.

The robustness (i.e., the number of outliers is low) of the
segmentation not only stay unchanged but can also actu-
ally be increased. The segmentation accuracy (e.g., the ratio
of vertices with a deviation of maximal 20 pixels) slightly
decreases. In opposite, if the focus plane is nearer to the
camera compared with the best-focus setting (Fig. 18b), the
accuracy and the robustness significantly decrease.

Now we regard the proposed gradual enhancement
approach (stage 1C): the results with different focus lev-
els as stopping conditions are shown in Fig. 19a. Although
the behavior is similar to the behavior with one single unfo-
cused image (best stopping level: f l = −10), the effect is
smaller. The outliers ratio generally is lower than with the
single image approach.

In Fig. 19b, the gradual enhancement approach with the
best stopping focus level ( f l = −10) is compared with the

best results achieved with one single (unfocused) image and
with the results with the focused image (traditional stage 1A).
The gradual enhancement approach definitely is more com-
petitive as far as the approximative stage is concerned than
the best focus approach and even more robust (less outliers)
than the single unfocused image approach.

The results (of different stopping criteria) seem to be more
similar compared to the single image approach. However, the
impact of the different initialization results on the level set
algorithm is considerable, as shown in Fig. 19c. Especially,
the number of outliers can considerably be decreased when
stopping earlier ( f l = −10). The slightly lower accuracy of
the first stage can be compensated by the second stage. Con-
sequently, we define the stop level −10 to be the best choice.
In Fig. 19c, the achieved results of best configurations (grad-
ual enhancement and single unfocused image) are compared
with the traditional approach with focused images. The per-
formance of the methods using unfocused images is definitely
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Fig. 20 Comparison: whereas in the first stage the different introduced
methods are used, the second stage remains the same (2A)

higher than the performance of the simple approach dealing
with the focused image. The gradual enhancement approach
is even slightly more robust (very few outliers) than the single
unfocused image approach.

In Fig. 20, the Shape from Focus and the gradual enhance-
ment approach are compared with the traditional method.
Only the first stage varies, the second stage is always the
same (region based level set approach). As shown, with the
gradual enhancement approach in the first stage, the robust-
ness of the overall segmentation can be improved once again.

6.5 Runtimes

In Table 2, the average runtimes of the different approaches
are shown. The traditional two-stage approach takes about
4.3 s per image. If the Shape from Focus approach is included
into the first stage, the overall runtime slightly increases, as
the shape information must be computed. If the Shape from
Focus approach is included in both stages, the runtime sig-
nificantly raises, as the shape information must be computed
from the originally sized images, which is computationally
expensive.

If the gradual enhancement approach based on unfocused
images is used, the traditional Shape Prior approach (2.2 s per

Table 2 Execution runtimes (Architecture: Intel Core 2 Duo T5500
1.66 GHz)

Process Traditional
two-stage
approach
(Sects. 2, 3) (s)

Stage 1 with
Shape from
Focus (s)

Both stages
with Shape
from Focus
(s)

Shape Prior approach 2.2 2.2 2.2

Level set approach 2.1 2.1 4.2

Shape computation Not required 0.8 7.3

Average total runtime 4.3 5.1 13.7

image) is replaced by the initial step which takes 1.0 s and a
number of enhancement steps (0.14 s per step). The runtimes
cannot be compared, as with this approach the segmentation
could start earlier.

7 Conclusion

We showed, that active contours are a precise segmentation
approach especially if a good localization of the indentation
is already available. The introduced Shape Prior approach
provides very robust approximative results, which are used
as initializations for the active contours. On the high qual-
ity databases, the introduced two-stage approach produces
better results than existing approaches. When incorporating
the mentioned approaches with Shape from Focus informa-
tion, robustness can even more be improved. Especially, the
localization stage benefits from the additional 3D informa-
tion. On the low quality database, the traditional two-stage
active contours approach is slightly less competitive than an
existing high performing template-matching based method.
However, with the shape information, the two-stage active
contours approach is even more competitive than this exist-
ing approach. Similar results are achieved with the gradual
enhancement approach. Nevertheless, the additional advan-
tage of this method is that the overall execution runtime
potentially can be reduced, when incorporating the approxi-
mative segmentation into the autofocus procedure.
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